
An Arhiteture for Persistent Reative BehaviorDongkyu Choi,Matt Kaufman,Pat Langley,Negin Nejati, andDaniel ShapiroComputational Learning LaboratoryCenter for the Study of Language and InformationStanford University, Stanford, CA 94305 USAAbstratIn this paper we desribe ICARUS, an integrated arhite-ture for intelligent physial agents. The framework sup-ports long-term memories for hierarhial onepts andskills, along with mehanisms for reognizing oneptsthat hold in the environment, determining whih skillsare appliable, and seleting for exeution the skill withthe highest expeted value.We illustrate these proesseswith examples from the domain of in-ity driving, andwereport experimental studies on a pakage-delivery taskthat examine ICARUS' ability to ombine reative behav-ior with persistene over time. We onlude with a dis-ussion of related work on agent arhitetures and ourplans for extending the system.1. Introdution and BakgroundResearh on agent arhitetures pursues a entral goalof arti�ial intelligene: the reation and understand-ing of syntheti agents that support the same apabil-ities as humans. Suh arhitetures aim for breadth ofoverage aross many domains, and they o�er an a-ount of intelligene at the systems level, rather thanfousing on omponent methods designed for speial-ized tasks. They run ounter to the inreasing frag-mentation of the �eld in that they provide integratedframeworks for produing omplex behavior in a gen-eral, domain-independent manner.An agent arhiteture { sometimes alled a ogni-tive arhiteture { spei�es the infrastruture for anintelligent system that remains onstant aross di�er-ent domains and knowledge bases. This infrastrutureinludes a ommitment to formalisms for represent-ing knowledge, memories for storing this domain on-tent, proesses that utilize the knowledge, and learningmehanisms to aquire or revise it. An agent arhite-ture an interpret di�erent knowledge bases, just as aomputer arhiteture an run di�erent programs.In this paper, we report on the latest version ofIarus, an agent arhiteture that builds on previ-ous work in this area but also has some novel har-ateristis. One di�erene is that Iarus inludes sep-arate memories and proesses for onepts, whih de-sribe situations in the environment, and skills, whih

desribe how to respond to them. In addition, the arhi-teture ombines the symboli strutures ommon tomany agent arhitetures with the numeri value fun-tions used in many learning systems. Finally, Iarussupports reative behavior but modulates it with on-textual knowledge and persists in extended ativities.This latter apability is a fous of the urrent paper.We begin by desribing a simulated driving environ-ment that illustrates the types of domains for whihwe designed the arhiteture. After this, we examineIarus' long-term and short-term memories, inlud-ing their formalisms for enoding knowledge, then ex-amine its mehanisms for operating on these memorystrutures. Next we report experimental studies of anIarus agent's behavior in the driving domain, dealingmainly with the role of persistene in exeuting mul-tiple high-level tasks. In losing, we onsider the intel-letual inuenes on our researh and outline our plansfor extending the arhiteture.2. An Illustrative DomainTo support our development and evaluation of Iarus,we have implemented a simulated environment for in-ity driving. All objets in this environment take theform of retangular parallelepipeds that sit on a Eu-lidean plane. These inlude stati objets like roadsegments, intersetions, lane lines, and buildings; theyalso inlude vehiles, the positions and orientationsof whih hange over time. Vehiles an ollide witheah other and with buildings, but they roll over road-related objets without inident. Figure 1 presents asreen shot of the graphial display for a typial ity.Eah vehile is driven by an agent that an ael-erate or deelerate and turn its steering wheel left orright. Assoiated ontrol variables interat with realis-ti physial laws to determine eah vehile's motion ona given time step, so that they speed up, slow down,and hange diretions in reasonable ways. Collisionsare handled less realistially, with vehiles simply ex-hanging momentum along their lengthwise axes. Mostof the vehiles are drones ontrolled by the simulator it-self. These vehiles stay in the rightmost lane and ometo a near stop at all intersetions. They turn at inter-



Figure 1: Display of the simulated environment for in-ity driving and pakage delivery.setions when these our at ity boundaries and theysometimes turn at random ross streets.However, one vehile in the environment is insteadontrolled by an Iarus agent. It an pereive objetsaround it up to 60 feet away but no farther, inludingother vehiles (with no olusion) and the orners ofbuildings, both desribed in agent-entered polar oor-dinates that give eah objet's distane, angle, relativeveloity, and angular veloity. The Iarus agent alsopereives its distane and angle with respet to lanelines, along with its own properties, inluding speedand the angle of its steering wheel.We provide the agent with top-level intentions to de-liver pakages to spei� destinations. To support thistask, it an also pereive the street, numeri address,and ross street for eah undelivered pakage, alongwith the urrent street, the upoming ross street, andthe address assoiated with visible building orners.The Iarus agent does not have a map of the ity,so it must drive around in searh of the target ad-dresses, stopping to unload the appropriate pakagewhenever it �nds one. Of ourse, it must drive safely inthe proess, staying on the right side of the road, mak-ing neessary turns, and avoiding ollisions along theway. Taken together, these onstraints produe a hal-lenging task environment that requires integration ofpereption, reasoning, and ation, as well as a ombi-nation of agent reativity and persistene.3. Memories and RepresentationsAn integrated arhiteture should make some ommit-ment to its representation of knowledge and the mem-ories in whih that knowledge resides. In this setion

we desribe Iarus' memories for long-term knowledgeand short-term beliefs, along with the general formstaken by the ontents stored in them.3.1 Long-Term Coneptual MemoryIarus inorporates a long-term memory for Booleanonepts that enodes its knowledge of familiar situ-ations. This an inlude desriptions of ategories forisolated objets, like types of vehiles, but also physialrelations among objets, suh as the relative positionof two vehiles or buildings. These onepts orrespondto the traditional notion of logial ategories and pro-vide Iarus' voabulary for desribing its experienes.Eah entry spei�es the onept's name and its argu-ments, along with the optional �elds :perepts (whihdesribes pereptual entities that must be present),:positives (whih gives lower-level onepts it mustmath), :negatives (whih states lower-level oneptsit must not math), and :tests (whih spei�es nu-meri relations it must satisfy).1Table 1 presents some onepts from the in-ity driv-ing domain. For example, orner-ahead-left desribesa situation in whih the Iarus agent pereives aorner with an angle (measured in agent-entered ra-dians) in its forward left quadrant. The onept in-intersetion mathes when the agent pereives a near-blok-orner that resides behind it, has labeled anotheras a orner-straight-ahead, and has not noted any far-blok-orner. The onept in-lane mathes against sit-uations in whih the agent is on the right side of theroad, it pereives a lane line to its left, and two satis-�ed numeri tests ensure it is entered in the lane.Taken together, these de�nitions organize Iarusategories into a oneptual hierarhy. Primitive on-epts are de�ned entirely in terms of pereptual ondi-tions and numeri tests, but higher-level onepts analso inorporate other onepts in their de�nitions. Theatual form is a lattie, with primitive onepts o-urring at the bottom, onepts de�ned in terms ofthem immediately above, and more omplex oneptsat higher levels. Struturally, this lattie bears a loseresemblane to the Rete networks (Forgy, 1982) usedfor mathing in prodution-system arhitetures.3.2 Long-Term Skill MemoryTo omplement its oneptual memory, Iarus inor-porates a long-term skill memory that enodes knowl-edge about ways to at and ahieve goals. This on-tains spei�ations for skills that apply in ertain situ-ations and that produe desired e�ets. Skills provideIarus with a repertoire of behaviors that let it inu-ene the physial situations in whih it �nds itself.Eah skill has a name, arguments, and eight optional�elds. The :effets �eld spei�es a onjuntion of1 Eah Boolean onept also has an assoiated funtion thatspei�es the reward or utility the agent reeives when that on-ept is true. However, these do not play a role in the urrentpaper, so we will not disuss them further.



Table 1: Some Iarus onepts for in-ity driving, withvariables indiated by question marks.(orner-ahead-left (?orner):perepts ((orner ?orner r ?r theta ?theta)):tests ((< ?theta 0)(>= ?theta -1.571)))(in-intersetion (?self):perepts ((orner ?norner theta ?theta)(self ?self)):positives ((near-blok-orner ?norner)(orner-behind ?norner)(orner-straight-ahead ?sorner)):negatives ((far-blok-orner ?forner))(in-lane (?lline):perepts ((lane-line ?lline dist ?ldist)):positives ((on-right-side-of-road ?rline)(left-lane-line ?lline)):tests ((> ?ldist -7)(< ?ldist -3))known onepts that, taken together, enode the sit-uation the skill is intended to ahieve. Eah skill analso inlude a :start �eld, again ast as a onjun-tion of known onepts, whih spei�es the situationthat must hold to initiate the skill, and a :requires�eld, whih must hold throughout the skill's exeution.For example, Table 2 shows the skill make-right-turn,whih has no expliitly stated e�ets, an start only if?self is at the appropriate turning distane and in theright lane (along with other onditions), and requiresthat ?orner be a right blok orner and that the vehi-le be near enough to it.In addition, eah Iarus skill inludes other �eldsthat speify how to deompose that skill into its sub-skills. An :ordered �eld indiates that the agentshould onsider these omponent skills in a par-tiular order. For example, make-right-turn diretsthe agent to onsider enter-intersetion, turn-past-halfway, and omplete-right-turn, and to selet rea-tively from the last subskill that is appliable, sinepresumably this is loser to the desired e�ets. Al-ternatively, an :unordered �eld identi�es a hoieamong subskills. For instane, the table's deomposi-tion for go-straight-in-lane involves six subskills, in-luding bear-right-in-lane and slow-for-intersetion,from whih the system selets, regardless of order.A third option is the :ations �eld, in whih aprimitive skill like bear-right-in-lane spei�es one ormore opaque ations that are diretly exeutable. Forour driving simulator, suh ations orrespond to in-reasing or dereasing the vehile's speed, turning itswheels to the left or right, and depositing a pak-age. Thus, a primitive skill plays the same role as aStrips operator in a traditional planning system, withthe :start �eld serving as the preonditions and the:effets �eld speifying the results of exeution.

Atually, Iarus spei�es one or more ways to de-ompose eah skill in this manner, muh as a Prologprogram an inlude more than one Horn lause withthe same head. Di�erent deompositions of a given skillmust have the same name, number of arguments, ande�ets. However, they an di�er in their start ondi-tions, requirements, and subskills. For example, theskill straighten-in-lane has two suh expansions, onefor straightening the vehile to the right and anotherfor straightening it to the left.Eah skill deomposition also inludes an expetedvalue funtion that enodes the utility expeted if it ex-eutes the skill with this deomposition. This funtionis spei�ed in two parts: a :perepts �eld that mathesagainst the values of observed objets' attributes anda :value �eld that provides an arithmeti funtion ofthese quantities. To date, we have restrited the latterto linear funtions of the numeri desriptors mathedby the skill, sine this proved useful in our earlier workon reinforement learning. For example, the expetedvalue for slow-for-intersetion in Table 2 depends lin-early on the variables ?sd and ?speed, whih an varyfrom moment to moment.3.3 Short-Term MemoriesIarus' long-term memories enode stable knowledgeabout a given domain. However, to generate behavior,the arhiteture also requires short-term stores thatan hange rapidly. These should make ontat withlong-term onepts and skills, but they must also rep-resent temporary beliefs about the agent's environmentand its intended ativities.One suh memory is Iarus' pereptual bu�er ,whih ontains desriptions of physial entities thatorrespond to the output of sensors. In the driv-ing domain, this short-lived memory ontains liter-als like (orner 0027 r 10.53 theta 0.962 dv -0.041dtheta 0.032), whih desribes a pereived or-ner named 0027 with assoiated distane from theagent r, angle theta, relative speed dv, and angular ve-loity dtheta, all as pereived on the urrent time step.Other pereptual elements for the driving environ-ment desribe aspets of lane lines, the urrent streetand upoming ross street, the pakages being ar-ried, and the agent's own state.In ontrast, Iarus' short-term oneptual mem-ory ontains instanes of onepts that are de�nedin long-term onept memory. These literals enodespei� beliefs about the environment that the agentan infer from those present in its pereptual bu�er.For instane, this memory might ontain the instane(in-intersetion self), whih it an infer from the in-intersetion onept shown in Table 1. This depends onthe presene in memory of instanes for the oneptsnear-blok-orner and orner-straight-ahead, whih ul-timately ground out in pereptual entities.Finally, Iarus inludes a short-term skill memorythat ontains instanes of skills the agent intends to ex-eute. Eah of these literals spei�es the skill's name



Table 2: Some Iarus skills for in-ity driving, inlud-ing the :perepts and :value �elds used to omputeexpeted values.(go-straight-in-lane (?self):requires ((on-right-side-of-road ?yline)(left-lane-line ?line)):effets ((in-lane ?line)(parallel-to-road ?self)):unordered ((bear-left-in-lane ?self)(bear-right-in-lane ?self)(ruise ?self)(speed-up ?self)(straighten-in-lane ?self)(slow-for-intersetion ?self)):value (20))(slow-for-intersetion (?self):perepts ((orner ?orner street-dist ?sd)(self ?self speed ?speed)):requires ((should-slow-for-intersetion ?self)(near-blok-orner ?orner)):ations ((*slow-down)):value (+ (* -5 ?sd) (* 20 ?speed)))(bear-right-in-lane (?self):perepts ((lane-line ?line dist ?d angle ?a)(self ?self wheel-angle ?sa)):requires ((left-lane-line ?line)):ations ((*turn-right)):value (+ (* 2 ?d) (* 70 ?a) (* -20 ?sa) 10))(make-right-turn (?self ?orner):start ((in-rightmost-lane ?rline)(right-blok-orner ?orner)(near-blok-orner ?orner)(at-turning-dist ?self)):requires ((right-blok-orner ?orner)(near-blok-orner ?orner)):ordered ((enter-intersetion ?self ?orner)(turn-past-halfway ?self ?orner)(omplete-right-turn ?self)):value (30))and its onrete arguments. For example, this memorymight ontain the skill instane (make-right-turn self0027), whih denotes that the driver has an expliit in-tention to exeute the make-right-turn skill with thesearguments. In addition, eah skill instane inludes theexpeted value if exeuted, whih is omputed from thevalue funtion assoiated with that skill and pereptualattributes mathed in its :perepts �eld. The agentuses this number to hoose among skills and among al-ternatives within skills.4. Interpreting and Utilizing KnowledgeLike most arhitetures for intelligent agents, Iarusoperates in distint yles. On every yle, the systemupdates its pereptual bu�er, determines whih on-epts are mathed, and adds supported beliefs to on-eptual short-term memory. The arhiteture then se-lets a path through the skill hierarhy and exeutes

it, produing hanges in the environment that inu-ene deisions on the next yle. In this setion, wedisuss eah of these proesses in turn.4.1 Categorization and Belief UpdateOn eah yle, Iarus refreshes the ontents of its per-eptual bu�er by applying preattentive sensors to ev-ery objet within a given distane of the agent. Thisprodues a set of pereptual elements that initiate theproess of mathing against long-term onepts. Onethese elements have been added, the mather heks tosee whih primitive onepts (ones based only on per-eptual desriptions) math, then adds eah mathedinstane to oneptual short-term memory.Reall that Iarus organizes onepts in a lattiewith primitive onepts at the bottom, onepts de-�ned in terms of them and pereptual elements at thenext level, and so forth. One the system has deter-mined whih primitive onepts math, it heks moreomplex ones, at eah step adding mathed instanesto short-term memory and then onsidering other on-epts that depend on them. Iarus repeats this pro-ess on eah yle, so onept instanes remain in short-term memory only if they have diret support from thepereptual elements upon whih they depend.24.2 Seletion and Exeution of SkillsAs we noted earlier, Iarus inludes a short-term skillmemory whih ontains a set of skill instanes that theagent should onsider exeuting. On eah yle, the ar-hiteture examines eah suh instane in detail to de-termine whether it applies to the urrent situation and,if so, whih one has the highest expeted value.For eah skill instane, Iarus aesses all deompo-sitions of the general skill and heks to see if they areappliable. A skill is appliable if, for its urrent vari-able bindings, its :effets �eld does not math, the:requires �eld mathes, and, if the system has not yetstarted exeuting it, the :start �eld mathes the ur-rent situation. Moreover, at least one of its subskillsmust also be appliable. Sine this test is reursive, askill is only appliable if there exists at least one aept-able path downward to an exeutable ation. Iarusonsiders all suh aeptable paths downward throughthe skill hierarhy, returning the path with the high-est expeted value for eah instane in short-term skillmemory. Sine variables an be bound within the bodyof a skill deomposition, this set may inlude multi-ple variants of eah skill instane.For eah suh path, the arhiteture omputes theexpeted value and selets the andidate with the high-est utility for exeution. For a given path, it uses thevalue funtion stored with eah skill and the numeriattributes mathed in that skill's :perepts �eld to2 We have also onsidered implementing the onept reogni-tion proess using a Rete network (Forgy, 1982) or a truth-maintenane system, but their eÆieny in suh dynami en-vironments remains an empirial question.



alulate the expeted value at eah level, summing theresults along the path to ompute the overall sore. Forinstane, for the path ((drive self), (go-straight-in-laneself), (slow-for-intersetion self), the system would sumthe expeted values for all three levels to determine theutility of slowing down. This means that the same a-tion an have di�erent values on a given yle depend-ing on whih higher-level skills are invoking it, provid-ing a way to ahieve ontext e�ets.The arhiteture treats a skill expansion di�erentlydepending on whether its omponents appear in an:unordered set or an :ordered list. If they are un-ordered, the module onsiders eah of the subskills andselets the one that yields the highest soring subpath.If they are ordered, it instead treats the list as a re-ative program that onsiders eah subskill in reverseorder. If the �nal subskill is appliable, then it ex-pands further only down paths that inlude that sub-skill. Otherwise, it onsiders the penultimate skill, theone before that, and so forth. The intuition is that thesubskills are ordered beause later ones are loser to theparent skill's e�ets, and should be preferred over ear-lier ones when appliable.4.3 Reativity and PersisteneIn their naive form, reative arhitetures operate asstimulus-response systems that take only the urrentstate into aount when deiding what ation to exe-ute. As we have seen, Iarus moves beyond this sim-ple approah by using a hierarhial organization ofskills to modulate the seletion of ations, but Nils-son's (1994) teleoreative programs and Bonasso et al.'s(1997) T3 share similar apabilities. The arhiteturealso treats ordered subskills in a speial manner, butGeorge� et al.'s (1985) PRS and Freed's (1998) APEXalso ombine sequential onstruts with reativity.Both approahes provide Iarus and related sys-tems with the ability to arry out extended ativities,despite their emphasis on reative response. However,they support suh extended behavior in an all-or-noneway, whereas a more exible notion of persistene hasattrations. People appear to fall on a ontinuum thatdesribes how easily they are interrupted when arryingout a task or, onversely, how single-minded they are inpursuing their goals. Iarus inorporates a global per-sistene parameter p that inuenes the agent's behav-ior along this dimension.More spei�ally, the arhiteture retains a stakthat enodes the instantiated path through the skillhierarhy that it seleted on the previous yle. Whenevaluating a andidate path with unmodi�ed value v,Iarus alulates the modulated path value asv0 = v � (1 + p � sXi=1 ki= dXj=1 kj) ;where d is the depth of the andidate path, s is thenumber of steps it shares with the previous path, p isthe persistene fator, and 0 < k < 1 is a deay term.

For example, suppose that the agent is onsider-ing the path ((drive self), (omplete-right-turn self),(straighten-wheels self) on the urrent yle, and sup-pose that the previous path shares the �rst two el-ements. Thus, if p = 2, k = 0:5, and the unmod-i�ed value is 10, then the modi�ed value would be10 � (1 + 2 � (0:5+ 0:25)=(0:5+ 0:25+ 0:125) = 27:14. Ifthe path from the previous yle is still appliable, thenthe number of shared steps s equals the depth d, giv-ing the multiplier 1 + p.The higher the persistene fator, the greater theagent's bias toward ontinuing to selet the skills itpiked on the previous time step. Setting the fator tozero produes fully reative behavior that takes onlythe urrent situation into aount, whereas higher val-ues enourage the agent to repeat its previous dei-sions. However, suh a higher setting does not rule outresponses to important hanges in the environment,whih an ause entirely di�erent skills or subskills tobeome appliable or produe large enough hanges inexpeted values to shift behavior. An emergeny situa-tion, suh as the need to slow down to avoid hitting an-other vehile, an still overome the bias toward on-tinuing the ongoing ativity, but, other things beingequal, an Iarus agent will prefer the latter ourse.5. Experimental Studies of DrivingOur design for Iarus has promising features, and wehave evaluated an earlier version of the arhiteture ona simulated highway-driving task with enouraging re-sults, inluding studies that demonstrate rapid learn-ing (Shapiro et al., 2001). However, in-ity driving is amore omplex domain that is appropriate for evaluat-ing the extended framework, whih introdues separatelong-term memories for onepts and skills, a short-term oneptual memory, a short-term skill memorythat holds multiple intentions, and modulation of rea-tivity using the persistene fator. Here we report ourexperiene with the environment desribed earlier.To support basi driving in this domain, we devel-oped an Iarus program that inludes 62 onepts(on average four levels deep) and 46 skills (on aver-age �ve levels deep). The high-level skills handle issueslike driving straight in a lane, getting in the rightmostlane, slowing for an intersetion, driving through an in-tersetion, turning at an intersetion, and making a Uturn. Informal studies revealed that these skills are suf-�ient to let the Iarus agent drive in the simulatedity inde�nitely without serious problems. The systemoasionally exeutes a poor turn and enters the wronglane, but it reovers from suh inidents and ontinues.We also developed an extended program for pakagedelivery that inludes 19 onepts and 13 skills in addi-tion to those for basi driving. The high-level skills hereare responsible for turning on a pakage's ross street,turning on its target street, turning around if head-ing in the wrong diretion, and dropping o� a pak-age at its target address. Informal studies with this



extended system revealed that it an deliver a set ofpakages to their spei�ed addresses, although it doesnot always take the shortest route to ahieve these ob-jetives. We wrote the pakage-delivery onepts andskills separately from the basi driving program, thenmerged them with some tuning.These results were enouraging, but we also wantedto arry out more systemati studies of the arhite-ture's behavior. In partiular, we were interested inhow the persistene fator desribed above inuenesan agent's performane when it has hoies among al-ternative ativities. Our urrent Iarus program forin-ity driving and pakage delivery is mostly deter-ministi, with the main hoies ourring at the toplevel with respet to whih pakage the agent shoulddeliver next. We hypothesized that a purely reativeagent might begin to deliver one pakage but be tooeasily distrated when it enounters streets assoiatedwith other pakages. But we also hypothesized that ahighly persistent agent might be so set on delivering agiven pakage that it would not take advantage of op-portunities to deliver others when they arise.To evaluate these preditions, we require an expliitmeasure of the agent's performane. The natural an-didate is the average time needed to deliver eah pak-age, so we alulated this statisti from a variety ofruns. We reated a spei� ity layout with four hor-izontal roads and four vertial roads, eah four laneswide, giving nine square bloks, as shown in Figure 1,with a total of 180 distint addresses. We de�ned �veseparate delivery tasks, eah requiring delivery of threepakages from the same initial loation. Our indepen-dent variable was the persistene fator, whih we setto 0.0, 2.0, and 5.0. For eah setting, we ran the Iarusagent on eah of the �ve tasks, measured the time todeliver all three pakages, and averaged the results.Figure 2 shows the results of this study, whih areonsistent with our expetations. The system takeslonger, on average, to deliver pakages when the persis-tene fator is either low or high than when it is has anintermediate value. Inspetion of traes revealed that,in the �rst ase, the agent tends to shift among its top-level intentions, attempting to deliver one pakage butshifting to another even when nearing its initial obje-tive. In ontrast, the highly persistent agent selets apakage to deliver and pursues this task doggedly, evenwhen it enounters streets relevant to other pakages.The medium setting produes more balaned behav-ior that falls between these extremes.We also arried out an additional study to examinethe Iarus agent's ability to sale to more omplextasks. In partiular, we varied the number of bloks inthe ity, using the best-soring persistene setting fromthe initial study. We generated ities with 9, 16, and25 square bloks, eah having the same number of hori-zontal streets as vertial streets. In this experiment, theaverage delivery time per pakage over four runs was210.3 � 60.1, 228.8 � 81.4, and 292.3 � 171.2, whih

0.0 2.0 5.0

Persistence factor

0.
8

1
1.

2
1.

4
1.

6
1.

8

N
or

m
al

iz
ed

 c
yc

le
s

Figure 2: Average number of yles required to delivera pakage as a funtion of Iarus' persistene fator,normalized by the yles when persistene is 2.0.suggests that the system sales reasonably as one in-reases the diÆulty of �nding the target addresses.Of ourse, our experiments rely on some importantassumptions that would not hold with a human driver.One is that the agent has no aess to a map or dire-tions, and must searh the ity until it �nds the streetor ross street for a pakage. Another is that the systemdoes not learn routes from its driving experiene, as dohumans when they drive repeatedly in a ity. We mightenode route knowledge manually as Iarus skills, andwe plan to add suh ontent in future versions of thedriving agent. Learning suh skills is urrently beyondthe apabilities of Iarus, although this topi is highon our agenda. Suh a faility should improve furtherthe agent's ability to handle omplex delivery tasks,but might redue the inuene of the persistene fa-tor, whih omes into play beause the agent has littleknowledge on whih to base its deisions.6. Intelletual PreursorsDespite its novel features, Iarus draws on many ideasthat have a long history in arti�ial intelligene andognitive siene. One intelletual inuene omes fromthe ognitive arhiteture movement, whih aims to de-velop integrated frameworks that support general intel-ligent behavior. A number of researh groups have de-veloped a variety of suh arhitetures, two of the bestknown being Soar (Laird et al., 1987) and ACT-R (An-derson, 1993). Many ognitive arhitetures have beenast as prodution systems , whih enode long-termknowledge as a set of ondition-ation rules that mathagainst and modify the ontents of short-term mem-ory. Iarus' design inorporates entral ideas from thisframework, inluding a reliane on pattern mathing,but it also expliitly organizes long-term memory intoonept and skill hierarhies, whih di�ers from the im-pliit organization in prodution systems.



Iarus also borrows from a distint tradition ofreative ontrol (e.g., Georgeo� et al., 1985; Nils-son, 1994; Shoppers, 1987), whih emphasizes sensor-driven exeution in response to hanging environmen-tal situations. Most suh work takes a fully reative ap-proah, although some systems, like PRS, ombine re-ative onstruts with sequential ones. More reent ef-forts (e.g., Bonasso et al., 1997) have ombined ideasfrom the reative and deliberative frameworks. Iarushas similar goals in that it inorporates onepts fromthese traditions in a framework that supports physi-al agents that both reason and at.Early reative frameworks spei�ed behavior en-tirely in qualitative or logial terms, but the paradigmhas muh in ommon with researh on Q learning (e.g.,Watkins & Dayan, 1992), whih assumes stimulus-response systems that assoiate value funtions withsituation-ation pairs. Iarus extends this notion byattahing numeri funtions to higher-level skills, in aspirit akin to work on hierarhial reinforement learn-ing (e.g., Kaelbling, 1993; Andre & Russell, 2000). Arelated inuene omes from deision theory (Howard,1968), whih addresses value-driven deision makingin unertain irumstanes. Iarus relies entrally onthe deision-theoreti notion of alternative ations thatprodue outomes with di�erent expeted values.Our general approah also has muh in ommon withknowledge-based and ase-based approahes to plan-ning and exeution. Howe (1995) and Freed (1998) de-sribe planning systems that ombine partial plans andexeute them in omplex environments, revising themwhen unexpeted situations arise. Hammond (1993)even desribes a program of this sort that delivers pak-ages in a simulated driving environment. Iarus fallsmore toward the reative end of the spetrum thanthese systems, but the di�erenes may lessen as we in-trodue planning apabilities. Iarus also shares im-portant ideas with Albus and Meystel's (2001) RCSarhiteture, whih organizes knowledge hierarhiallyand makes a lear distintion between logial stru-tures and value judgments.Finally, the agent arhiteture we have desribedherein retains many ideas from earlier versions ofIarus. Even the earliest designs (e.g., Langley et al.,1991) foused on reative agents for physial environ-ments, and initial versions inluded distint but on-neted long-term memories for onepts and plans. Amore reent inarnation (Shapiro & Langley, 1999) in-trodued reative exeution of hierarhial skills. Theurrent Iarus inorporates ideas from eah of its pre-deessors, but also introdues novel features, inludingseparate memories, both short-term and long-term, foronepts and skills, as well as the utilization of a per-sistene fator to inuene deisions.Every arhiteture for physial agents must takesome position on the dual issues of reativity and per-sistene. As we have noted, some ommit to purely re-ative ontrol with no memory of previous deisions,whereas others augment reative methods with sequen-

tial onstruts that ensure ativities happen in a spei-�ed order. To our knowledge, Iarus is the �rst arhi-teture to inorporate a exible notion of persistenethat modulates rather than overrides reativity.7. Diretions for Future ResearhAlthough the latest version of Iarus onstitutes a sig-ni�ant advane over its predeessors, the arhiteturestill laks many apabilities that we would expet ina general intelligent agent. One suh omission relatesto our framework's emphasis on exeution over plan-ning, whih is important in its own right. In response,we intend to add a new module that hains bakwardswhen the agent attempts to exeute a skill with un-met requirements, along with another mehanism thatsupports projeting the e�ets of future ativities onthe environment. The urrent representation of skillsshould support these extensions, though we must stillspeify when the agent arries out suh ognitive a-tivities and how it selets among them.Another limitation of the urrent arhiteture is itsrestrition to exeuting one skill on eah time step. Fu-ture versions should support the exeution of skills inparallel, but plae resoure onstraints on this ability.This will require an expanded formalism for skills thatspei�es the resoures they onsume on eah yle. Wewill also need to generalize Iarus' urrent method forskill seletion to take expeted resoure onsumptioninto aount. We envision a deision-theoreti treat-ment that trades osts against bene�ts. An importantspeial ase involves pereiving the environment, whihurrently happens automatially through preattentiveproesses. A more realisti sheme would handle somepereption through expliit sensing ations that requireresoures and thus must be invoked seletively.Our desription of Iarus has emphasized the hi-erarhial nature of long-term skill memory, but, asit stands, the arhiteture o�ers no aount of thishierarhy's aquisition. One promising idea involvesahing the results of suessful bakward haining intoa higher-level skill that inludes the unsatis�ed skilland the repairing skill as its omponents. This ap-proah is similar in spirit to methods for hunking inSoar (Laird et al., 1987) and maro-operator forma-tion (e.g., Iba, 1989). However, previous work alongthese lines has onstruted `at' knowledge elements,whereas ahed Iarus skills would retain their origi-nal strutures as part of the new hierarhial skill.Finally, like most agent arhitetures, Iarus laksany episodi memory to store its own previous expe-riene. Knowledge about onept instanes that wereone true and skills that it one exeuted would sup-port important abilities, suh as answering questionsabout past events. Upon reetion, episodi memoryseems losely related to short-term memory, in that itdeals with spei� instanes of general onepts andskills. We intend to enode suh memories as variantson short-term literals that inlude time markers to indi-



ate when they entered and left the short-term stores.Suh traes will also inlude average statistis aboutthe values expeted and ahieved when exeuting in-stantiated skills. The mehanisms responsible for re-trieval from episodi memory are less lear and remainan open issue for future researh.8. Conluding RemarksIn this paper we desribed Iarus, an arhiteturefor intelligent physial agents that inorporates a num-ber of features whih distinguish it from earlier frame-works. Iarus inludes a long-term memory for on-epts, whih it de�nes as logial onjuntions of per-eptual elements and other onepts, and a separatememory for skills, whih it de�nes in terms of oneptsand omponent skills. A ategorization proess depositsonept instanes in short-term memory, while a sepa-rate proess heks this memory to determine whetherskills are appliable and utilizes numeri value fun-tions to selet among aeptable andidates.We foused espeially on Iarus' ability to om-bine reativity with persistene, whih lets it respondto hanges in the environment while pursuing high-levelobjetives. We demonstrated this ability in a simulatedin-ity driving domain that involved delivering multiplepakages to their street addresses. Experimental stud-ies of an Iarus agent's behavior showed that the ar-hiteture supports this task, but also suggested thatsome settings for its persistene fator produed moredesirable results than others.Despite these enouraging results, Iarus remainsan immature arhiteture relative to older frameworks,and we outlined our plans to extend it along a num-ber of dimensions. In general, we believe that Iarus'value-driven approah, along with its other distintivefeatures, will support funtionalities that are diÆultto ahieve in more traditional approahes. We hopeto demonstrate these abilities in our future work onIarus agents for driving and other physial domains.AknowledgementsThis researh was funded in part by Grant IIS-0335353from the National Siene Foundation. We thank MegAyinena, Mihael Siliski, and David Niholas for dis-ussions that led to many of the ideas in this paper.ReferenesAlbus, J. S., & Meystel, A. M. (2001). Engineering ofmind: An introdution to the siene of intelligent sys-tems . New York: John Wiley.Anderson, J. R. (1993). Rules of the mind . Hillsdale,NJ: Lawrene Erlbaum.Andre, D., & Russell, S. J. (2000). Programmable re-inforement learning agents. Advanes in Neural In-formation Proessing Systems , 1019{1025.
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