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Abstract

An important form of learning involves acquiring skills that
let an agent achieve its goals. While there has been consid-
erable work on learning in planning, most approaches have
been sensitive to the representation of domain context, which
hurts their generality. A learning mechanism that constructs
skills effectively across different representations would sug-
gest more robust behavior. In this paper, we present a novel
approach to learning hierarchical task networks that acquires
conceptual predicates as learning proceeds, making it less de-
pendent on carefully crafted background knowledge. The
representation acquisition procedure expands the system’s
knowledge about the world, and leads to more rapid learn-
ing. We show the effectiveness of the approach by comparing
it with one that does not change domain representation.

Introduction
Hierarchical task networks (Nau et al. 1999; Wilkins and
des Jardins 2001) have received increased attention for their
efficient planning capabilities. However, generating hierar-
chical task networks by hand is often difficult and time con-
suming. For this reason, there has been a growing body of
work on learning in this framework (Ilghami et al. 2002;
Langley and Choi 2006; Nejati, Langley, and Konik 2006).
Both Langley and Choi’s system and Nejati et al’s work rep-
resent the world with a hierarchical conceptual knowledge
base, which provides a vocabulary for the system to describe
state features with different levels of abstraction. Their skill
learners then use this vocabulary to guide the precondition
and subtask acquisition process for the procedural methods.
A good representation of the world state reveals essential
features of the world, and helps the system to decide which
skill to apply in solving the problem.

However, such a representation is often not available. If
the structure of the concept hierarchy does not reveal the
critical features corresponding to the task/subtask hierarchy,
the methods acquired may not guide the system to achieve its
desired goal. In this paper, we refer to these concept hierar-
chies as ill-structured concept hierarchies. Manually coding

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Now with the Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA, USA.

2Now with the Cognitive Modeling Department, Sandia Na-
tional Laboratories, Albuquerque, NM, USA.

well-structured representations often requires time and do-
main expertise. Hence, designing a learning mechanism that
performs well across various domain representations, even
when representations lack of essential features, is important.
One possible way of achieving this is to build learners that
improve their representations during skill acquisition.

In this paper, we consider the problem of learning meth-
ods with ill-structured concept hierarchies in a representa-
tional formalism, teleoreactive logic programs, which is a
special case of hierarchical task networks. Careful inspec-
tion shows that skills acquired from an ill-structured concept
hierarchy often have preconditions that do not accurately de-
scribe the applicable situations. To acquire preconditions
with more accurate coverage, there are two primary issues.
First, the preconditions should be sufficiently general so that
methods will be used both in situations that are similar to
those encountered during learning, and in situations that are
unfamiliar. Second, preconditions should be specific enough
so that procedural clauses that cannot achieve the goal in the
current situation will not be selected for execution. If the ill-
structured concept hierarchy lacks concepts that could effec-
tively describe a method’s preconditions, then the method
learner may not acquire effective skills. One approach to
addressing this issue is to automatically construct such con-
cepts, and add them to the existing hierarchy.

We propose an algorithm that acquires both the concep-
tual clauses for preconditions and the procedural clauses for
executing the solution by analyzing the structure of solved
problems. Our approach differs from most of the other hi-
erarchical task network learning algorithms in that the pre-
conditions acquired are no longer simple conjunctions of ex-
isting predicates, but are instead more complicated concepts
describing higher-level abstractions of the world. The new
conceptual and procedural knowledge expands their respec-
tive knowledge bases, and can be used to guide learning on
future tasks. We claim that our approach improves the per-
formance of teleoreactive agents by guiding selection of pro-
cedural clauses.

A Review of Teleoreactive Logic Programs
Teleoreactive logic programs are a framework for encod-
ing procedural knowledge that incorporates ideas from logic
programming, reactive control, and hierarchical task net-
works (Nau et al. 1999; Wilkins and des Jardins 2001). They
have a syntax similar to the first-order Horn clauses used in
Prolog, and so may be viewed as logic programs. The term



Figure 1: System diagram of the ICARUS architecture.

“teleoreactive” (Nilsson 1994) refers to the formalism’s sup-
port for reactive execution of the goal-oriented methods over
time. We have embedded teleoreactive logic programs into
ICARUS, a physical agent architecture. ICARUS shares many
features with agent architectures like Soar (Laird, Rosen-
bloom, and Newell 1986), and ACT-R (Anderson 1993),
and Prodigy (Minton 1990). We will use ICARUS to refer
to teleoreactive logic programs, although other implementa-
tions are possible.

To better illustrate teleoreactive logic programs, we pro-
vide an example from the card game of freecell soli-
taire (Bacchus 2001). Freecell begins with eight columns of
stacked cards, initially random. There are also four empty
home cells, one for each suit, and four empty free cells each
of which can hold any single card. The objective is to move
all cards from the eight columns to their respective home
cells, stacked in ascending order. Only cards at the top of
each column, and in the free cells may be moved. A player
may move a card to one of four locations: 1) its correspond-
ing home, 2) an empty free cell, 3) an empty column, or 4)
the top of a column whose current top has rank one greater
than the moved card and is of opposite color. In the applica-
tion of teleoreactive logic programs to freecell described be-
low, forty concepts and thirteen primitive skills are initially
provided to the agent.

Knowledge Representation
ICARUS distinguishes conceptual and procedural knowl-
edge, and has separate knowledge bases for each. The
conceptual knowledge base stores a hierarchy of first-order
Horn clauses with negation, and provides a vocabulary for
the agent to describe its environment at different levels of
abstraction. Each concept consists of a head, which states
the predicate and the arguments of the concept, and a body
that describes the conditions under which the concept is true.
There are two forms of concepts. Primitive concepts have a
test field in their bodies that refers only to low-level descrip-
tions of the environment that can be observed directly by the
agent. These low-level descriptions are referred as percepts.
Non-primitive concepts have a relation field in their bodies
that refers to other lower-level concepts. Sample concepts
are demonstrated in Table 1. (column-column-pair ?c1 ?c2)
is a primitive concept, whereas (column-to-column-able ?c
?dc ?cb) is a non-primitive concept. The non-primitive con-
cept (column-to-column-able ?c ?dc ?cb) indicates that, if
card ?c and card ?dc are the last cards in two columns,
card ?c is on card ?cb, and card ?c and card ?dc forms a
column-column pair, then card ?c may be placed onto card
?dc, which makes card ?cb become the last card in the orig-
inal column.

The procedural knowledge base stores skill knowledge

Table 1: Sample conceptual clauses from freecell solitaire.

;; cards ?c1 and ?c2 are of different color,
;; rank of ?c2 is 1 larger than ?c1
((column-column-pair ?c1 ?c2)

:percepts ((card ?c1 color ?co1 val ?v1)
(card ?c2 color ?co2 val ?v2))

:tests ((not (equal ?co1 ?co2))
(= ?v2 (+ 1 ?v1))))

;; card ?c may be placed onto card ?dc,
;; and ?cb is the card below ?c
((column-to-column-able ?c ?dc ?cb)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:relations ((clear ?c)
(clear ?dc)
(on ?c ?cb)
(column-column-pair ?c ?dc)))

;; start condition corresponding to procedure clear
((precondition-of-clear ?dc)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:relations ((column-to-column-able ?c ?dc ?cb)))

that can execute in the world in a form similar to hierarchi-
cal STRIPS operators (Fikes and Nilsson 1971). Each skill
has a head, which is a defined concept that specifies the sit-
uation after the skill executes, a start condition that must be
satisfied before the skill can execute, a body that describes
how to achieve the desired condition, and an effects field that
specifies the skill’s effects. There are two types of skills,
just as with concepts. Primitive skills (e.g. (clear-and-put-
on ?cb ?c ?dc) in Table 2) have an action field that refers to
actions that the agent can execute directly in the world. Non-
primitive skills (e.g. (put-on ?c ?dc) in Table 2) have a sub-
goal field that specifies subgoals the agent should achieve.
A skill (e.g. column-to-column-able) may refer to itself, ei-
ther directly or through a subgoal, allowing the framework
to support recursive programs.

Teleoreactive Execution and Problem Solving
Teleoreactive logic programs perform a series of distinct, in-
ternal operations to execute in a goal-directed but reactive
manner. As mentioned earlier, ICARUS provides an inter-
preter for teleoreactive logic programs, which operates in
discrete cognitive cycles, as shown in Figure 1. For each
cycle, the interpreter first infers its beliefs about the envi-
ronment. Then, based on its skill knowledge base and the
inferred beliefs, the interpreter chooses an action towards
achieving its goals, and executes it in the world.

To understand its environment, the interpreter first re-
ceives a set of percepts in the form of ground literals. It then
infers beliefs about its environment by matching perceptual
constants with concept arguments in a bottom-up fashion.1
This inference process computes the deductive closure of be-
liefs implied by conceptual predicates and percepts. These
concept instances are stored in belief memory for the agent

1Note the difference between this approach and that of Prolog,
which evaluates predicates in a top-down, query-driven manner.



Table 2: Sample skill clauses from freecell solitaire.

;; Clear card ?cb by moving ?c from it to ?dc
((clear-and-put-on ?cb ?c ?dc)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:start ((column-to-column-able ?c ?dc ?cb))
:actions ((*sendtocol ?c ?dc))
:effects ((clear ?cb)

(put-on ?c ?dc)
(clear ?c)))

;; Move card ?c on to card ?dc
((put-on ?c ?dc)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:start ((precondition-of-put-on s8 ?c ?dc))
:subgoals ((column-to-column-able ?c ?dc ?cb)

(clear-and-put-on ?cb ?c ?dc))
:effects ((effect-of-non s8 ?c ?dc)))

to make decisions later. Based on the inferred state of its
surroundings, ICARUS uses its skill knowledge to take ac-
tion towards achieving its goal. In order to decide the next
move, the interpreter first retrieves an unsatisfied goal, and
then chooses a skill that it expects to achieve the goal. The
interpreter proceeds in a goal-oriented manner, while still
remaining reactive to the environment.

When no skill applies (an impasse), the interpreter in-
vokes a problem-solving mechanism which decomposes the
current goal into subgoals. It uses both conceptual and pro-
cedural knowledge to chain backward from the goal until it
finds a subgoal with an executable skill. The problem solver
prefers chaining off of a skill over a concept.

When chaining off of a skill, the interpreter retrieves a
skill that contains the goal in its head. Then the problem
solver pushes the start condition of the selected skill onto
a goal stack, and starts working on the start condition. For
chaining off of a conceptual predicate, the system uses the
concept definition to decompose the goal into multiple sub-
goals. If more than one subgoal is unsatisfied, the problem
solver randomly selects one subgoal and pushes it onto the
goal stack. Once a subgoal is achieved, the interpreter pops
it out from the goal stack, and works on other unsatisfied
subgoals until the goal is achieved. During this process,
execution resumes immediately after an applicable skill is
found, thereby interleaving problem-solving and execution.

Consider the problem solving example shown in Figure 2.
Suppose the system is given the top-level goal of clearing
the four-of-spades card, (clear 4♠), and that no applicable
skill is available in the current state. Given this impasse, the
interpreter invokes the problem solver and chains off of the
goal using the skill (clear 4♠), which is shown in Table 2.
This skill has the start condition (column-to-column-able 2♥
3♠ 4♠) shown in Table 1 which describes the situation in
which the 2♥ is the only card on the 4♠, and the player can
move the 2♥ onto the 3♠. The interpreter places this start
condition on the goal stack as a subgoal.

On the next cycle, the interpreter chains off of the concept
(column-to-column-able 2♥ 3♠ 4♠) and decomposes it into
(clear 2♥), (clear 3♠), (on 2♥ 4♠) and (column-column-
pair 2♥ 3♠) through the concept definition. Of these, only

Figure 2: A freecell problem-solving example. Concepts
are shown as circles, and procedural clauses are shown as
rectangles.

(clear 3♠) is unsatisfied, so it gets added to the goal stack
as the next subgoal. An applicable skill, (clear 3♠), exists
for this subgoal and the framework executes it immediately.
This changes the state such that the A♥ is now on the 2♠,
and makes (column-to-column-able 2♥ 3♠ 4♠) true. Now
the skill (clear 4♠) becomes applicable. The system carries
out the skill, and achieves its initial goal, (clear 4♠). Note
that although not shown, problem solving usually involves
extensive search.

Skill Learning
When the problem solver achieves a goal or subgoal, the sys-
tem constructs a new skill for this goal. The head of the skill
is a generalized version of the goal in which constants are re-
placed by variables. Recall that the problem solver achieved
the goal either by skill chaining or concept chaining, which
shows implication for what the system learns.

If the goal was achieved by chaining off a skill, then the
chaining process was accomplished by first making the start
condition of the chained concept true, and then executing the
chained skill. Therefore, the subgoals of the new skill should
first include the start condition concept from the chained
skill, followed by the subgoals of the chained skill in the or-
der of execution. Since the first subgoal of the new skill en-
sures the applicability of the subsequent subgoals, the start
condition of the new skill becomes the start condition of
the first subgoal. In freecell, since (clear 4♠) was achieved
through chaining off of skill (clear-and-put-on 4♠ 2♥ 3♠),
the skill learner constructs a new skill with two subgoals
(column-to-column-able 2♥ 3♠ 4♠) and (clear-and-put-on
4♠ 2♥ 3♠).

If the goal was achieved through concept chaining, then
the problem solving process was completed by satisfying all
of the subconcepts in the chained concept. Hence, the sub-
goals of the new skill are the unsatisfied subconcepts of the
chained concept in the order of execution. The start condi-
tion of the new skill should be all the other subconcepts that
were initially satisfied. In the freecell example, the subgoal
(column-to-column-able 2♥ 3♠ 4♠) was achieved via back-
ward chaining on the concept definition. The skill learner
creates a new skill for this goal with one subgoal (clear 3♠),



since it was not satisfied in the initial state.
In subsequent runs, if the agent gets the same goal (maybe

with different arguments), the interpreter will try to execute
the new skill. In this way, if the agent meets a similar situa-
tion later, it will achieve the goal directly instead of repeat-
ing the problem-solving process again.

Learning and Using Conceptual Predicates
Having reviewed the framework and operational compo-
nents of teleoreactive logic programs, we are ready to
present our precondition learning mechanism. Although the
skill-learning mechanism described by Langley and Choi
(2006) has produced encouraging results, the start condi-
tions acquired by their approach are sometimes overly gen-
eral, and at other times overly specific. Moreover, our ex-
perience suggests that both issues can become worse when
given ill-structured concept hierarchies. Our objective is to
address these issues by constructing new conceptual clauses
that better reflect the skill’s applicability.

Learning Conceptual Predicates
Whenever a goal is achieved via problem-solving, a new
skill is constructed based on the solution. The start con-
ditions define abstractions of the world before the skill ex-
ecutes. To assist precondition construction, the concept
leaner also acquires the effects of the new skill, which de-
fine abstractions of the world after the skill executes.

The concept learner acquires two kinds of predicates to
strike a balance between specificity and generality: special-
ized predicates and generalized predicates. Specialized pre-
conditions are used during execution to avoid skill overuse.
Each specialized precondition is associated with one specific
skill. It describes the situations in which the specific skill
could apply. Generalized preconditions, on the other hand,
are used during learning to avoid acquisition of over-specific
preconditions. When skills are learned, the system cannot
predict under what situations the skill will eventually be
used to achieve the given goal. Hence, generalized precondi-
tions describe the situations in which there exist at least one
skill that could be applied to achieve the given goal. Each
generalized precondition/effect is associated with one goal.
The definition of a generalized precondition/effect is simply
a disjunction over all specialized preconditions/effects from
the skills that achieve the goal.

We now show how the two types of preconditions and
effects are learned. Suppose a goal is achieved by chain-
ing off of a concept. Then a specialized conceptual predi-
cate Cstart is created for the start condition of the new skill
Snew by combining the generalized start conditions of the
subgoals, S1, . . . , Sn using a procedure similar to macro-
operator composition (Mooney 1990). Specialized effects
concepts, Ceffect, are similarly created for a new skill by
combining the generalized effects of subgoals of Snew us-
ing a similar method.

For example, as shown in Table 1, the subgoal (column-
to-column-able 2♥ 3♠ 4♠) was achieved by chaining off
of its concept definition. The subgoal of the new skill is
(clear 3♠). The effect field of the new skill is also initial-
ized to (clear 2♥), (on 2♥ 4♠) and (column-column-pair
2♥ 3♠), which represents the initially satisfied subconcepts
of the chained concept.

Table 3: Sample specialized concepts learned for freecell.

;; Start condition of skill column-to-column-able
((precond-column-to-column c1 ?c ?dc ?cb)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:relations ((clear ?c)
(on ?c ?cb)
(column-column-pair ?c ?dc)
(precondition-of-clear ?dc)))

;; Effect of skill column-to-column-able
((effect-column-to-column c1 ?c ?dc ?cb)

:percepts ((card ?c)
(card ?dc)
(card ?cb)
(card ?c2)
(card ?dc2))

:relations ((clear ?c)
(on ?c ?cb)
(column-column-pair ?c ?dc)
(effect-of-clear ?dc)))

Next the precondition learner computes the specialized
start condition concept for the new skill. This contains (clear
2♥), (on 2♥ 4♠) and (column-column-pair 2♥ 3♠), which
are the subconcepts that were true in the initial state. The
generalized start condition of the only subgoal, (clear 3♠),
which is (precondition-of-clear 3♠), also gets added to the
new concept. Constants in the learned concept are replaced
with variables, and the concept is added to the conceptual
knowledge base. Finally, the precondition learner computes
a specialized effect concept for the new skill. The subcon-
cepts are initially set to the effects of the new skill. None
of these effects get deleted upon execution of the skill’s sub-
goal, (clear 3♠). Several new conditions are made true by
the execution, and must be added to the effect concept’s re-
lations field. This produces the new specialized effect pred-
icate, effect-of-column-to-column-able c1 shown in Table 3.

If the goal was achieved by chaining off of a skill, the spe-
cialized precondition of the new skill is the generalized start
condition of the first subgoal, S1. Since the generalized start
condition instead of the specialized one is used, the precon-
dition of the new skill will generalize to all situations where
there is at least one applicable skill for the first subgoal. The
start condition of the chained skill is not included, because
the applicability of the chained skill only depends on S1.
The specialized effect of the learned skill is set as the effect
of the original skill. Since the specialized precondition and
the effect are the same as some existing precondition and
effect, the interpreter will not introduce new predicates for
them.

For instance, since the goal (clear 4♠) was achieved
through skill chaining, the skill learner constructs a new skill
with (column-to-column-able 2♥ 3♠ 4♠) and (clear-and-
put-on 4♠ 2♥ 3♠) as subgoals. New skills and precondi-
tions are introduced as shown in Tables 3 and 4. The special-
ized start condition of the new skill is simply the generalized
start condition of the first subgoal, (column-to-column-able
2♥ 3♠ 4♠). The specialized effect of the new skill is the
specialized effect of the chained skill. Constructed the spe-
cialized start condition and effect, the system needs to up-
date the generalized start condition and effect accordingly.



Table 4: Selected skills learned for freecell solitaire.

;; Skill for column-to-column-able learned
;; via problem solving through concept chaining
((column-to-column-able ?c ?dc ?cb)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:start ((precond-column-to-column c1 ?c ?dc ?cb))
:subgoals ((clear ?dc))
:effects ((effect-column-to-column c1

?c ?dc ?cb)))

;; Skill for clear learned from problem solving
;; through skill chaining
((clear ?cb)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:start ((precond-column-to-column ?c ?dc ?cb))
:subgoals ((column-to-column-able ?c ?dc ?cb)

(clear-and-non ?cb ?c ?dc))
:effects ((clear ?cb)

(non ?c ?dc)
(clear ?c)))

Notice the recursive structures that arise in the learned
preconditions. This stems from the recursive nature of the
problem solver, which repeatedly pushes goals onto a stack
and restarts problem sotlving from the new subgoal. Also
note that the learned concepts are eligible for chaining in the
problem solver. This enables the framework to acquire skills
based on the learned concepts.

Recall that generalized start condition/effect is a dis-
junction over all corresponding specialized start condi-
tions/effects. After constructing the specialized start con-
dition and the specialized effect, the algorithm updates the
definitions of their corresponding generalized concepts by
adding the just acquired definitions as disjunctive terms.
Even if no predicate is introduced for skills learned with skill
chaining, the generalized precondition/effect for the associ-
ated goal still gets updated. This informs the interpreter that
the given goal can be achieved under a new situation, and
enables the learned skills to achieve goals under unfamiliar
situations. The generalized precondition and effect predi-
cates in the freecell example are shown in Table 5.

Extending the Skill Learner
Given the newly learned predicates that represent precondi-
tions and effects on skills, we next modify the basic skill
learning algorithm to install the new concepts as the start
and effect conditions of the skill. The specialized precondi-
tion concepts acquired by the concept learner are more spe-
cific than the start conditions assigned by the original skill
learner. This helps to prevent the interpreter from retriev-
ing inappropriate skills during execution, which degrades
efficiency. We also expand the basic skill learning mecha-
nism to include effects with skills by referencing the spe-
cialized effect predicates constructed in the new skills. Fi-
nally, to improve the interpreter’s ability to learn recursive
structures, we extend the basic skill learning mechanism to
acquire new skills even when the goal was backward chained
through a non-primitive skill. In this case, the subgoals
of the learned skill must include the start condition of the

Table 5: Sample generalized concepts learned for freecell.

;; Generalized start condition for skill column-to-column-able
((precond-column-to-column ?c ?dc ?cb)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:relations ((precond-column-to-column c1 ?c ?dc ?cb)))

;; Generalized effect for skill column-to-column
((effect-column-to-column ?c ?dc ?cb)

:percepts ((card ?c)
(card ?dc)
(card ?cb)
(card ?c2)
(card ?dc2))

:relations ((effect-column-to-column c1
?c ?dc ?cb)))

;; Generalized start condition for skill clear
((precondition-of-clear ?dc)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:relations ((precond-column-to-column ?c ?cd ?cb)))

;; Generalized effect of skill clear
((effect-of-clear ?dc)

:percepts ((card ?c)
(card ?dc)
(card ?cb))

:relations ((clear ?cb)
(put-on ?c ?dc)
(clear ?c)))

chained skill. Sample new skills acquired in the freecell ex-
ample are shown in Table 4.

Experimental Evaluation
To evaluate the robustness of the concept learner, we car-
ried out experiments in two domains with rich conceptual
knowledge. Logistics planning is a classic domain used in
the planning literature that is naturally stated in terms of
recursive concepts . Freecell also contains rich conceptual
knowledge describing card patterns, which has been used in
planning competitions (Bacchus 2001). Our goal is to show
that with the concept learner, the extended system acquires
procedural knowledge more efficiently, and the learning effi-
ciency of the extended system is less sensitive to the quality
of the given concept hierarchy.

Experimental Design
We compare our precondition learner with Langley and
Choi’s (2006) approach of learning from problem solving,
which uses a similar skill learning mechanism but does not
acquire conceptual knowledge for preconditions. Since our
system constructs predicates incrementally interleaving with
the process of problem solving, we did not set up the ex-
periment with separate training and testing phases. Instead,
we set up the experiment so that the system calls for the
problem solver whenever it fails to achieve a goal based
on known concepts and skills (Nejati, Langley, and Konik
2006). When a system achieves the top-level goal using
exactly one top-level skill and without using the problem



solver, we consider the problem solved successfully.
To evaluate the robustness of the learning system as

well as the quality of the preconditions learned, we de-
veloped two concept hierarchies for each domain, a well-
structured hierarchy and an ill-structured hierarchy. The
well-structured concept hierarchy directly reflects the hier-
archical structure of skill knowledge, which means that the
preconditions of the target skills appear directly in the def-
inition of the goal concepts as subconcepts. For the ill-
structured hierarchy, we removed this property from some
concepts in the well-structured hierarchy.

We evaluated the quality of the methods acquired with
each concept hierarchy using four performance metrics. The
first measurement tests the generality of the preconditions
using recall, defined here as the percentage of problems for
which the system can directly retrieve a skill, regardless of
its correctness. A second measurement evaluates the speci-
ficity of the preconditions based on precision, defined anal-
ogously as the percentage of the problems that the system
can solve using the first retrieved skill among all the prob-
lems for which the system can retrieve some skill. Thirdly,
success rate measures the percentage of the problems that
can be solved using only known skills and without applying
an incorrect skill. This reveals how well the system strikes
the balance between generality and specificity. Finally, the
average number of cycles the needed to solve one problem
provides insight into speedup associated with the improved
learning methods. Other metrics such as CPU time are not
reported since they are secondary to the goals of this work.
All of the reported results are an average over three runs with
one hundred randomly generated problems in each run.

In addition to the conditions described above, we also at-
tempted to compare our approach with a system similar to
Hogg et al.’s (2008) algorithm. The system constructs pre-
conditions using the same combining method that we use
in computing the specialized start condition, except without
introducing new predicates. In practice, the rules learned
without new predicates becomes very specific, which pre-
vents this approach from finishing most of the tests. Since
this result is not a direct evidence for the robustness of our
approach, we did not report these results here.

We also wanted to do a comparison with Ilghami et al.’s
(2002) and Nejati et al.’s (2006) work. However, their sys-
tems require annotated traces as input whereas our system
does not. We could not find a reasonable way to compare
our system with them experimentally. Therefore, no results
are reported here. Besides, the proposed concept learner is
integrated into a unified system, where the learning process
interleaves with problem solving. Traditional planners, on
the other hand, are stand-alone modules, which do not con-
tain learning components. Hence, we did not compare our
system to traditional planners.

Freecell Solitaire
The objective in testing the systems on freecell is to de-
termine the robustness of both the concept learner and the
skill learner in acquiring useful knowledge for fixed domain
sizes. We provided the system with two initial knowledge
bases. The well-structured (good) conceptual knowledge
base contains 31 concepts, while the ill-structured (bad) con-
cept hierarchy includes 33 concepts. The two hierarchies
differ in seven concepts. Both knowledge bases contain the

same 21 primitive skills. These are sufficient to solve only
problems that are one step away from the goal. We tested the
system on problems with eight, 12, 16, 20 and 24 cards. Fig-
ure 3 displays the results with both the no concept learning
approach and the concept learning approach.

The results show that with the good concept hierarchy,
both systems performed well. All of the final success rates
with both learners are high. Even with 24 cards, the final
success rates with both learners are still above 93%. With
the ill-structured concept hierarchy, the performance of the
no concept learning approach drops drastically to around
10% with 24 cards, while the concept learning approach is
still able to maintain a success rate of 88%. Inspection re-
veals that although both approaches maintain high retrieval
rates, the successful retrieval rates of the no concept learning
approach become very low with the bad concept hierarchy,
while the successful retrieval rates of the concept learning
approach remain to be 90% with the bad hierarchy. This is
an indication that the methods acquired by the no concept
learning system have overly general preconditions. And by
learning concepts for precondition, our approach mitigated
this problem and acquired methods that have maintained the
appropriate level of generality.

Lastly, the average number of cycles used to achieve goals
is significantly smaller with the concept learning approach
comparing with the no concept learning approach. Analy-
sis of individual runs shows that since the methods acquired
by the no concept learning approach have over general start
conditions, the system sometimes picks a skill to achieve
the goal at the very beginning, but fails to solve the prob-
lem later. Then the system has to switch to other applicable
methods to achieve the goal. This causes the more steps.
Given that these tests are performed with the same number
of cards as used while learning, we can conclude that the
preconditions acquired by the concept learner substantially
decrease the chance of selecting irrelevant skills.

Logistics Planning
The goal of the logistics planning domain is to deliver pack-
ages to destinations using trucks and planes. Trucks can
only move inside cities, while planes can fly among cities.
Agents are provided with a map detailing the routes among
cities to the agent. Our objective in using this domain is
to test the ability of learned concepts and skills to gener-
alize among problems of different sizes with ill-structured
knowledge bases. We provided the system with two ini-
tial knowledge bases. The well-structured (good) concep-
tual knowledge base contains 17 concepts, while the ill-
structured (bad) concept hierarchy includes nine concepts.
Only seven concepts are the same in both hierarchies.

The skill knowledge bases are also different. The well-
structured (good) skill knowledge base has seven primitive
skills. The ill-structured (bad) skill knowledge base includes
four primitive skills. These were sufficient to solve problems
which only require one action. The system was given seven
maps with one, two, three, four, five, seven and ten cities
respectively. For each map, we randomly generated 100
problems. Then, the system was tested on the seven hun-
dred problems with cities of increasing sizes. Thus, knowl-
edge acquired in earlier test problems was carried over into
later problems, even when the map and number of cities have
changed. Figure 4 displays the results for both systems.
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Figure 3: Results from freecell with varying numbers of cards: (a) recall, (b) precision, (c) success rates, (d) cycle count.
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Figure 4: Results in Logistics with different numbers of cities: (a) recall, (b) precision, (c) success rates, (d) cycle count.

With both good and bad concept hierarchies, in the con-
cept learning condition, the system rapidly acquired recur-
sive structures in concepts and skills, thereby increasing the
generality of the learned skills. The system solved around
99% of the problems in the three-city map. It then success-
fully solved all the problems in maps of larger cities using
only skills acquired in the three-city map. This indicates
the generality gained from the three-city case. The original
skill learning algorithm also acquired applicable skills, but
the start conditions were again too general with the bad con-
cept hierarchy, causing inapplicable skills to be retrieved.
The average number of cycles used in achieving the goals
suggested that the concept learning approach returned plans
with smaller number of steps than the no concept learning
approach given the bad knowledge base.

To sum up, with well-structured concept hierarchies, both
approaches were able to perform well, and generalized to
problems of larger sizes. With ill-structured knowledge
bases, our concept learning approach outperformed the no
concept learning system by improving the execution perfor-
mance and by specializing skills enough to reduce irrelevant
retrievals, while maintaining sufficient generality. We con-
clude that our approach is more robust to different represen-
tations than the one without concept learning.

Related Research
The main claim of this paper is that hierarchical precon-
ditions learned through successful problem solving lets an
agent choose among its acquired skills more effectively.
Although there has been considerable work on representa-
tion change (e.g. Muggleton and Buntine 1988, Martı́n and
Geffner 2004) in machine learning, little has occurred in the
context of problem solving and execution. One exception
comes from Utgoff (1984), whose system introduces unary
predicates, like even and odd numbers, to describe situa-

tions in which learned strategies solve problems. Similarly,
Fawcett’s (1996) work generates new relational predicates
for heuristic state evaluation by analyzing operator precon-
ditions and transforming the results. Our approach differs
from both efforts by supporting incremental learning inter-
leaved with problem solving.

Our framework also incorporates ideas from other re-
search on analytical learning that does not address repre-
sentation change, such as explanation-based learning (Segre
1987) and macro-operator formation (Iba 1989). One key
difference is that our approach transforms the explanation
structure that results from analysis into a concept hierarchy,
rather than dispensing with the structure.

Ilghami et al.’s (2002) work also focuses on learning pre-
conditions by analyzing successful traces, and by apply-
ing a well-known machine learning algorithm, candidate
elimination to construct preconditions. However, the pre-
conditions learned are not embedded hierarchically, which
causes potential lose of flexibility. Shavlik’s (1990) system
achieves similar effects by learning recursive plans stated
as decomposition rules. Work on relational reinforcement
learning, such as by Dzeroski et al. (2001) uses first-order
representations to provide effective abstraction in learning
Q value. Our research also has much in common with
other efforts on learning teleoreactive logic programs (Lan-
gley and Choi 2006; Nejati, Langley, and Konik 2006;
Hogg, Muñoz-Avila, and Aha 2008). All of these systems
differ from our approach in that they operate over a fixed set
of predicates.

Concluding Remarks
The promising results shown above form a foundation for
extensions of this work along several dimensions. In order to
better demonstrate and understand the quality of the learned
preconditions, one possible future step is to carry out more



extensive experiments. Moreover, in order to measure the
improvement gained from the precondition learner, allow-
ing the problem solver to chain backward through learned
skills and concepts is another interesting extension. Impor-
tantly, improving the problem solver is one of the essential
extensions in further improving the proposed system, as the
problem solver remains a critical bottleneck with respect to
both learning and performance. We believe that our precon-
dition learner extends naturally in these directions.

In summary, we motivated the need for building learn-
ers robust to representation change by acquiring concpet-
ual predicates during learning. To demonstrate this idea,
we introduced a precondition learning approach that defines
new conceptual predicates to remove reliance on the qual-
ity of the given conceptual knowledge, and interleaves with
skill learning. We showed how the mechanism learns hi-
erarchically organized conceptual predicates, including dis-
junctive and recursive concepts, to construct preconditions
that balance generality with specificity. We also demon-
strated how these preconditions improve execution perfor-
mance with both an example and experimental evaluations
comparing with learners on a fixed representation. In par-
ticular, we showed how our precondition learner improved
the ability of teleoreactive logic programs to represent do-
main knowledge, and how an agent could leverage this new
knowledge to construct preconditions that improve learn-
ing performance and execution. From these experiments,
we conclude that skill learners with appropriate acquisition
of conceptual knowledge during the course of learning are
more robust than learners operate on a fixed domain repre-
sentation across various domain representations.
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