
A Command Language for Taskable Virtual Agents

Pat Langley, Nishant Trivedi, and Matt Banister
Computer Science and Engineering

Arizona State University
Tempe AZ 85287 USA

Abstract

In this paper, we report progress on making synthetic
characters more taskable. In particular, we present an
English-like command language that lets one specify
complex behaviors an agent should carry out in a vir-
tual environment. We also report compilers that trans-
late English commands into a formal notation and for-
mal statements into procedures for ICARUS, an agent ar-
chitecture that supports reactive execution. To demon-
strate the benefits of such taskability, we have integrated
ICARUS with TWIG, which provides a simulated phys-
ical environment with humanoid agents. We use the
command language to specify three complex activities,
including responding to an object contingently, collect-
ing and storing a set of objects, and negotiating with
another agent in order to purchase an item. We also dis-
cuss related work on controlling synthetic characters,
along with paths for additional research on taskability.

Introduction
Although many modern digital games include nonplayer
characters that are controlled by computer software, there is
wide agreement that richer characters would make such in-
teractive systems more compelling and entertaining. To this
end, there is a growing body of research on using techniques
from artificial intelligence to support more sophisticated and
interesting agents that operate in games and similar simu-
lated environments. Some results from this work have al-
ready made the transition into commercial games, and this
trend seems likely to continue.

Nevertheless, specifying the behaviors that agents should
exhibit remains a tedious and painstaking process. Cognitive
architectures like Soar (Laird et al., 1987) provide high-level
constructs that reduce some of the effort, but creating knowl-
edge in these frameworks is still time consuming. Author-
ing tools for synthetic characters (e.g., Perlin & Goldberg,
1996) also alleviate some issues, but again require consid-
erable work before a character behaves in the desired ways.
Knowledge-lean approaches that carry out heuristic search
or use simple reactive controllers help in some contexts, but
they do not produce the rich, structured behavior we asso-
ciate with human intelligence.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One ability that these approaches and the resulting agents
lack is something that humans do readily: accept and carry
out complex instructions. Despite the increasing reliance of
synthetic characters on domain knowledge that constrains
and guides their behavior, they cannot interpret and follow
commands. Langley et al. (2009) refer to this as taskabil-
ity and note its absence as an important limitation of exist-
ing work on intelligent agents. More taskable agents would
make compelling companion characters in digital games and
other virtual environments.

In this paper, we propose a novel approach to enabling
taskable systems. The central idea involves a command
language that lets one specify complex behaviors the agent
should carry out. Task statements are composable, so that
one can produce complex commands by combining simpler
ones. We couple the language with compilers that translate
commands into structures that an agent architecture can ex-
ecute in a virtual environment. Together, the formalism and
the compilers support taskable agents that accept and follow
complex instructions.

In the next section, we describe a command language
that lets one specify instructions for complex tasks. After
this, we review ICARUS, a cognitive architecture, and TWIG,
a procedural animation system, that we have integrated to
demonstrate the formalism’s operation. Our approach is not
limited to either system, but they provide a context in which
to illustrate our claims. Next we report the results of three
ICARUS runs with taskable TWIG agents that exhibit com-
plex behaviors in response to our commands. We conclude
by discussing related work on guiding agent activities and
suggesting directions for future research.

A Command Language for Complex Tasks
The main contribution of our research is a command lan-
guage for taskable agents that follow instructions about how
to interact with the environment and other agents. The lan-
guage can specify complex behaviors by combining a small
set of command predicates with domain concepts and ac-
tions. The framework lets one describe activities in terms
of application conditions, termination criteria, and orderings
on subactivities. Because elements are composable, one can
create complex commands in terms of simpler ones and thus
express a wide range of rich agent behaviors.



The command language uses a constrained English syntax
to describe activities. For example, the statement

If you are a child and D is a doll,
Then Until you are at doll D

Holds you should move toward D.

demonstrates the use of two paired sets of command predi-
cates. One pair, If / Then, specifies one or more conditions
for carrying out a subcommand. The other, Until / Holds,
indicates the halting criteria for a subcommand. The expres-
sions doll and at doll refer to known conceptual predicates,
while move toward refers to a known domain action. The
words is, a, are, and should are ‘stop’ words included for
readability, while the remaining terms, D and you, denote
pattern-match variables.

The English syntax maps onto an analogous formal syn-
tax that uses list structures. For instance, the corresponding
formal command would be

(if (child ?you) (doll ?d)
(until (at-doll ?you ?d)

(*move-toward ?you ?d)))

As before, the if predicate denotes conditions for carrying
out a subcommand, while until specifies conditions (in this
case, only one) for terminating a subcommand. Differences
include using parentheses as delimiters rather than pairs of
command words, omitting stop words, marking variables
with question marks, and marking actions with asterisks.

The formal notation also clarifies the embedded nature
of commands, with the until clause occurring within the
if statement and with the *move-toward action occurring
within the until clause. Both the if and until predicates take
two or more arguments, with the final one being either a do-
main action or another command. Earlier arguments specify
a set of conditions that must match consistently (with shared
variables having the same values) for the statement to apply.
For if statements, these indicate conditions for carrying out
the final action or subcommand; for until statements, they
specify the conditions for halting the subcommand.

Another function of commands is to specify subtask or-
derings. For example, consider the more complex statement

If D is a doll,
Then First Until you are at doll D,

Holds you should move toward D,
Next Until you are grasping D,

Holds you should grasp object D.

The use of First and Next here indicates that the agent should
attempt to grasp the doll only after getting near that object.
Such ordering constraints are common in natural language
instructions, since it is often necessary to complete one sub-
task before starting another.

We can also specify the same ordering in our formal syn-
tax; in this case, we would write

(if (doll ?d)
(before (until (at-doll ?you ?d)

(*move-toward ?you ?d))
(until (grasping ?you ?d)

(*grasp-object ?you ?d))))

Here the before predicate indicates that its first argument
should be carried out before the second. Both arguments are
subtasks in the same formalism, but they might also have
been domain actions. In many ways, before is a simpler re-
lation than if and until, since it involves no conditions, and
thus adds no domain concepts or pattern-match variables.

However, these do not exhaust the types of commands we
need to support. We must also express contingent courses of
action. As an example, consider the command

If D is a doll and T is a tree,
Either If you are nearer to D than T,

Then you should move toward D,
Or If you are nearer to T than D,

Then you should move toward T.

Here the Either predicate indicates the start of the first al-
ternative, while Or marks its end and the start of the second
option. Although not shown in this example, the syntax al-
lows three or more alternatives, with Or initiating each one.

Again, we can state equivalent instructions in the formal
command syntax, with the English statement translating to

(if (doll ?d) (tree ?t)
(or (if (nearer ?you ?d ?t)

(*move-toward ?you ?d))
(if (nearer ?you ?t ?d)

(*move-toward ?you ?t))))

In this case, the or predicate has two arguments, but it can
take three or more, each of which must be a subcommand or
an expression with a domain action like *move-toward.

The above statements are interpreted imperatively, as in-
dication that the agent should carry out the commands.
However, both the English and the formal languages also
include a nonimperative define predicate that lets one en-
capsulate procedures for later reuse. This predicate takes
two arguments, the activity’s name and arguments followed
by its specification. The ability to define named procedures
has two important advantages. One is that it enables spec-
ification of recursive activities that could not be stated oth-
erwise. The other is that it lets one define generalized be-
haviors, such as obtaining and delivering an arbitrary object,
then repeatedly give this command imperatively with differ-
ent entities as arguments. This capability greatly reduces the
effort needed to produce complex behavior.

Of course, the command language itself would be useless
without some means to convert statements into executable
procedures. This equates to translating command expres-
sions into the format used by some agent architecture. We
have developed two such compilers; we will not report their
details here, except to note that both are written in Com-
mon Lisp. The first translates commands in the constrained
English syntax into list structures of the formal command
notation. The second compiles commands in the formal syn-
tax into procedures for an agent architecture that we review
in the next section. Once the formal notation compiler has
processed a nondefinitional command, it treats the statement
as an imperative, calling on the architecture to execute the
compiled version. Upon completion, it awaits further in-
structions and executes them upon arrival.



Some readers may question whether the ability to state
instructions in constrained English makes agents any more
taskable than simply writing programs in a traditional proce-
dural language. However, note that although our command
language can specify desired behavior in great detail, one
can also give very abstract instructions that refer to known
procedures. Commands may also be nondeterministic and
rely on the agent architecture to make choices among alter-
native expansions. Taken together, these features support
strong taskability in the sense we described earlier.

Review of the ICARUS Architecture
For a synthetic character to take advantage of command
statements, it must be able to represent the meanings of
those commands and have some way to interpret them. The
research community has explored multiple paradigms for
producing agent behavior in simulated environments. We
favor using a cognitive architecture (Langley et al., 2009)
that makes strong commitments to the representations, per-
formance mechanisms, and learning processes that under-
lie intelligent behavior. Our chosen architecture is ICARUS,
which has controlled synthetic characters in a number of vir-
tual environments (Choi et al., 2007; Li et al., 2009). Al-
though we believe our approach to taskability generalizes
beyond this framework, our demonstrations to date depend
on it, so we should review it briefly.

ICARUS shares important features with other cognitive ar-
chitectures like Soar (Laird et al., 1987), such as using sym-
bolic list structures, matching long-term knowledge against
short-term elements in a recognize-act cycle, and combin-
ing goal-driven processing with stimulus-driven behavior.
The most basic process in ICARUS is conceptual inference,
which provides an agent with information about its situa-
tion in the environment. On each cognitive cycle, the en-
vironment deposits descriptions of perceived objects into a
perceptual buffer, against which ICARUS matches concep-
tual rules to produce inferences that it deposits in a belief
memory. The inference process uses lower-level beliefs to
produce higher-level ones, generating a set of literals that
comprise the agent’s understanding of its current situation.
ICARUS repeats the process on each cycle, adding new be-
liefs and eliminating ones that are no longer justified.

Whereas conceptual inference produces beliefs about the
world, a second ICARUS process – skill execution – attempts
to alter the environment. This mechanism relies on a mem-
ory for procedures or ‘skills’ that describe how to achieve
goals. Each skill specifies a name and arguments, a set of
preconditions, a set of expected effects, and a set of ordered
subskills or executable actions. Execution begins with a top-
level intention and, on each cycle, takes one step downward
through the skill hierarchy, selecting a subskill with condi-
tions satisfied by current beliefs. This continues until the
system reaches a primitive skill, in which case it executes the
associated actions. ICARUS may execute the same intention
on successive cycles or, upon achieving desired effects, shift
to later subskills. This process continues until it completes
the top-level intention or finds no relevant subskills are ap-
plicable. The mixture of bottom-up inference with top-down
execution makes ICARUS a teleoreactive architecture.

Given the first example command in the previous section,
the two compilers would produce the single ICARUS skill

((skill-1 ?you ?d)
:conditions ((child ?you) (doll ?d))
:actions ((*move-toward ?you ?d))
:effects ((at-doll ?you ?d)))

which incorporates both the initiation conditions and the
halting criterion in a single structure. In contrast, the sec-
ond example command would produce three ICARUS skills

((skill-4 ?you ?d)
:conditions ((doll ?d))
:subskills ((skill-2 ?you ?d) (skill-3 ?you ?d)))

((skill-2 ?you ?d)
:actions ((*move-toward ?you ?d))
:effects ((at-doll ?you ?d)))

((skill-3 ?you ?d)
:actions ((*grasp-object ?you ?d))
:effects ((grasping ?you ?d)))

that are organized in a two-level hierarchy, with the first,
skill-4, referring to skill-2 and skill-3 in that order.

The TWIG Environment
We also require an environment in which to develop and
demonstrate our ideas on taskability. For this purpose, we
selected TWIG (Horswill, 2008), a low-fidelity simulator
that supports the creation, rendering, and animation for a
basic set of virtual characters and objects. In essence, it pro-
vides a stage, a set of humanoid actors, and a set of passive
props with which they interact. Although relatively simple
compared to many simulation environments, TWIG has the
advantage of providing a reasonably broad range of func-
tionality in a reasonably small and fast implementation.

The current TWIG implementation supports child and
adult actors, which differ mainly in their size, along with
inanimate balls, dolls, trees, and chairs. A child or adult can
approach any object, including another agent; they can also
pick up and drop dolls, sit on and rise from chairs, and kick
balls. An agent can interact directly with another nearby ac-
tor by hugging it or fighting with it. TWIG also lets agents
communicate in text that it displays in speech bubbles. The
environment comes with low-level reactive behaviors that
support basic activities like moving to an object.1

Before we could demonstrate our approach to taskability,
we had to integrate ICARUS and TWIG in ways that sup-
ported their interaction. Because TWIG is implemented in
C# and ICARUS is written in Lisp, we used message pass-
ing over TCP/IP streams to let them communicate. ICARUS
is responsible for high-level inference and goal-directed ac-
tivity, while TWIG handles low-level reactive behavior. Be-
cause ICARUS uses percepts to drive conceptual inference,
TWIG provides a description of the environment on each cy-
cle. Whenever ICARUS is ready to execute an action associ-
ated with a primitive skill, it tells TWIG to initiate the appro-

1TWIG itself provides basic taskability in the form of scripts,
but these do not support the complex, extended activities we believe
are necessary to mimic intelligence in synthetic characters.



priate reactive behavior. If TWIG completes this behavior
successfully, then ICARUS receives the updated state on the
next cycle and turns to another skill.

We also wanted to model social interaction, including
constrained forms of dialogue, between ICARUS-controlled
TWIG agents. The basic environment handles physical inter-
action, but we needed some way for agents to exchange mes-
sages about topics like buying objects. We adapted the exist-
ing TWIG messaging mechanism to this end. The initiating
ICARUS agent sends a directive that TWIG should address a
message to the recipient with details about speaker, listener,
and content. TWIG passes the information to all agents as
percepts that contain relevant information. For instance, the
percept for an offer to buy or sell an object includes ids for
the offer, object, buyer, and seller, along with a price and
deadline. The percept is available until this deadline passes.

Experimental Demonstrations
In order to demonstrate that our command language sup-
ports taskability, we used it to specify three tasks for ICARUS
agents operating within the TWIG environment. In this sec-
tion, we describe each command’s intent, show its English
and formal specifications, and discuss the behavior that the
compiled skills produced. In our experience, the command
language makes it substantially easier to describe complex
behaviors than writing ICARUS programs directly.

Scenario 1: Contingent Dolls
The initial scenario involves a combination of contingent,
conditional, and ordered activities. We instructed the agent
to obtain a nearby doll if it was not currently holding one,
but to instead take any doll that it is holding to some tree.
The English specification of this command was

If D is a doll,
Then Either If not you are grasping D,

Then First Until you are at doll D
Holds you should move toward D,

Next If you are at doll D,
Then Until you are grasping D

Holds you should grasp object D,
Or If you are grasping D and T is a tree,

Then First Until you are at tree T
Holds you should move toward T

Next you should drop object D.

Using knowledge about command predicates, concepts and
actions, and stop words, the compiler translates this state-
ment into an equivalent structure in the formal notation,

(if (doll ?d)
(or (if (not (grasping ?you ?d))

(before (until (at-doll ?you ?d)
(*move-toward ?you ?d))

(if (at-doll ?you ?d)
(until (grasping ?you ?d)

(*grasp-object ?you ?d)))))
(if (grasping ?you ?d) (tree ?t)

(before (until (at-tree ?you ?t)
(*move-toward ?you ?t))

(*drop-object ?you ?d)))))

Figure 1: The doll-collecting agent depositing one of its
finds near the tree.

The second compiler in turn translates this command into six
ICARUS skills, along with an imperative top-level intention,
that produce the desired behavior. If the agent is not holding
the specified doll, it moves toward it, halts on getting close
enough, and picks it up. However, if the agent is already
holding a doll when the task starts, it moves toward a nearby
tree and, upon reaching it, drops the object.

Scenario 2: Collectable Dolls
Our second scenario is more complex in that it involves an
agent interacting with five dolls and a tree. We instructed
the agent to approach any doll it observes, pick it up, carry
the doll to the tree, and drop it there, continuing this process
until all dolls are at the tree. Because this was a recursive
procedure, we used define to name the top-level task as put
all dolls in stash with two English commands

Define you put all dolls in stash T as
If T is a tree and D is a doll not in stash T,

Then Until all dolls in stash T
Holds First you take doll D to T,

Next you put all dolls in stash T.
Define you put all dolls in stash T as

If T is a tree,
Then Until D is a doll in stash T

Holds you take doll D to T.

The first compiler translates these statements into two anal-
ogous formal commands, specifically

(define (put-all-dolls-in-stash ?you ?t)
(if (tree ?t) (doll-not-in-stash ?d ?t)

(until (all-dolls-in-stash ?t)
(before (take-doll ?t ?you ?d)

(put-all-dolls-in-stash ?you ?t)))))
(define (put-all-dolls-in-stash ?you ?t)

(if (tree ?t)
(until (doll-in-stash ?d ?t)

(take-doll ?t ?you ?d))))

We also used define to specify a subtask, take doll, that oc-
curs in both the recursive and base cases of the procedure.



Figure 2: Counteroffer by the innocent to the capitalist in
the doll purchase scenario.

The English and formal versions of this command were

Define you take doll D to T as
First you move toward D, Next you pick up D,
Next you move toward T, Next you drop object D.

and
(define (take-doll ?you ?d ?t)

(before (*move-toward ?you ?d) (*grasp-object ?you ?d)
(*move-toward ?you ?t) (*drop-object ?you ?d)))

Overall, the two compilers generated three ICARUS skills
that produce the intended behavior when given the impera-
tive command You put all dolls in stash tree1. In response,
the agent first walks to one of the dolls, then grasps it, walks
to the tree, and drops the object. After this, it repeats the
procedure with a second doll and continues the process until
it has transferred all of them to their new home. Figure 1
shows a screenshot near the end of this activity.

Scenario 3: Capitalism in Action
Our final scenario is even more complex, in that it involves
economic interaction among two agents, each following its
own instructions. This TWIG environment includes two dis-
tinct types of agents. Capitalists want to amass wealth, so
they seek to buy dolls at the lowest price possible and sell
them at a higher rate. Innocents are naive agents that pick up
dolls and, if approached by a capitalist making an offer, ne-
gotiate about the price. The capitalist initiates negotiations,
but the innocent can make counteroffers.

In this case, the command statements specified the nego-
tiation protocol that each agent should follow. We tasked a
capitalist to approach an innocent if she has a doll and offer
to buy it. If the innocent agrees on the price, she transfers
the doll in exchange for the money; if not, she makes a coun-
teroffer that reduces the selling price. If the capitalist finds
this low enough, he agrees and the transfer occurs; if not, he
makes a counteroffer that raises the amount. This bargain-
ing continues until they agree upon a price or either agent
reaches its threshold, in which case their interaction ends.

We lack space to present the formal specification for this
task, but the command statement was approximately 30 lines

Figure 3: Final agreement between the capitalist and inno-
cent in the doll purchase scenario.

for the capitalist and 20 for the innocent. These compiled
into eight ICARUS skills for the former and seven skills for
the latter. The agents behave as desired when operating with
the compiled instructions. The capitalist approaches a doll-
holding innocent and makes an initial offer. Since this is
below its threshold, the innocent makes a counteroffer with
a higher price, as shown in Figure 2. The capitalist finds this
too high, so he makes his own counteroffer. This bargaining
continues for two rounds, at which point the agents agree on
a price and exchange the doll, as Figure 3 illustrates.

Related Research
There has been considerable research on endowing synthetic
characters, in digital games and elsewhere, with sophisti-
cated abilities, but relatively few efforts on making these
agents taskable. André et al. (1998) reported a method for
creating life-like agents by writing directives in a script-
like formalism which was then compiled into executable
machine code. Vosinakis and Panayiotopoulos (2003) de-
scribed an approach closer to our own, proposing a language
that specifies agent behavior as hierarchical combinations of
sequential, parallel, and conditional actions. However, nei-
ther utilized an agent architecture to interpret compiled be-
haviors, and neither supported an English-like syntax.

In another early effort, Perlin and Goldberg’s (1996) Im-
prov aimed to let authors create layered, non-repetitive mo-
tions for synthetic characters, along with smooth transitions
between them. The system included a behavior engine that
interpreted groups of simple action sequences about how
agents make decisions, communicate, and change. Blum-
berg et al.’s (1995) framework let users specify the agent be-
havior at an abstract motivational level that indicates generic
goals, an intermediate task level that specifies procedures for
achieving goals, and a detailed level that controls agent ac-
tions directly. Mateas and Stern’s (2002) ABL provided a
formalism not only for specifying complex behavior of in-
dividual agents, but also the joint activities needed for inter-
active drama. Our command language lacks some of these
features, but it supports activities of equal or greater com-
plexity, and its emphasis on taskability makes it distinctive.



Other researchers have developed abstract formalisms like
Herbal (Cohen et al., 2005) and HLSR (Jones et al., 2006)
to ease the process of cognitive modeling. These take the
form of high-level programming languages that generalize
common features of architectures like ACT-R and Soar. One
can describe agent behaviors in an architecture-independent
syntax, which is then compiled into structures in a selected
architecture. Our approach takes this abstraction even higher
by introducing an English-like command language that com-
piles into an intermediate formalism similar to HLSR and
Herbal. This should make our approach accessible even to
those with limited programming expertise.

Directions for Future Work
Although our experience to date suggests that our command
language supports more taskable agents, it also seems clear
that it would benefit from extensions. For instance, the
current formalism focuses almost entirely on what actions
the agent should carry out. However, we might also de-
sire instructions that specify constraints on the environmen-
tal state, such as do not come within ten feet of the tree when
you are grasping a doll. We should augment the language
to handle such statements and revise the compiler to trans-
late them into conditionalized constraints on agent behavior.
We should also add abilities for specifying goals the agent
should achieve and for defining the domain concepts that ap-
pear in commands. Finally, we should support the parallel,
coordinated actions that arise in some complex activities.

Naturally, we should also demonstrate the framework’s
generality by using it to generate a wider variety of ICARUS
behaviors in the TWIG environment. We should also de-
vote some energy toward adapting it to other virtual environ-
ments in which agents must accept and execute commands.
One likely candidate involves search-and-rescue scenarios
for human-robot interaction, where a human commander re-
peatedly gives commands to a robot that is looking for sur-
vivors. In addition, the framework’s ability to state abstract,
imperative commands suggests its use for directing agent be-
havior in interactive drama. Finally, we have argued that our
command language will prove useful for other agent archi-
tectures, but this means writing compilers from the formal-
ism to their internal structures, which we will leave to others.

Closing Remarks
In the preceding pages, we posed the challenge of creating
taskable synthetic agents that accept and carry out complex
instructions. In response, we described a command language
with a clear syntax that embeds simpler tasks within more
complicated ones. We also reviewed ICARUS, a cognitive
architecture, and TWIG, an animation framework, which to-
gether let us show that our formalism produces intended be-
havior in synthetic characters. We demonstrated this taska-
bility on three scenarios that varied in complexity.

We examined the literature on high-level formalisms for
specifying agent behavior, finding that our approach is not
entirely novel but that it has unique features. We also dis-
cussed limitations of our command language and ways to
improve it in future work. Developing a framework for spec-
ifying complex behaviors is not the only requirement for be-

lievable synthetic characters, but it may well be an essential
component, and we encourage other researchers to join us in
addressing this important problem.

Acknowledgements
This work was funded in part by ONR Grant N00014-07-1-
1049. We thank Ian Horswill for assistance with the TWIG
environment and Glenn Iba for his contributions to ICARUS.

References
André, E., Rist, T., & Müller, J. (1998). Integrating reactive

and scripted behaviors in a life-like presentation agent.
Proceedings of the Second International Conference on
Autonomous Agents (pp. 261–268). Minneapolis: ACM.

Blumberg, B., & Galyean, T. (1995). Multilevel direction of
autonomous creatures for real-time virtual environments.
Proceedings of the 22nd Annual Conference on Computer
Graphics (pp. 47–54). Los Angeles: ACM Press.

Choi, D., Könik, T., Nejati, N., Park, C., & Langley, P.
(2007). A believable agent for first-person shooter games.
Proceedings of the Third Annual Artificial Intelligence
and Interactive Digital Entertainment Conference (pp.
71–73). Stanford, CA: AAAI Press.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). Herbal:
A high-level language and development environment for
developing cognitive models in Soar. Proceedings of the
Fourteenth Conference on Behavior Representation in
Modeling and Simulation (pp. 133-140).

Jones, R. M., Crossman, J. A. L., Libiere, C., & Best, B.
J. (2006). An abstract language for cognitive modeling.
Proceedings of the Seveneth International Conference on
Cognitive Modeling. Mahwah, NJ: Lawrence Erlbaum.

Horswill, I. (2008). Lightweight procedural animation with
believable physical interaction. Proceedings of the Fourth
Conference on Artificial Intelligence and Interactive Dig-
ital Entertainment. Stanford CA: AAAI Press.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial Intelli-
gence, 33, 1–64.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive
architectures: Research issues and challenges. Cognitive
Systems Research, 10, 141–160.

Li, N., Stracuzzi, D. J., Cleveland, G., Konik, T., Shapiro,
D., Molineaux, M., & Aha, D. W. (2009). Constructing
game agents from video of human behavior. Proceedings
of the Fifth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. AAAI Press.

Mateas, M., & Stern, A. (2002). A behavior language for
story-based believable agents. Papers from the Spring
Symposium on Artificial Intelligence and Interactive En-
tertainment. Stanford, CA: AAAI Press.

Perlin, K., & Goldberg, A. (1996). Improv: A system for
scripting interactive actors in virtual worlds. Proceedings
of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques (pp. 205–216). ACM.

Vosinakis, S., & Panayiotopoulos, T. (2003). A task defini-
tion language for virtual agents. Journal of WSCG, 11,
512–519.


