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tIn this paper we des
ribe ICARUS, an integrated ar
hite
-ture for intelligent physi
al agents. The framework sup-ports long-term memories for hierar
hi
al 
on
epts andskills, along with me
hanisms for re
ognizing 
on
eptsthat hold in the environment, determining whi
h skillsare appli
able, and sele
ting for exe
ution the skill withthe highest expe
ted value.We illustrate these pro
esseswith examples from the domain of in-
ity driving, andwereport experimental studies on a pa
kage-delivery taskthat examine ICARUS' ability to 
ombine rea
tive behav-ior with persisten
e over time. We 
on
lude with a dis-
ussion of related work on agent ar
hite
tures and ourplans for extending the system.1. Introdu
tion and Ba
kgroundResear
h on agent ar
hite
tures pursues a 
entral goalof arti�
ial intelligen
e: the 
reation and understand-ing of syntheti
 agents that support the same 
apabil-ities as humans. Su
h ar
hite
tures aim for breadth of
overage a
ross many domains, and they o�er an a
-
ount of intelligen
e at the systems level, rather thanfo
using on 
omponent methods designed for spe
ial-ized tasks. They run 
ounter to the in
reasing frag-mentation of the �eld in that they provide integratedframeworks for produ
ing 
omplex behavior in a gen-eral, domain-independent manner.An agent ar
hite
ture { sometimes 
alled a 
ogni-tive ar
hite
ture { spe
i�es the infrastru
ture for anintelligent system that remains 
onstant a
ross di�er-ent domains and knowledge bases. This infrastru
turein
ludes a 
ommitment to formalisms for represent-ing knowledge, memories for storing this domain 
on-tent, pro
esses that utilize the knowledge, and learningme
hanisms to a
quire or revise it. An agent ar
hite
-ture 
an interpret di�erent knowledge bases, just as a
omputer ar
hite
ture 
an run di�erent programs.In this paper, we report on the latest version ofI
arus, an agent ar
hite
ture that builds on previ-ous work in this area but also has some novel 
har-a
teristi
s. One di�eren
e is that I
arus in
ludes sep-arate memories and pro
esses for 
on
epts, whi
h de-s
ribe situations in the environment, and skills, whi
h

des
ribe how to respond to them. In addition, the ar
hi-te
ture 
ombines the symboli
 stru
tures 
ommon tomany agent ar
hite
tures with the numeri
 value fun
-tions used in many learning systems. Finally, I
arussupports rea
tive behavior but modulates it with 
on-textual knowledge and persists in extended a
tivities.This latter 
apability is a fo
us of the 
urrent paper.We begin by des
ribing a simulated driving environ-ment that illustrates the types of domains for whi
hwe designed the ar
hite
ture. After this, we examineI
arus' long-term and short-term memories, in
lud-ing their formalisms for en
oding knowledge, then ex-amine its me
hanisms for operating on these memorystru
tures. Next we report experimental studies of anI
arus agent's behavior in the driving domain, dealingmainly with the role of persisten
e in exe
uting mul-tiple high-level tasks. In 
losing, we 
onsider the intel-le
tual in
uen
es on our resear
h and outline our plansfor extending the ar
hite
ture.2. An Illustrative DomainTo support our development and evaluation of I
arus,we have implemented a simulated environment for in-
ity driving. All obje
ts in this environment take theform of re
tangular parallelepipeds that sit on a Eu-
lidean plane. These in
lude stati
 obje
ts like roadsegments, interse
tions, lane lines, and buildings; theyalso in
lude vehi
les, the positions and orientationsof whi
h 
hange over time. Vehi
les 
an 
ollide withea
h other and with buildings, but they roll over road-related obje
ts without in
ident. Figure 1 presents as
reen shot of the graphi
al display for a typi
al 
ity.Ea
h vehi
le is driven by an agent that 
an a

el-erate or de
elerate and turn its steering wheel left orright. Asso
iated 
ontrol variables intera
t with realis-ti
 physi
al laws to determine ea
h vehi
le's motion ona given time step, so that they speed up, slow down,and 
hange dire
tions in reasonable ways. Collisionsare handled less realisti
ally, with vehi
les simply ex-
hanging momentum along their lengthwise axes. Mostof the vehi
les are drones 
ontrolled by the simulator it-self. These vehi
les stay in the rightmost lane and 
ometo a near stop at all interse
tions. They turn at inter-



Figure 1: Display of the simulated environment for in-
ity driving and pa
kage delivery.se
tions when these o

ur at 
ity boundaries and theysometimes turn at random 
ross streets.However, one vehi
le in the environment is instead
ontrolled by an I
arus agent. It 
an per
eive obje
tsaround it up to 60 feet away but no farther, in
ludingother vehi
les (with no o

lusion) and the 
orners ofbuildings, both des
ribed in agent-
entered polar 
oor-dinates that give ea
h obje
t's distan
e, angle, relativevelo
ity, and angular velo
ity. The I
arus agent alsoper
eives its distan
e and angle with respe
t to lanelines, along with its own properties, in
luding speedand the angle of its steering wheel.We provide the agent with top-level intentions to de-liver pa
kages to spe
i�
 destinations. To support thistask, it 
an also per
eive the street, numeri
 address,and 
ross street for ea
h undelivered pa
kage, alongwith the 
urrent street, the up
oming 
ross street, andthe address asso
iated with visible building 
orners.The I
arus agent does not have a map of the 
ity,so it must drive around in sear
h of the target ad-dresses, stopping to unload the appropriate pa
kagewhenever it �nds one. Of 
ourse, it must drive safely inthe pro
ess, staying on the right side of the road, mak-ing ne
essary turns, and avoiding 
ollisions along theway. Taken together, these 
onstraints produ
e a 
hal-lenging task environment that requires integration ofper
eption, reasoning, and a
tion, as well as a 
ombi-nation of agent rea
tivity and persisten
e.3. Memories and RepresentationsAn integrated ar
hite
ture should make some 
ommit-ment to its representation of knowledge and the mem-ories in whi
h that knowledge resides. In this se
tion

we des
ribe I
arus' memories for long-term knowledgeand short-term beliefs, along with the general formstaken by the 
ontents stored in them.3.1 Long-Term Con
eptual MemoryI
arus in
orporates a long-term memory for Boolean
on
epts that en
odes its knowledge of familiar situ-ations. This 
an in
lude des
riptions of 
ategories forisolated obje
ts, like types of vehi
les, but also physi
alrelations among obje
ts, su
h as the relative positionof two vehi
les or buildings. These 
on
epts 
orrespondto the traditional notion of logi
al 
ategories and pro-vide I
arus' vo
abulary for des
ribing its experien
es.Ea
h entry spe
i�es the 
on
ept's name and its argu-ments, along with the optional �elds :per
epts (whi
hdes
ribes per
eptual entities that must be present),:positives (whi
h gives lower-level 
on
epts it mustmat
h), :negatives (whi
h states lower-level 
on
eptsit must not mat
h), and :tests (whi
h spe
i�es nu-meri
 relations it must satisfy).1Table 1 presents some 
on
epts from the in-
ity driv-ing domain. For example, 
orner-ahead-left des
ribesa situation in whi
h the I
arus agent per
eives a
orner with an angle (measured in agent-
entered ra-dians) in its forward left quadrant. The 
on
ept in-interse
tion mat
hes when the agent per
eives a near-blo
k-
orner that resides behind it, has labeled anotheras a 
orner-straight-ahead, and has not noted any far-blo
k-
orner. The 
on
ept in-lane mat
hes against sit-uations in whi
h the agent is on the right side of theroad, it per
eives a lane line to its left, and two satis-�ed numeri
 tests ensure it is 
entered in the lane.Taken together, these de�nitions organize I
arus
ategories into a 
on
eptual hierar
hy. Primitive 
on-
epts are de�ned entirely in terms of per
eptual 
ondi-tions and numeri
 tests, but higher-level 
on
epts 
analso in
orporate other 
on
epts in their de�nitions. Thea
tual form is a latti
e, with primitive 
on
epts o
-
urring at the bottom, 
on
epts de�ned in terms ofthem immediately above, and more 
omplex 
on
eptsat higher levels. Stru
turally, this latti
e bears a 
loseresemblan
e to the Rete networks (Forgy, 1982) usedfor mat
hing in produ
tion-system ar
hite
tures.3.2 Long-Term Skill MemoryTo 
omplement its 
on
eptual memory, I
arus in
or-porates a long-term skill memory that en
odes knowl-edge about ways to a
t and a
hieve goals. This 
on-tains spe
i�
ations for skills that apply in 
ertain situ-ations and that produ
e desired e�e
ts. Skills provideI
arus with a repertoire of behaviors that let it in
u-en
e the physi
al situations in whi
h it �nds itself.Ea
h skill has a name, arguments, and eight optional�elds. The :effe
ts �eld spe
i�es a 
onjun
tion of1 Ea
h Boolean 
on
ept also has an asso
iated fun
tion thatspe
i�es the reward or utility the agent re
eives when that 
on-
ept is true. However, these do not play a role in the 
urrentpaper, so we will not dis
uss them further.



Table 1: Some I
arus 
on
epts for in-
ity driving, withvariables indi
ated by question marks.(
orner-ahead-left (?
orner):per
epts ((
orner ?
orner r ?r theta ?theta)):tests ((< ?theta 0)(>= ?theta -1.571)))(in-interse
tion (?self):per
epts ((
orner ?n
orner theta ?theta)(self ?self)):positives ((near-blo
k-
orner ?n
orner)(
orner-behind ?n
orner)(
orner-straight-ahead ?s
orner)):negatives ((far-blo
k-
orner ?f
orner))(in-lane (?lline):per
epts ((lane-line ?lline dist ?ldist)):positives ((on-right-side-of-road ?rline)(left-lane-line ?lline)):tests ((> ?ldist -7)(< ?ldist -3))known 
on
epts that, taken together, en
ode the sit-uation the skill is intended to a
hieve. Ea
h skill 
analso in
lude a :start �eld, again 
ast as a 
onjun
-tion of known 
on
epts, whi
h spe
i�es the situationthat must hold to initiate the skill, and a :requires�eld, whi
h must hold throughout the skill's exe
ution.For example, Table 2 shows the skill make-right-turn,whi
h has no expli
itly stated e�e
ts, 
an start only if?self is at the appropriate turning distan
e and in theright lane (along with other 
onditions), and requiresthat ?
orner be a right blo
k 
orner and that the vehi-
le be near enough to it.In addition, ea
h I
arus skill in
ludes other �eldsthat spe
ify how to de
ompose that skill into its sub-skills. An :ordered �eld indi
ates that the agentshould 
onsider these 
omponent skills in a par-ti
ular order. For example, make-right-turn dire
tsthe agent to 
onsider enter-interse
tion, turn-past-halfway, and 
omplete-right-turn, and to sele
t rea
-tively from the last subskill that is appli
able, sin
epresumably this is 
loser to the desired e�e
ts. Al-ternatively, an :unordered �eld identi�es a 
hoi
eamong subskills. For instan
e, the table's de
omposi-tion for go-straight-in-lane involves six subskills, in-
luding bear-right-in-lane and slow-for-interse
tion,from whi
h the system sele
ts, regardless of order.A third option is the :a
tions �eld, in whi
h aprimitive skill like bear-right-in-lane spe
i�es one ormore opaque a
tions that are dire
tly exe
utable. Forour driving simulator, su
h a
tions 
orrespond to in-
reasing or de
reasing the vehi
le's speed, turning itswheels to the left or right, and depositing a pa
k-age. Thus, a primitive skill plays the same role as aStrips operator in a traditional planning system, withthe :start �eld serving as the pre
onditions and the:effe
ts �eld spe
ifying the results of exe
ution.

A
tually, I
arus spe
i�es one or more ways to de-
ompose ea
h skill in this manner, mu
h as a Prologprogram 
an in
lude more than one Horn 
lause withthe same head. Di�erent de
ompositions of a given skillmust have the same name, number of arguments, ande�e
ts. However, they 
an di�er in their start 
ondi-tions, requirements, and subskills. For example, theskill straighten-in-lane has two su
h expansions, onefor straightening the vehi
le to the right and anotherfor straightening it to the left.Ea
h skill de
omposition also in
ludes an expe
tedvalue fun
tion that en
odes the utility expe
ted if it ex-e
utes the skill with this de
omposition. This fun
tionis spe
i�ed in two parts: a :per
epts �eld that mat
hesagainst the values of observed obje
ts' attributes anda :value �eld that provides an arithmeti
 fun
tion ofthese quantities. To date, we have restri
ted the latterto linear fun
tions of the numeri
 des
riptors mat
hedby the skill, sin
e this proved useful in our earlier workon reinfor
ement learning. For example, the expe
tedvalue for slow-for-interse
tion in Table 2 depends lin-early on the variables ?sd and ?speed, whi
h 
an varyfrom moment to moment.3.3 Short-Term MemoriesI
arus' long-term memories en
ode stable knowledgeabout a given domain. However, to generate behavior,the ar
hite
ture also requires short-term stores that
an 
hange rapidly. These should make 
onta
t withlong-term 
on
epts and skills, but they must also rep-resent temporary beliefs about the agent's environmentand its intended a
tivities.One su
h memory is I
arus' per
eptual bu�er ,whi
h 
ontains des
riptions of physi
al entities that
orrespond to the output of sensors. In the driv-ing domain, this short-lived memory 
ontains liter-als like (
orner 
0027 r 10.53 theta 0.962 dv -0.041dtheta 0.032), whi
h des
ribes a per
eived 
or-ner named 
0027 with asso
iated distan
e from theagent r, angle theta, relative speed dv, and angular ve-lo
ity dtheta, all as per
eived on the 
urrent time step.Other per
eptual elements for the driving environ-ment des
ribe aspe
ts of lane lines, the 
urrent streetand up
oming 
ross street, the pa
kages being 
ar-ried, and the agent's own state.In 
ontrast, I
arus' short-term 
on
eptual mem-ory 
ontains instan
es of 
on
epts that are de�nedin long-term 
on
ept memory. These literals en
odespe
i�
 beliefs about the environment that the agent
an infer from those present in its per
eptual bu�er.For instan
e, this memory might 
ontain the instan
e(in-interse
tion self), whi
h it 
an infer from the in-interse
tion 
on
ept shown in Table 1. This depends onthe presen
e in memory of instan
es for the 
on
eptsnear-blo
k-
orner and 
orner-straight-ahead, whi
h ul-timately ground out in per
eptual entities.Finally, I
arus in
ludes a short-term skill memorythat 
ontains instan
es of skills the agent intends to ex-e
ute. Ea
h of these literals spe
i�es the skill's name



Table 2: Some I
arus skills for in-
ity driving, in
lud-ing the :per
epts and :value �elds used to 
omputeexpe
ted values.(go-straight-in-lane (?self):requires ((on-right-side-of-road ?yline)(left-lane-line ?line)):effe
ts ((in-lane ?line)(parallel-to-road ?self)):unordered ((bear-left-in-lane ?self)(bear-right-in-lane ?self)(
ruise ?self)(speed-up ?self)(straighten-in-lane ?self)(slow-for-interse
tion ?self)):value (20))(slow-for-interse
tion (?self):per
epts ((
orner ?
orner street-dist ?sd)(self ?self speed ?speed)):requires ((should-slow-for-interse
tion ?self)(near-blo
k-
orner ?
orner)):a
tions ((*slow-down)):value (+ (* -5 ?sd) (* 20 ?speed)))(bear-right-in-lane (?self):per
epts ((lane-line ?line dist ?d angle ?a)(self ?self wheel-angle ?sa)):requires ((left-lane-line ?line)):a
tions ((*turn-right)):value (+ (* 2 ?d) (* 70 ?a) (* -20 ?sa) 10))(make-right-turn (?self ?
orner):start ((in-rightmost-lane ?rline)(right-blo
k-
orner ?
orner)(near-blo
k-
orner ?
orner)(at-turning-dist ?self)):requires ((right-blo
k-
orner ?
orner)(near-blo
k-
orner ?
orner)):ordered ((enter-interse
tion ?self ?
orner)(turn-past-halfway ?self ?
orner)(
omplete-right-turn ?self)):value (30))and its 
on
rete arguments. For example, this memorymight 
ontain the skill instan
e (make-right-turn self
0027), whi
h denotes that the driver has an expli
it in-tention to exe
ute the make-right-turn skill with thesearguments. In addition, ea
h skill instan
e in
ludes theexpe
ted value if exe
uted, whi
h is 
omputed from thevalue fun
tion asso
iated with that skill and per
eptualattributes mat
hed in its :per
epts �eld. The agentuses this number to 
hoose among skills and among al-ternatives within skills.4. Interpreting and Utilizing KnowledgeLike most ar
hite
tures for intelligent agents, I
arusoperates in distin
t 
y
les. On every 
y
le, the systemupdates its per
eptual bu�er, determines whi
h 
on-
epts are mat
hed, and adds supported beliefs to 
on-
eptual short-term memory. The ar
hite
ture then se-le
ts a path through the skill hierar
hy and exe
utes

it, produ
ing 
hanges in the environment that in
u-en
e de
isions on the next 
y
le. In this se
tion, wedis
uss ea
h of these pro
esses in turn.4.1 Categorization and Belief UpdateOn ea
h 
y
le, I
arus refreshes the 
ontents of its per-
eptual bu�er by applying preattentive sensors to ev-ery obje
t within a given distan
e of the agent. Thisprodu
es a set of per
eptual elements that initiate thepro
ess of mat
hing against long-term 
on
epts. On
ethese elements have been added, the mat
her 
he
ks tosee whi
h primitive 
on
epts (ones based only on per-
eptual des
riptions) mat
h, then adds ea
h mat
hedinstan
e to 
on
eptual short-term memory.Re
all that I
arus organizes 
on
epts in a latti
ewith primitive 
on
epts at the bottom, 
on
epts de-�ned in terms of them and per
eptual elements at thenext level, and so forth. On
e the system has deter-mined whi
h primitive 
on
epts mat
h, it 
he
ks more
omplex ones, at ea
h step adding mat
hed instan
esto short-term memory and then 
onsidering other 
on-
epts that depend on them. I
arus repeats this pro-
ess on ea
h 
y
le, so 
on
ept instan
es remain in short-term memory only if they have dire
t support from theper
eptual elements upon whi
h they depend.24.2 Sele
tion and Exe
ution of SkillsAs we noted earlier, I
arus in
ludes a short-term skillmemory whi
h 
ontains a set of skill instan
es that theagent should 
onsider exe
uting. On ea
h 
y
le, the ar-
hite
ture examines ea
h su
h instan
e in detail to de-termine whether it applies to the 
urrent situation and,if so, whi
h one has the highest expe
ted value.For ea
h skill instan
e, I
arus a

esses all de
ompo-sitions of the general skill and 
he
ks to see if they areappli
able. A skill is appli
able if, for its 
urrent vari-able bindings, its :effe
ts �eld does not mat
h, the:requires �eld mat
hes, and, if the system has not yetstarted exe
uting it, the :start �eld mat
hes the 
ur-rent situation. Moreover, at least one of its subskillsmust also be appli
able. Sin
e this test is re
ursive, askill is only appli
able if there exists at least one a

ept-able path downward to an exe
utable a
tion. I
arus
onsiders all su
h a

eptable paths downward throughthe skill hierar
hy, returning the path with the high-est expe
ted value for ea
h instan
e in short-term skillmemory. Sin
e variables 
an be bound within the bodyof a skill de
omposition, this set may in
lude multi-ple variants of ea
h skill instan
e.For ea
h su
h path, the ar
hite
ture 
omputes theexpe
ted value and sele
ts the 
andidate with the high-est utility for exe
ution. For a given path, it uses thevalue fun
tion stored with ea
h skill and the numeri
attributes mat
hed in that skill's :per
epts �eld to2 We have also 
onsidered implementing the 
on
ept re
ogni-tion pro
ess using a Rete network (Forgy, 1982) or a truth-maintenan
e system, but their eÆ
ien
y in su
h dynami
 en-vironments remains an empiri
al question.




al
ulate the expe
ted value at ea
h level, summing theresults along the path to 
ompute the overall s
ore. Forinstan
e, for the path ((drive self), (go-straight-in-laneself), (slow-for-interse
tion self), the system would sumthe expe
ted values for all three levels to determine theutility of slowing down. This means that the same a
-tion 
an have di�erent values on a given 
y
le depend-ing on whi
h higher-level skills are invoking it, provid-ing a way to a
hieve 
ontext e�e
ts.The ar
hite
ture treats a skill expansion di�erentlydepending on whether its 
omponents appear in an:unordered set or an :ordered list. If they are un-ordered, the module 
onsiders ea
h of the subskills andsele
ts the one that yields the highest s
oring subpath.If they are ordered, it instead treats the list as a re-a
tive program that 
onsiders ea
h subskill in reverseorder. If the �nal subskill is appli
able, then it ex-pands further only down paths that in
lude that sub-skill. Otherwise, it 
onsiders the penultimate skill, theone before that, and so forth. The intuition is that thesubskills are ordered be
ause later ones are 
loser to theparent skill's e�e
ts, and should be preferred over ear-lier ones when appli
able.4.3 Rea
tivity and Persisten
eIn their naive form, rea
tive ar
hite
tures operate asstimulus-response systems that take only the 
urrentstate into a

ount when de
iding what a
tion to exe-
ute. As we have seen, I
arus moves beyond this sim-ple approa
h by using a hierar
hi
al organization ofskills to modulate the sele
tion of a
tions, but Nils-son's (1994) teleorea
tive programs and Bonasso et al.'s(1997) T3 share similar 
apabilities. The ar
hite
turealso treats ordered subskills in a spe
ial manner, butGeorge� et al.'s (1985) PRS and Freed's (1998) APEXalso 
ombine sequential 
onstru
ts with rea
tivity.Both approa
hes provide I
arus and related sys-tems with the ability to 
arry out extended a
tivities,despite their emphasis on rea
tive response. However,they support su
h extended behavior in an all-or-noneway, whereas a more 
exible notion of persisten
e hasattra
tions. People appear to fall on a 
ontinuum thatdes
ribes how easily they are interrupted when 
arryingout a task or, 
onversely, how single-minded they are inpursuing their goals. I
arus in
orporates a global per-sisten
e parameter p that in
uen
es the agent's behav-ior along this dimension.More spe
i�
ally, the ar
hite
ture retains a sta
kthat en
odes the instantiated path through the skillhierar
hy that it sele
ted on the previous 
y
le. Whenevaluating a 
andidate path with unmodi�ed value v,I
arus 
al
ulates the modulated path value asv0 = v � (1 + p � sXi=1 ki= dXj=1 kj) ;where d is the depth of the 
andidate path, s is thenumber of steps it shares with the previous path, p isthe persisten
e fa
tor, and 0 < k < 1 is a de
ay term.

For example, suppose that the agent is 
onsider-ing the path ((drive self), (
omplete-right-turn self),(straighten-wheels self) on the 
urrent 
y
le, and sup-pose that the previous path shares the �rst two el-ements. Thus, if p = 2, k = 0:5, and the unmod-i�ed value is 10, then the modi�ed value would be10 � (1 + 2 � (0:5+ 0:25)=(0:5+ 0:25+ 0:125) = 27:14. Ifthe path from the previous 
y
le is still appli
able, thenthe number of shared steps s equals the depth d, giv-ing the multiplier 1 + p.The higher the persisten
e fa
tor, the greater theagent's bias toward 
ontinuing to sele
t the skills itpi
ked on the previous time step. Setting the fa
tor tozero produ
es fully rea
tive behavior that takes onlythe 
urrent situation into a

ount, whereas higher val-ues en
ourage the agent to repeat its previous de
i-sions. However, su
h a higher setting does not rule outresponses to important 
hanges in the environment,whi
h 
an 
ause entirely di�erent skills or subskills tobe
ome appli
able or produ
e large enough 
hanges inexpe
ted values to shift behavior. An emergen
y situa-tion, su
h as the need to slow down to avoid hitting an-other vehi
le, 
an still over
ome the bias toward 
on-tinuing the ongoing a
tivity, but, other things beingequal, an I
arus agent will prefer the latter 
ourse.5. Experimental Studies of DrivingOur design for I
arus has promising features, and wehave evaluated an earlier version of the ar
hite
ture ona simulated highway-driving task with en
ouraging re-sults, in
luding studies that demonstrate rapid learn-ing (Shapiro et al., 2001). However, in-
ity driving is amore 
omplex domain that is appropriate for evaluat-ing the extended framework, whi
h introdu
es separatelong-term memories for 
on
epts and skills, a short-term 
on
eptual memory, a short-term skill memorythat holds multiple intentions, and modulation of rea
-tivity using the persisten
e fa
tor. Here we report ourexperien
e with the environment des
ribed earlier.To support basi
 driving in this domain, we devel-oped an I
arus program that in
ludes 62 
on
epts(on average four levels deep) and 46 skills (on aver-age �ve levels deep). The high-level skills handle issueslike driving straight in a lane, getting in the rightmostlane, slowing for an interse
tion, driving through an in-terse
tion, turning at an interse
tion, and making a Uturn. Informal studies revealed that these skills are suf-�
ient to let the I
arus agent drive in the simulated
ity inde�nitely without serious problems. The systemo

asionally exe
utes a poor turn and enters the wronglane, but it re
overs from su
h in
idents and 
ontinues.We also developed an extended program for pa
kagedelivery that in
ludes 19 
on
epts and 13 skills in addi-tion to those for basi
 driving. The high-level skills hereare responsible for turning on a pa
kage's 
ross street,turning on its target street, turning around if head-ing in the wrong dire
tion, and dropping o� a pa
k-age at its target address. Informal studies with this



extended system revealed that it 
an deliver a set ofpa
kages to their spe
i�ed addresses, although it doesnot always take the shortest route to a
hieve these ob-je
tives. We wrote the pa
kage-delivery 
on
epts andskills separately from the basi
 driving program, thenmerged them with some tuning.These results were en
ouraging, but we also wantedto 
arry out more systemati
 studies of the ar
hite
-ture's behavior. In parti
ular, we were interested inhow the persisten
e fa
tor des
ribed above in
uen
esan agent's performan
e when it has 
hoi
es among al-ternative a
tivities. Our 
urrent I
arus program forin-
ity driving and pa
kage delivery is mostly deter-ministi
, with the main 
hoi
es o

urring at the toplevel with respe
t to whi
h pa
kage the agent shoulddeliver next. We hypothesized that a purely rea
tiveagent might begin to deliver one pa
kage but be tooeasily distra
ted when it en
ounters streets asso
iatedwith other pa
kages. But we also hypothesized that ahighly persistent agent might be so set on delivering agiven pa
kage that it would not take advantage of op-portunities to deliver others when they arise.To evaluate these predi
tions, we require an expli
itmeasure of the agent's performan
e. The natural 
an-didate is the average time needed to deliver ea
h pa
k-age, so we 
al
ulated this statisti
 from a variety ofruns. We 
reated a spe
i�
 
ity layout with four hor-izontal roads and four verti
al roads, ea
h four laneswide, giving nine square blo
ks, as shown in Figure 1,with a total of 180 distin
t addresses. We de�ned �veseparate delivery tasks, ea
h requiring delivery of threepa
kages from the same initial lo
ation. Our indepen-dent variable was the persisten
e fa
tor, whi
h we setto 0.0, 2.0, and 5.0. For ea
h setting, we ran the I
arusagent on ea
h of the �ve tasks, measured the time todeliver all three pa
kages, and averaged the results.Figure 2 shows the results of this study, whi
h are
onsistent with our expe
tations. The system takeslonger, on average, to deliver pa
kages when the persis-ten
e fa
tor is either low or high than when it is has anintermediate value. Inspe
tion of tra
es revealed that,in the �rst 
ase, the agent tends to shift among its top-level intentions, attempting to deliver one pa
kage butshifting to another even when nearing its initial obje
-tive. In 
ontrast, the highly persistent agent sele
ts apa
kage to deliver and pursues this task doggedly, evenwhen it en
ounters streets relevant to other pa
kages.The medium setting produ
es more balan
ed behav-ior that falls between these extremes.We also 
arried out an additional study to examinethe I
arus agent's ability to s
ale to more 
omplextasks. In parti
ular, we varied the number of blo
ks inthe 
ity, using the best-s
oring persisten
e setting fromthe initial study. We generated 
ities with 9, 16, and25 square blo
ks, ea
h having the same number of hori-zontal streets as verti
al streets. In this experiment, theaverage delivery time per pa
kage over four runs was210.3 � 60.1, 228.8 � 81.4, and 292.3 � 171.2, whi
h
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Figure 2: Average number of 
y
les required to delivera pa
kage as a fun
tion of I
arus' persisten
e fa
tor,normalized by the 
y
les when persisten
e is 2.0.suggests that the system s
ales reasonably as one in-
reases the diÆ
ulty of �nding the target addresses.Of 
ourse, our experiments rely on some importantassumptions that would not hold with a human driver.One is that the agent has no a

ess to a map or dire
-tions, and must sear
h the 
ity until it �nds the streetor 
ross street for a pa
kage. Another is that the systemdoes not learn routes from its driving experien
e, as dohumans when they drive repeatedly in a 
ity. We mighten
ode route knowledge manually as I
arus skills, andwe plan to add su
h 
ontent in future versions of thedriving agent. Learning su
h skills is 
urrently beyondthe 
apabilities of I
arus, although this topi
 is highon our agenda. Su
h a fa
ility should improve furtherthe agent's ability to handle 
omplex delivery tasks,but might redu
e the in
uen
e of the persisten
e fa
-tor, whi
h 
omes into play be
ause the agent has littleknowledge on whi
h to base its de
isions.6. Intelle
tual Pre
ursorsDespite its novel features, I
arus draws on many ideasthat have a long history in arti�
ial intelligen
e and
ognitive s
ien
e. One intelle
tual in
uen
e 
omes fromthe 
ognitive ar
hite
ture movement, whi
h aims to de-velop integrated frameworks that support general intel-ligent behavior. A number of resear
h groups have de-veloped a variety of su
h ar
hite
tures, two of the bestknown being Soar (Laird et al., 1987) and ACT-R (An-derson, 1993). Many 
ognitive ar
hite
tures have been
ast as produ
tion systems , whi
h en
ode long-termknowledge as a set of 
ondition-a
tion rules that mat
hagainst and modify the 
ontents of short-term mem-ory. I
arus' design in
orporates 
entral ideas from thisframework, in
luding a relian
e on pattern mat
hing,but it also expli
itly organizes long-term memory into
on
ept and skill hierar
hies, whi
h di�ers from the im-pli
it organization in produ
tion systems.



I
arus also borrows from a distin
t tradition ofrea
tive 
ontrol (e.g., Georgeo� et al., 1985; Nils-son, 1994; S
hoppers, 1987), whi
h emphasizes sensor-driven exe
ution in response to 
hanging environmen-tal situations. Most su
h work takes a fully rea
tive ap-proa
h, although some systems, like PRS, 
ombine re-a
tive 
onstru
ts with sequential ones. More re
ent ef-forts (e.g., Bonasso et al., 1997) have 
ombined ideasfrom the rea
tive and deliberative frameworks. I
arushas similar goals in that it in
orporates 
on
epts fromthese traditions in a framework that supports physi-
al agents that both reason and a
t.Early rea
tive frameworks spe
i�ed behavior en-tirely in qualitative or logi
al terms, but the paradigmhas mu
h in 
ommon with resear
h on Q learning (e.g.,Watkins & Dayan, 1992), whi
h assumes stimulus-response systems that asso
iate value fun
tions withsituation-a
tion pairs. I
arus extends this notion byatta
hing numeri
 fun
tions to higher-level skills, in aspirit akin to work on hierar
hi
al reinfor
ement learn-ing (e.g., Kaelbling, 1993; Andre & Russell, 2000). Arelated in
uen
e 
omes from de
ision theory (Howard,1968), whi
h addresses value-driven de
ision makingin un
ertain 
ir
umstan
es. I
arus relies 
entrally onthe de
ision-theoreti
 notion of alternative a
tions thatprodu
e out
omes with di�erent expe
ted values.Our general approa
h also has mu
h in 
ommon withknowledge-based and 
ase-based approa
hes to plan-ning and exe
ution. Howe (1995) and Freed (1998) de-s
ribe planning systems that 
ombine partial plans andexe
ute them in 
omplex environments, revising themwhen unexpe
ted situations arise. Hammond (1993)even des
ribes a program of this sort that delivers pa
k-ages in a simulated driving environment. I
arus fallsmore toward the rea
tive end of the spe
trum thanthese systems, but the di�eren
es may lessen as we in-trodu
e planning 
apabilities. I
arus also shares im-portant ideas with Albus and Meystel's (2001) RCSar
hite
ture, whi
h organizes knowledge hierar
hi
allyand makes a 
lear distin
tion between logi
al stru
-tures and value judgments.Finally, the agent ar
hite
ture we have des
ribedherein retains many ideas from earlier versions ofI
arus. Even the earliest designs (e.g., Langley et al.,1991) fo
used on rea
tive agents for physi
al environ-ments, and initial versions in
luded distin
t but 
on-ne
ted long-term memories for 
on
epts and plans. Amore re
ent in
arnation (Shapiro & Langley, 1999) in-trodu
ed rea
tive exe
ution of hierar
hi
al skills. The
urrent I
arus in
orporates ideas from ea
h of its pre-de
essors, but also introdu
es novel features, in
ludingseparate memories, both short-term and long-term, for
on
epts and skills, as well as the utilization of a per-sisten
e fa
tor to in
uen
e de
isions.Every ar
hite
ture for physi
al agents must takesome position on the dual issues of rea
tivity and per-sisten
e. As we have noted, some 
ommit to purely re-a
tive 
ontrol with no memory of previous de
isions,whereas others augment rea
tive methods with sequen-

tial 
onstru
ts that ensure a
tivities happen in a spe
i-�ed order. To our knowledge, I
arus is the �rst ar
hi-te
ture to in
orporate a 
exible notion of persisten
ethat modulates rather than overrides rea
tivity.7. Dire
tions for Future Resear
hAlthough the latest version of I
arus 
onstitutes a sig-ni�
ant advan
e over its prede
essors, the ar
hite
turestill la
ks many 
apabilities that we would expe
t ina general intelligent agent. One su
h omission relatesto our framework's emphasis on exe
ution over plan-ning, whi
h is important in its own right. In response,we intend to add a new module that 
hains ba
kwardswhen the agent attempts to exe
ute a skill with un-met requirements, along with another me
hanism thatsupports proje
ting the e�e
ts of future a
tivities onthe environment. The 
urrent representation of skillsshould support these extensions, though we must stillspe
ify when the agent 
arries out su
h 
ognitive a
-tivities and how it sele
ts among them.Another limitation of the 
urrent ar
hite
ture is itsrestri
tion to exe
uting one skill on ea
h time step. Fu-ture versions should support the exe
ution of skills inparallel, but pla
e resour
e 
onstraints on this ability.This will require an expanded formalism for skills thatspe
i�es the resour
es they 
onsume on ea
h 
y
le. Wewill also need to generalize I
arus' 
urrent method forskill sele
tion to take expe
ted resour
e 
onsumptioninto a

ount. We envision a de
ision-theoreti
 treat-ment that trades 
osts against bene�ts. An importantspe
ial 
ase involves per
eiving the environment, whi
h
urrently happens automati
ally through preattentivepro
esses. A more realisti
 s
heme would handle someper
eption through expli
it sensing a
tions that requireresour
es and thus must be invoked sele
tively.Our des
ription of I
arus has emphasized the hi-erar
hi
al nature of long-term skill memory, but, asit stands, the ar
hite
ture o�ers no a

ount of thishierar
hy's a
quisition. One promising idea involves
a
hing the results of su

essful ba
kward 
haining intoa higher-level skill that in
ludes the unsatis�ed skilland the repairing skill as its 
omponents. This ap-proa
h is similar in spirit to methods for 
hunking inSoar (Laird et al., 1987) and ma
ro-operator forma-tion (e.g., Iba, 1989). However, previous work alongthese lines has 
onstru
ted `
at' knowledge elements,whereas 
a
hed I
arus skills would retain their origi-nal stru
tures as part of the new hierar
hi
al skill.Finally, like most agent ar
hite
tures, I
arus la
ksany episodi
 memory to store its own previous expe-rien
e. Knowledge about 
on
ept instan
es that wereon
e true and skills that it on
e exe
uted would sup-port important abilities, su
h as answering questionsabout past events. Upon re
e
tion, episodi
 memoryseems 
losely related to short-term memory, in that itdeals with spe
i�
 instan
es of general 
on
epts andskills. We intend to en
ode su
h memories as variantson short-term literals that in
lude time markers to indi-




ate when they entered and left the short-term stores.Su
h tra
es will also in
lude average statisti
s aboutthe values expe
ted and a
hieved when exe
uting in-stantiated skills. The me
hanisms responsible for re-trieval from episodi
 memory are less 
lear and remainan open issue for future resear
h.8. Con
luding RemarksIn this paper we des
ribed I
arus, an ar
hite
turefor intelligent physi
al agents that in
orporates a num-ber of features whi
h distinguish it from earlier frame-works. I
arus in
ludes a long-term memory for 
on-
epts, whi
h it de�nes as logi
al 
onjun
tions of per-
eptual elements and other 
on
epts, and a separatememory for skills, whi
h it de�nes in terms of 
on
eptsand 
omponent skills. A 
ategorization pro
ess deposits
on
ept instan
es in short-term memory, while a sepa-rate pro
ess 
he
ks this memory to determine whetherskills are appli
able and utilizes numeri
 value fun
-tions to sele
t among a

eptable 
andidates.We fo
used espe
ially on I
arus' ability to 
om-bine rea
tivity with persisten
e, whi
h lets it respondto 
hanges in the environment while pursuing high-levelobje
tives. We demonstrated this ability in a simulatedin-
ity driving domain that involved delivering multiplepa
kages to their street addresses. Experimental stud-ies of an I
arus agent's behavior showed that the ar-
hite
ture supports this task, but also suggested thatsome settings for its persisten
e fa
tor produ
ed moredesirable results than others.Despite these en
ouraging results, I
arus remainsan immature ar
hite
ture relative to older frameworks,and we outlined our plans to extend it along a num-ber of dimensions. In general, we believe that I
arus'value-driven approa
h, along with its other distin
tivefeatures, will support fun
tionalities that are diÆ
ultto a
hieve in more traditional approa
hes. We hopeto demonstrate these abilities in our future work onI
arus agents for driving and other physi
al domains.A
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