
A Unified Cognitive Architecture for Physical Agents

Pat Langley and Dongkyu Choi
Computational Learning Laboratory

Center for the Study of Language and Information
Stanford University, Stanford, CA 94305 USA

Abstract

In this paper we describe Icarus, a cognitive archi-
tecture for physical agents that integrates ideas from
a number of traditions, but that has been especially
influenced by results from cognitive psychology. We
review Icarus’ commitments to memories and repre-
sentations, then present its basic processes for perfor-
mance and learning. We illustrate the architecture’s
behavior on a task from in-city driving that requires in-
teraction among its various components. In addition,
we discuss Icarus’ consistency with qualitative find-
ings about the nature of human cognition. In closing,
we consider the framework’s relation to other cognitive
architectures that have been proposed in the literature.

Introduction and Motivation

A cognitive architecture (Newell, 1990) specifies the in-
frastructure for an intelligent system that remains con-
stant across different domains and knowledge bases.
This infrastructure includes a commitment to for-
malisms for representing knowledge, memories for stor-
ing this domain content, and processes that utilize and
acquire the knowledge. Research on cognitive architec-
tures has been closely tied to cognitive modeling, in
that they often attempt to explain a wide range of hu-
man behavior and, at the very least, desire to support
the same broad capabilities as human intelligence.

In this paper we describe Icarus, a cognitive archi-
tecture that builds on previous work in this area but
also has some novel features. Our aim is not to match
quantitative data, but rather to reproduce qualitative
characteristics of human behavior, and our discussion
will focus on such issues. The best method for evaluat-
ing a cognitive architecture remains an open question,
but it is clear that this should happen at the systems
level rather than in terms of isolated phenomena. We
will not claim that Icarus accounts for any one result
better than other candidates, but we will argue that it
models facets of the human cognitive architecture, and
the ways they fit together, that have been downplayed
by other researchers in this area.

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

A conventional paper on cognitive architectures
would first describe the memories and their contents,
then discuss the mechanisms that operate over them.
However, Icarus’ processes interact with certain mem-
ories but not others, suggesting that we organize the
text around these processes and the memories on
which they depend. Moreover, some modules build on
other components, which suggests a natural progres-
sion. Therefore, we first discuss Icarus’ most basic
mechanism, conceptual inference, along with the mem-
ories it inspects and alters. After this, we present the
processes for goal selection and skill execution, which
operate over the results of inference. Finally, we con-
sider the architecture’s module for problem solving,
which builds on both inference and execution, and its
associated learning processes, which operate over the
results of problem solving.

In each case, we discuss the framework’s connection
to qualitative results from cognitive psychology. In ad-
dition, we illustrate the ideas with examples from the
domain of in-city driving, which has played a central
role in our research. Briefly, this involves controlling a
vehicle in a simulated urban environment with build-
ings, road segments, street intersections, and other ve-
hicles. This domain, which Langley and Choi (2006)
describe at more length, provides a rich setting to study
the interplay among different facets of cognition.

Beliefs, Concepts, and Inference

In order to carry out actions that achieve its goals, an
agent must understand its current situation. Icarus in-
cludes a module for conceptual inference that is respon-
sible for this cognitive task which operates by matching
conceptual structures against percepts and beliefs. This
process depends on the contents and representation of
elements in short-term and long-term memory.

Because Icarus is designed to support intelligent
agents that operate in some external environment, it re-
quires information about the state of its surroundings.
To this end, it incorporates a perceptual buffer that de-
scribes aspects of the environment the agent perceives
directly on a given cycle, after which it is updated. Each
element or percept in this ephemeral memory corre-
sponds to a particular object and specifies the object’s



type, a unique name, and a set of attribute-value pairs
that characterize the object on the current time step.

Although one could create a stimulus-response agent
that operates directly off perceptual information, its be-
havior would not reflect what we normally mean by the
term ‘intelligent’, which requires higher-level cognition.
Thus, Icarus also includes a belief memory that con-
tains higher-level inferences about the agent’s situation.
Whereas percepts describe attributes of specific objects,
beliefs describe relations among objects, such as the rel-
ative positions of two buildings. Each element in this
belief memory consists of a predicate and a set of sym-
bolic arguments, each of which refers to some object,
typically one that appears in the perceptual buffer.

Icarus beliefs are instances of generalized concepts
that reside in conceptual memory , which contains long-
term structures that describe classes of environmental
situations. The formalism that expresses these logical
concepts is similar to that for Prolog clauses. Like
beliefs, Icarus concepts are inherently symbolic and
relational structures. Each clause in conceptual mem-
ory includes a head that gives the concept’s name and
arguments, along with a body that states the condi-
tions under which the clause should match against the
contents of short-term memories.

The architecture’s most basic activity is conceptual
inference. On each cycle, the environmental simulator
returns a set of perceived objects, including their types,
names, and descriptions in the format described earlier.
Icarus deposits this set of elements in the perceptual
buffer, where they initiate matching against long-term
conceptual definitions. The overall effect is that the
system adds to its belief memory all elements that are
implied deductively by these percepts and concept def-
initions. Icarus repeats this process on every cycle, so
it constantly updates its beliefs about the environment.

The inference module operates in a bottom-up, data-
driven manner that starts from descriptions of per-
ceived objects. The architecture matches these percepts
against the bodies of primitive concept clauses and adds
any supported beliefs (i.e., concept instances) to belief
memory. These trigger matching against higher-level
concept clauses, which in turn produces additional be-
liefs. The process continues until Icarus has added to
memory all beliefs it can infer in this manner. Although
this mechanism reasons over structures similar to Pro-

log clauses, its operation is closer to the elaboration
process in the Soar architecture (Laird et al., 1987).

For example, for the in-city driving domain, we pro-
vided Icarus with 41 conceptual clauses. On each cy-
cle, the simulator deposits a variety of elements in the
perceptual buffer, including percepts for the agent it-
self (self ), street segments (e.g., segment2), lane lines
(e.g., line1), buildings, and other entities. Based on
attributes of the object self and one of the segments,
the architecture derives the primitive concept instance
(in-segment self segment2). Similarly, from self and
the object line1, it infers the belief (in-lane self line1).
These two elements lead Icarus to deduce two non-

primitive beliefs, (centered-in-lane self segment2 line1)
and (aligned-with-lane-in-segment self segment2 line1).
Finally, from these two instances and another belief,
(steering-wheel-straight self), the system draws an even
higher-level inference, (driving-well-in-segment self seg-
ment2 line1). Other beliefs that encode relations among
perceived entities also follow from the inference process.

Icarus’ conceptual inference module incorporates a
number of key ideas from the psychological literature:

• Concepts are distinct cognitive entities that humans
use to describe their environment and goals; more-
over, they support both categorization and inference;

• The great majority of human categories are grounded
in perception, making reference to physical charac-
teristics of objects they describe (Barsalou, 1999);

• Many human concepts are relational in nature, in
that they describe connections or interactions among
objects or events (Kotovsky & Gentner, 1996);

• Concepts are organized in a hierarchical manner,
with complex categories being defined in terms of
simpler structures.

Icarus reflects each of these claims at the architectural
level, which contrasts with most other architectures’
treatment of concepts and categorization.

However, we will not claim our treatment is complete.
Icarus currently models concepts as Boolean struc-
tures that match in an all-or-none manner, whereas
human categories have a graded character (Rosch &
Mervis, 1975). Also, retrieval occurs in a purely bottom-
up fashion, whereas human categorization and inference
exhibits top-down priming effects. Both constitute im-
portant directions for extending the framework.

Goals, Skills, and Execution

We have seen that Icarus can utilize its conceptual
knowledge to infer and update beliefs about its sur-
roundings, but an intelligent agent must also take ac-
tion in the environment. To this end, the architec-
ture includes additional memories that concern goals
the agent wants to achieve, skills the agent can execute
to reach them, and intentions about which skills to pur-
sue. These are linked by a performance mechanism that
executes stored skills, thus changing the environment
and, hopefully, taking the agent closer to its goals.

In particular, Icarus incorporates a goal memory
that contains the agent’s top-level objectives. A goal is
some concept instance that the agent wants to satisfy.
Thus, goal memory takes much the same form as belief
memory, in that each element specifies a predicate de-
fined in conceptual memory followed by its arguments.
One important difference is that goals may have as ar-
guments either specific objects, as in (in-lane self line1),
pattern-match variables, as in (in-lane ?x ?y), or some
mixture, as in (in-lane self ?line). Also, goal memory
may contain negated structures, whereas belief memory
includes only positive elements. Because goals always
refer to predicates defined in the conceptual memory,
goal literals can indicate the agent’s objectives at dif-



ferent levels of detail. Some goals may refer to primitive
concepts stated in terms of percepts, while others may
mention predicates far higher in the concept hierarchy.

Because goal memory may contain multiple elements,
Icarus must address the issue of cognitive attention.
The architecture makes the common assumption that
an agent can focus on only one goal at a time, which
means that it must select among those in memory.
Icarus treats the contents of goal memory as an or-
dered list. On each cycle, it finds the goal with the
highest priority that is unsatisfied and makes it the fo-
cus of cognitive attention, even if this means dropping
a goal that was being pursued on the previous cycle. If
all goals are satisfied, then the system has no focus on
that cycle, although this may change later, leading the
agent to refocus on goals that it achieved previously.

Icarus stores knowledge about how to accomplish its
goals in a long-term skill memory that contains skills it
can execute in the environment. These take a form sim-
ilar to conceptual clauses but have a somewhat different
meaning because they operate over time and under the
agent’s intentional control. Each skill clause includes
a head that states the skill’s objective, along with a
body which specifies the perceptual entities that must
be present, the concepts that must match to initiate the
clause, and the concepts that must match to continue
its execution. Primitive skill clauses refer to actions
that the agent can execute directly in the environment.
These play the same role as operators in AI planning
systems but can be durative in nature. In contrast, non-
primitive clauses refer to subgoals, cast as conceptual
literals, that the agent should achieve in order.

One of Icarus’ important theoretical commitments
is that the head of each skill clause denotes a concept
the clause will achieve if executed to completion. This
strong connection between skills and concepts figures
centrally in the architecture’s performance and learning
mechanisms. A skill clause may have either a positive
head, which specifies a concept that will become sat-
isfied once the skill has been executed to completion,
or a negated head, which indicates a concept that will
become unsatisfied upon the skill’s completion. This
distinction makes sense for skill clauses because they
are about carrying out action to achieve goals, which
may themselves be positive or negative. Multiple skill
clauses may have the same heads; these specify different
ways to achieve the same goal under distinct conditions.

Once Icarus has chosen an unsatisfied goal to
achieve, the execution module selects skill clauses that
it believes will help toward this end. Because the ar-
chitecture can execute directly only primitive skills, it
must find a path downward from this goal to some ter-
minal node in the skill hierarchy. A skill path is a list of
instantiated skill clauses, in which each clause head is a
subgoal of the one that precedes it in the path. The ex-
ecution module only considers paths in which each skill
clause is applicable given its current beliefs. A clause is
applicable if, for its current variable bindings, its head
is not satisfied, its requirements are satisfied, and, if

the system did not execute it on the previous cycle, the
start conditions match the contents of belief memory.

Determining whether a given skill clause is applica-
ble relies on the same match process utilized in con-
ceptual inference and goal satisfaction. Matching the
percepts, start conditions, and requirements fields of a
skill involves comparing the generalized structures to
elements in the perceptual buffer and belief memory, as
does matching the clause head. The key difference is
that variables in the head are typically already bound
because a clause invokes its subgoals with arguments
that are mentioned elsewhere in its body. This reflects
the top-down nature of Icarus’ skill selection process.

Once the architecture has selected a path for exe-
cution, it invokes the instantiated actions included in
the final (primitive) skill clause. These alter the envi-
ronment, which in turn produces a different perceptual
buffer on the next cycle and a different set of inferred
beliefs. Given a choice among applicable paths, Icarus

selects the one that shares the most elements from the
start of the path selected on the previous cycle. This
bias encourages the agent to keep executing a high-level
skill that it has started until it achieves the associated
goal or becomes inapplicable. Otherwise, given a choice
between ordered subgoals, it selects the first one for
which the head is unsatisfied. This bias supports reac-
tive control, since the agent reconsiders achieved sub-
goals and, if unexpected events have made them untrue,
reinvokes them to correct the situation.

In the driving domain, we provided Icarus with
19 primitive skill clauses and 20 nonprimitive clauses
for basic car-handling abilities. When given the single
goal (in-segment self segment2), the system selects this
structure as the focus of attention and attempts to find
an applicable skill path that will achieve it. The ex-
ecution module retrieves a skill clause with the same
predicate as the goal and start conditions that, after
substituting variable bindings, are satisfied. The first
instantiated subgoal of this clause, (in-intersection-for-
right-turn self int3 line1), matches against the head of
another clause that has two subgoals, (in-rightmost-
lane self line1) and (in-intersection-for-right-turn self
int3 line1). Icarus selects the first subgoal, since it
has not yet been achieved, and considers its first sub-
goal, (driving-in-segment self segment1 line1), where
segment1 is to the left of segment2. This clause has
(in-lane self line1) as an instantiated subgoal, which
terminates the path by matching the head of a primi-
tive skill clause with the action *steer-right . No others
are applicable, so Icarus selects this one for execution,

The module for skill execution builds directly on
Icarus’ mechanism for goal processing, in that the for-
mer uses the latter to determine when goals and sub-
goals have been achieved and which goal stack to focus
upon. Both components in turn depend on conceptual
inference to produce the beliefs they compare against
goals and skill conditions. The modules are highly inter-
dependent, making Icarus an example of what Newell
(1990) has called a unified cognitive architecture.



Icarus’ execution module is consistent with addi-
tional psychological claims, most of them so obvious
that they seldom appear in the literature:

• Humans can deal with multiple goals, some having
priority over others, which can lead to interrupted
tasks to which attention later returns;

• Skill execution supports complex activities that peo-
ple report, and our educational system assumes, have
hierarchical organization (Rosenbaum et al., 2001);

• Humans can carry out open-loop sequences (e.g.,
playing a piano piece) but they can also operate in
closed-loop reactive mode (e.g., while driving);

• The same generic skill may be applied to distinct
objects, provided these objects satisfy conditions for
the skill’s application.

In summary, the architecture takes into account a num-
ber of widespread beliefs about human cognitive skills.
However, it does not explain other important behaviors
that we should address in future work, such as limited
abilities for parallel execution, the generation and aban-
donment of top-level goals, and the common forgetting
of interrupted tasks.

Problem Solving and Skill Learning

Icarus’ ability to execute hierarchical skills in an envi-
ronment is sufficient when the agent has stored strate-
gies for the goals and situations it encounters, but hu-
mans can also respond adaptively to cases in which they
lack such procedures. Thus, the architecture also in-
cludes a module for achieving its goals through problem
solving, which involves dynamically composing known
skills into plans and executing these structures.

This capability requires an extension to the goal
memory that replaces individual structures with goal
stacks . Each stack contains a list of elements, the last
of which encodes information related to the agent’s top-
level goal. In familiar situations, the stack never con-
tains more than this element, since the execution mod-
ule can rely entirely on its long-term skills. However,
in less routine settings the goal stack varies in depth as
the problem solver adds and removes subgoals. On any
cycle, the first element in the list contains information
about the current goal, which drives behavior.

Icarus invokes its problem solver whenever it en-
counters an impasse, which occurs on any cycle in which
it cannot retrieve an applicable skill path that would
achieve the current goal. On each cycle, the system
checks whether the current goal G on the goal stack
has been achieved. If so, then the module pops the
stack and addresses G’s parent goal or, upon achieving
the top-level goal, considers the next one in priority. If
the current goal G is unsatisfied, it retrieves skills with
heads that match G, selects a candidate at random, and
stores it with G as an intention. If the problem solver
finds no skill clauses that would achieve the goal G, it
uses G’s concept definition to decompose it into sub-
goals. If more than one subgoal is unsatisfied, Icarus

selects one at random and pushes it onto the stack.

The problem-solving strategy we have just described
is a version of means-ends analysis (Newell & Simon,
1961; Carbonell et al., 1990). However, its behavior dif-
fers somewhat from the standard formulation in that it
is tightly integrated with the execution process. Icarus

chains backward off concept or skill definitions when
necessary, but it executes the skill associated with the
current stack entry when it becomes applicable. More-
over, because the architecture can chain over hierar-
chical reactive skills, their execution may continue for
many cycles before problem solving resumes.

For example, when we give Icarus only 19 primi-
tive skills for driving and the goal (in-segment self seg-
ment2), it cannot find any applicable skill path that
would achieve the goal. Upon encountering this im-
passe, the system resorts to problem solving, which re-
trieves skills that would achieve it if only they were ap-
plicable. The module finds a skill clause with the pred-
icate in-segment in its head that would serve, but its
instantiated start condition, (in-intersection-for-right-
turn self int3 line1) is unsatisfied, so it pushes this onto
the goal stack. The problem solver retrieves another
skill clause with a head that matches this subgoal, but
its start condition, (in-rightmost-lane self line1), also
does not hold, so it becomes the next subgoal.

Because Icarus has no skills that would achieve this
literal, it chains off the concept in-rightmost-lane’s defi-
nition. Only one of the instantiated concepts, (driving-
in-segment self segment1 line1), is unsatisfied, so the
means-ends module pushes it onto the goal stack, then
repeats the process with the literal (in-lane self line1)
through additional concept chaining. In this case, the
system finds an applicable skill clause that will achieve
the subgoal directly, which it executes in the environ-
ment. After several cycles, Icarus achieves the sub-
goal, pops the stack, and returns attention to its par-
ent, (driving-in-segment self segment1 line1). After sat-
isfying other subgoals in a similar manner, the module
pops this goal and considers its parent. This process
continues until the agent achieves the top-level goal.

Although Icarus’ problem solver lets it overcome im-
passes and achieve goals for which it has no stored skills,
the process can require considerable search and back-
tracking. For this reason, the architecture includes a
final module that learns from solved problems so that,
when it encounters similar situations, no impasse will
occur. When the agent achieves a goal G by chaining
off a skill clause with head B, which in turn required
achieving its start condition A, Icarus constructs a
new skill clause with the head G, the ordered subgoals
A and B, and the same start condition as that for the
first subskill. When the agent achieves a goal G through
concept chaining, the system creates a skill clause with
head G, with subgoals based on G’s subconcepts in the
order it achieved them, and with start conditions based
on those subconcepts satisfied at the outset.

Because means-ends analysis decomposes problems
into subproblems, these mechanisms lead naturally to
the formation of skill hierarchies (Langley & Choi,



2006). Also, because Icarus utilizes the goal achieved
during each impasse as the head of the learned clause,
it can produce disjunctive skills and, whenever a goal
concept appears as one of its own subgoals, to recursive
structures. Although the architecture shares the idea
of learning from impasses with Soar and Prodigy, the
process is simpler, in that it draws on local goal-stack
information that is needed for problem solving anyway.

From the successful problem-solving episode in the
driving domain discussed earlier, Icarus extracts five
new skill clauses. For example, based on skill chaining
from the highest-level goal, (in-segment self segment2),
it learns a clause with two subgoals, intersection-for-
right-turn and in-segment, the second involving a re-
cursive call with the same arguments. The start condi-
tions for this new clause are taken from the start con-
ditions for the skill clause the agent used to achieve
the first subgoal. Based on chaining from the concept
definition for (driving-in-segment self segment1 line1),
Icarus constructs a new skill clause with four subgoals,
the first of which refers to the predicate in-lane. The
start condition includes the concepts in-segment and
steering-wheel-straight, since these held when the sys-
tem began on this subproblem. The acquired struc-
tures let the agent change lanes, align itself, and turn a
corner to reach a desired segment by invoking the exe-
cution module but without calling the problem solver.

As we have seen, Icarus interleaves problem solving
with execution, which means the former builds upon the
latter. The means-ends module also draws on mecha-
nisms for goal processing to determine when subgoals
have been achieved. The architecture’s learning meth-
ods in turn rely on problem solving, both to signal op-
portunities for skill acquisition and to provide material
for constructing new clauses. These interdependencies
constitute further evidence that Icarus moves beyond
integration to provide a unified account of cognition.

Moreover, Icarus’ approach to problem solving and
learning incorporates other key ideas from psychology:

• Humans often resort to means-ends analysis to solve
unfamiliar problems (Newell & Simon, 1961);

• Problem solving often occurs in a physical context,
with humans interleaving mental problem solving
with execution (Gunzelmann & Anderson, 2003);

• Efforts to overcome impasses during problem solving
can lead to the incremental acquisition of new skills
(Anzai & Simon, 1979);

• Learning can transform backward-chaining heuristic
search into more informed forward-chaining behavior
(Larkin et al., 1980).

These ideas have been modeled in other frameworks but
Icarus incorporates them into the architecture, mak-
ing stronger theoretical claims than its predecessors.

However, the current version is inconsistent with
other important phenomena. The problem solver car-
ries out depth-first search, whereas human short-term
memory cannot suport such systematic methods, and it
also utilizes a strict goal stack, whereas recent evidence

suggests more flexible structures. Moreover, Icarus

supports only backward-chaining search, whereas in
complex domains like chess, humans also exhibit pro-
gressive deepening (de Groot, 1978), which involves lim-
ited forward chaining. Finally, the system learns only
from success, when it achieves goals, whereas people
can also learn from failure. Future versions of the ar-
chitecture should address each of these shortcomings.

Comparison to Other Architectures

Icarus has much in common with previous cognitive
architectures like Soar (Laird et al., 1987) and ACT-R
(Anderson, 1993). Like its predecessors, the framework
makes commitments about memories, representations,
and cognitive processes that support intelligent behav-
ior. Some shared assumptions include claims that:

• dynamic short-term memories are distinct from long-
term memories, which store more stable content;

• both forms of memory contain modular elements
that are composed during performance and learning;

• memory elements are cast as symbolic list structures,
with those in long-term memory being accessed by
matching their patterns against short-term elements;

• cognitive behavior occurs in cycles that retrieve and
instantiate long-term structures, then use selected
elements to carry out mental or physical actions; and

• learning is incremental and interleaved with perfor-
mance, with structural learning involving monotonic
addition of symbolic elements to long-term memory.

These ideas have their origins in theories of human
memory, problem solving, and skill acquisition. They
are widespread in research on cognitive architectures
but relatively rare in other parts of artificial intelligence.

Despite these similarities, Icarus also incorporates
some theoretical claims that distinguish it from most
other architectures. These include assumptions that:

• cognition occurs in a physical context, with mental
structures being grounded in perception and action;

• concepts and skills encode different aspects of knowl-
edge that are stored as distinct cognitive structures;

• each element in a short-term memory has a corre-
sponding generalized structure in long-term memory;

• long-term memories have hierarchical organizations
that define complex structures based on simpler ones;

• conceptual inference and skill execution are more ba-
sic than problem solving, which uses these processes;

These ideas separate Icarus from most architectures
that have been developed within the Newell tradition.
We will not argue that they make it superior to earlier
frameworks, but we believe they make it an interesting
alternative within the space of candidate architectures.

Many of these claims involve matters of emphasis
rather than irreconcilable differences. Soar and ACT-R
have been extended to interface with external environ-
ments, but both focused initially on central cognition,
whereas Icarus began as an architecture for reactive
execution and highlights physical interaction. ACT-R



states that elements in short-term memory are active
versions of structures in declarative memory, but does
not make Icarus’ stronger claim that the former must
be instances of general concepts. Soar incorporates an
elaboration stage similar to our conceptual inference,
but it lacks an explicit conceptual hierarchy. ACT-R
programs often include rules that match against goals
and set subgoals, whereas Icarus elevates this idea to
an architectural principle. These similarities reflect an
underlying concern with similar issues, but they also re-
veal distinct philosophies about how to approach them.

Our framework also shares some assumptions with
BDI architectures, which give central roles to beliefs,
desires, and intentions. Research in this paradigm has
also focused on hierarchical procedures for physical ac-
tion, but has typically relied on handcrafted structures
and made limited contact with ideas from psychology.
Bonasso et al.’s (2003) 3T architecture combines plan-
ning with reactive control and Freed’s (1998) APEX
architecture aims to model human behavior, but nei-
ther accounts for skill acquisition. Icarus shares other
features with Carbonell et al.’s (1990) Prodigy, which
uses means-ends analysis to solve problems and learns
control knowledge to reduce search. Finally, our frame-
work has links to Clarion (Sun et al., 2001), which
also distinguishes between knowledge used for action
and inference, and which learns skills from experience.

Concluding Remarks

In summary, Icarus is a cognitive architecture for
physical agents that combines some familiar mecha-
nisms in novel ways. The framework includes mod-
ules for conceptual inference, goal selection, skill exe-
cution, means-ends problem solving, and skill learning.
Higher levels of processing rely heavily on the results of
lower levels, making Icarus an example of what Newell
(1990) refers to as a unified theory of cognition. The
framework is also consistent with many well-established
views about the nature of human cognitive processing.

We illustrated the architecture’s mechanisms with
examples related to in-city driving, a domain that
combines the need for extended activity with reactive
control. Elsewhere we have reported Icarus models
for more traditional cognitive tasks, including multi-
column subtraction, the Tower of Hanoi, and various
planning domains, which together provide evidence of
the framework’s generality. We have also reported ex-
periments that demonstrate its learning method’s abil-
ity to transform problem solving into routine execution.

However, we have already noted some important di-
mensions on which we should extend the framework to
better match knowledge of human behavior. Other im-
portant omissions include the ability to store and access
episodic memory, to acquire and refine concepts, and to
use hierarchical skills for interpreting other agents’ be-
haviors. We believe the architecture provides natural
ways to address these issues, and their inclusion should
let Icarus offer a more complete account of cognition.

Acknowledgements
This paper reports research sponsored by DARPA un-
der agreement FA8750-05-2-0283. The U. S. Govern-
ment may reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyrights. The
authors’ views and conclusions should not be inter-
preted as representing official policies or endorsements,
expressed or implied, of DARPA or the Government.

References

Anderson, J. R. (1993). Rules of the mind . Hillsdale,
NJ: Lawrence Erlbaum.

Anzai, Y., & Simon, H. A. (1979). The theory of learn-
ing by doing. Psychological Review , 86, 124–140.

Barsalou, L. W. (1999). Perceptual symbol systems.
Behavioral and Brain Sciences , 22 , 577–609.

Bonasso, R. P., Kortenkamp, D., & Thronesbery, C.
(2003). Intelligent control of a water recovery system:
Three years in the trenches. AI Magazine, 24 , 19–44.

Carbonell, J. G., Knoblock, C. A., & Minton, S. (1990).
Prodigy: An integrated architecture for planning
and learning. In K. Van Lehn (Ed.), Architectures
for intelligence. Hillsdale, NJ: Lawrence Erlbaum.

de Groot, A. D. (1978). Thought and choice in chess
(2nd Ed.). The Hague: Mouton Publishers.

Freed, M. (1998). Managing multiple tasks in complex,
dynamic environments. Proceedings of the National
Conference on Artificial Intelligence (pp. 921–927).

Gunzelmann, G., & Anderson, J. R. (2003). Problem
solving: Increased planning with practice. Cognitive
Systems Research, 4 , 57–76.

Kotovsky, L., & Gentner, D. (1996). Comparison and
categorization in the development of relational simi-
larity. Child Development , 67 , 2797–2822.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence. Arti-
ficial Intelligence, 33 , 1–64.

Langley, P., & Choi, D. (2006). Learning recursive con-
trol programs from problem solving. Journal of Ma-
chine Learning Research, 7 , 493–518.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon,
H. A. (1980). Expert and novice performance in solv-
ing physics problems. Science, 208 , 1335–1342.

Newell, A. (1990). Unified theories of cognition. Cam-
bridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1961). GPS, A program
that simulates human thought. In H. Billing (Ed.),
Lernende automaten. Munich: Oldenbourg KG.

Rosch, E., & Mervis, C. B. (1975). Family resemblance:
Studies in the internal structure of categories. Cog-
nitive Psychology , 7 , 573–605.

Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O.
(2001). Acquisition of intellectual and perceptual-mo-
tor skills. Annual Review of Psychology , 52 , 453–470.

Sun, R., Merrill, E., & Peterson, T. (2001). From impli-
cit skills to explicit knowledge: A bottom-up model
of skill learning. Cognitive Science, 25 , 203–244.


