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Abstract  
This chapter introduces explainable agents, which communicate the reasons behind their activities, and 
identifies three types of self explanations – structural, preference, and process – that store different forms 
of content about agent decisions. In addition, it considers three component abilities – indexing, retrieval, 
and transmission – that are required to communicate this stored content. Finally, it examines normative 
agents, which attempt to follow their society’s maxims, and justified agents, which explain their actions in 
terms of such norms. The chapter also presents hypotheses about when different forms of self explanation 
will be most useful and about relations among explainable, normative, and justified agency. 

Introduction 

Intelligent systems are becoming more widely adopted for critical tasks like driving cars and controlling 
military robots. Naturally, increased reliance on such devices has led to concerns about the interpretability 
of their complex behavior. Before people will fully trust such autonomous agents, they must be able to 
explain their decisions so that we can gain insight into their operation. There is now a substantial literature 
on explanation in systems that learn from experience, but it has focused on tasks like object recognition and 
reactive control, typically using opaque encodings of expertise that lend themselves only to shallow 
elucidation, as in ‘heat maps’ that display activation levels. 
 
However, we also need research on explanation for more complex tasks that involve multi-step decision 
making, such as the generation and execution of plans. Approaches to these problems rely on high-level 
representations that are themselves easily interpreted, but challenges arise in communicating solutions that 
combine these elements and the reasons they were chosen. In this chapter, I focus on such settings. Some 
work on explanation, especially with opaque models, has dealt with post hoc rationalizations of behavior, 
rather than the actual reasons for it. In the pages that follow, I concentrate on the latter. Moreover, I will 
focus on self explanations, that is, the reasons the explaining agent carried out certain activities. Elsewhere 
(Langley, 2019), I have referred to this ability as explainable agency.1 

 
We can specify the task of explainable agency in generic terms. Given domain knowledge for generating 
task solutions and criteria for evaluating candidates, the agent attempts to find one or more solutions. After 
generating, and possibly executing, these solutions, a human asks the agent to clarify its decisions, at which 
point it must share its reasoning in comprehensible terms. One example involves an intelligent robot that 
plans and executes a reconnaissance mission, after which it takes part in an ‘after-action review’ where it 

 
1This problem is arguably less challenging than postulating the reasons that another agent behaved as it did, sometimes called 
plan recognition, as the system can store and access traces of its own decision making. 
 



answers questions from a human supervisor. There has been some research on such explainable planning 
(Fox et al., 2017; Smith, 2012; Zhang et al., 2017), but we need more effort devoted to this important topic.  
 
In the sections that follow, I discuss different senses of the term ‘explanation’ and consider some factors 
that arise when representing such structures. Next, I discuss three types of self explanation, along with 
approaches to indexing, retrieving, and transmitting them. After this, I introduce the notion of normative 
agency, which takes social maxims into account during decision making, and justified agency, which 
explains choices in terms of social norms. Along the way, I also propose some hypotheses about self 
explanation that merit further study. 

Aspects of Explanation 

Two aspects of human explanations place constraints on AI approaches to replicating their generation. First, 
they invariably involve some form of cognitive structure that relates items of interest. For instance, a 
diagnosis links observed symptoms to hypothesized problems, often through multiple steps. Second, these 
structures typically comprise elements of knowledge that have been instantiated for the task at hand. Thus, 
the steps in a diagnosis might be instances of generic rules that relate symptoms to causes. Explanatory 
structures vary along a number of dimensions. They may be entirely qualitative, as in a geometry proof, or 
they may include quantitative annotations, as in the solution to a physics word problem. Accounts also 
differ in their complexity (e.g., the number of knowledge elements) and their depth (e.g., the length of 
reasoning chains). Nevertheless, they share many features that one can discuss in general terms.  
 
We should distinguish between two uses of ‘explanation’ that commonly appear in English. The word 
sometimes refers to a mental, written, or spoken structure that serves to elucidate some phenomena or 
behaviors. Thus, we refer to a scientific explanation of pulsar cycles, a mechanical explanation of how a 
toilet flushes, or an introspective explanation for one’s home-buying decision. In other cases, the term 
denotes the process or activity of generating such an explanatory structure. We say that an astrophysicist 
engages in explanation of pulsar behavior, a plumber focuses on explanation of a leak, or a home buyer 
carries out explanation of his residential choice. This chapter will use both senses of the term, but its 
meaning should be clear from the context in which it appears. 
 
We can further differentiate between two specializations of explanatory processes. The first refers to the 
construction of accounts for observed situations or events. A geologist posits a set of processes for the 
origin of a landform, a reader infers the goals of a novel’s character, and a home buyer records the reasons 
for his decisions. The result is a cognitive structure in the explainer’s own mind. The second meaning 
instead deals with the communication of such mental structures once they exist. The geologist presents a 
talk about his account of a landform’s evolution, the reader shares with a friend his guesses about the 
character’s motivations, and the home buyer tells his partner why he favors one house over others. This 
second sense applies not only to sharing accounts of external events, but also to communicating why one 
made a given decision or generated a particular plan. Thus, it includes the process of self explanation, the 
important specialization on which I will concentrate here. 

Representing Explanations 

We have seen that explanations are cognitive structures an intelligent system can construct or communicate, 
so both their form and content merit discussion. Such accounts link a set of observations or decisions to 



each other through a set of relations that serve as connective tissue. Explanations invariably draw on 
background knowledge, typically at the domain level (e.g., how refrigerators operate, regulations about 
driving) but they sometimes involve the meta level (e.g., conventions of dialogue). However, they do not 
incorporate generalized knowledge elements themselves, but rather refer to instances of such knowledge 
elements that connect facts or queries to each other. 
 
In rule-based frameworks, explanations are organized as one or more proof trees with shared subproofs, 
where each rule instance links observed or inferred beliefs (e.g., Ng & Mooney, 1990). For instance, an 
account for why an automobile does not start might connect observed behaviors through instantiated rules 
that describe a generic car’s operation (e.g., Reiter, 1987). In script and frame paradigms, the knowledge 
elements are large enough that some accounts involve a single instantiated structure, although they can 
combine more than one (e.g., Shrager, 1987). An explanation can also involve an analogy, where knowledge 
corresponds to stored cases (linked facts), one of which maps onto elements of the new situation. Any 
formalism (e.g., rules, scripts, frames, or cases) that encodes knowledge structures can serve in this 
capacity. 
 
In addition, explanations can differ in the ontological character of the knowledge elements on which they 
draw. These may denote logical relations, like those in geometry proofs, but they may also incorporate 
numeric calculations, as arise in solutions to textbook physics problems (e.g., VanLehn & Jones, 1993). 
Moreover, the knowledge elements can include likelihood information, as in the rules of a probabilistic 
context-free grammar. In such frameworks, explanations can have the same organization as in logical ones 
(e.g., proof trees), but they attach probabilities to constituents. Knowledge structures may also have a causal 
interpretation, which can be either deterministic (e.g., a broken wire leads a starter to fail) or stochastic 
(e.g., a loose wire sometimes causes failure). Accounts that focus on an agent’s behavior may be teleological 
in that they refer to the goals that guide its decisions and actions (e.g., Meadows, Langley, & Emery, 2014). 
Other explanations involve predictable patterns that lack further justification; many social norms and 
conventions (e.g., expected behavior in churches or restaurants) take this form. 
 
Finally, facts can play two distinct roles in explanatory structures, as Langley and Meadows (2019) have 
noted. In derivational explanations, observations serve as root nodes in a set of connected proof trees, while 
rule instances or other instantiated knowledge structures show how they follow from other facts and 
assumptions. Many scientific explanations adopt this scheme, as do causal diagnoses and teleological plans. 
In associative explanations, observed beliefs appear only as terminal nodes, which let one deduce new 
beliefs that follow from these facts. Such accounts use instantiated knowledge structures to connect 
observations to each other, but not to derive them. Parse trees for sentences are classic instances of this 
paradigm, but script-based interpretations of stories also illustrate the idea. This distinction is less relevant 
to self explanations, our focus here, as agents have access to their reasoning chains, but some (e.g., plans) 
have a hierarchical or derivational structure, whereas others (e.g., schedules) are relational but 
nonhierarchical. 
  



Varieties of Self Explanation 

With these points in mind, we can now examine three forms of self explanation2 and how they differ. Efforts 
to develop new AI functionality often start with a cognitive task analysis that identifies component abilities. 
Elsewhere (Langley, 2019) I have proposed four such abilities that underlie explainable agency:  

• Generating decision-making content. When carrying out problem solving, the agent must consider 
different candidate solutions, evaluate them, and select which ones to pursue. 

• Indexing generated content. When making decisions, the agent must store and index details about its 
choices in an episodic memory or similar repository. 

• Retrieving stored content. After it has solved a problem, the agent must transform questions into cues 
that let it retrieve relevant information from this memory. 

• Transmitting retrieved content. Once it has retrieved this information, the agent must translate the 
results into an understandable form and convey it to others. 

All approaches to explainable agency must draw on their generated content, which in turn influences their 
downstream processing. Thus, it makes sense to discuss in some detail not the mechanisms involved in the 
first stage of processing, but instead the results they produce. 

Structural Explanations 

One form of self explanation – structural – clarifies how a collection of steps is rational in Newell’s (1982) 
sense that an agent believes they could help achieve its goals. For instance, a plan incorporates a sequence 
of actions that, if carried out, should produce an end state that satisfies some goal description while not 
violating any known constraints. Thus, a route for driving must include contiguous segments from the 
starting point to the target destination. The explanatory structure shows how the steps link the goals or 
query to the initial situation through knowledge: it focuses on the means of achieving objectives. We can 
specify the generic task of explaining the qualitative structure of a problem solution in terms of inputs and 
outputs: 

• Given: A solution to a problem that specifies steps linking the initial state to the goal description; 
• Given: Domain knowledge that defines the problem space in which the agent sought solutions; 
• Given: A query about whether or why the candidate is acceptable or about the role played by given 

steps; 
• Produce: An explanation for why the candidate is or is not acceptable or how given steps aid the 

solution. 

Structural explanations need not focus on successful solutions; they can also clarify why a candidate does 
not resolve the problem. Note that this formulation does not mention how the agent generated its reasoning 
chain and concerns only its logical or causal structure. 
 
The details of a structural explanation depend on the problem-solving strategy that generates it. For 
example, many planners find a sequence of actions that transform the initial state into one that satisfies the 
goal description, with each step moving closer to the objective. Other systems create partial-order plans 
that specify which actions must occur before others and which do not, giving a finer-grained analysis of 

 
2Another important variety addresses how the agent revised a plan during execution because unexpected events occurred. 
 



causal dependencies. Deductive proofs specify how a conclusion follows logically from a set of given facts 
through chains of inference steps. Each explanation type describes structural dependences among their 
elements and each has a recursive character in which subgraphs are themselves explanations. Storage 
happens during construction, with the causal or logical links serving as building blocks. 
 
The character of structural explanations has implications for later stages of processing. This lets the agent 
answer questions like Why did you take action A?, How did you achieve goal G?, and Why did you do A 
before B?, but requires appropriate indexing, retrieval, and transmission.3 For instance, given a partial order 
plan, one might index actions by the goals or subgoals they achieve and by their matched conditions. When 
asked a question about the role an action plays in a given plan, the agent translates the query into a retrieval 
cue, maps it to an appropriate index, and returns the retrieved structure. Finally, the transmission process 
converts this content into natural language, a diagram, or other format to provide an answer. This may 
invoke templates associated with different question types and instantiate them as needed, producing a 
response like I turned left from Main onto Campus so I would be heading north on Campus. 
 
The AI literature includes some relevant research on these topics. For instance, work on analogical planning 
(e.g., Jones & Langley, 2005; Veloso et al., 1995) has addressed generation, storage, and retrieval, but not 
their use for self explanation. Some expert systems recorded their reasoning and played them back on 
request (Clancey, 1983; Swartout et al., 1991), while Johnson (1994) and van Lent et al. (2004) developed 
agents that recorded their decisions during execution of military missions and later answered questions 
about their reasoning, including what they would have done in counterfactual scenarios. In other work, 
Bench-Capon and Dunne (2007) adapted computational models of argument to explain how alternative 
conclusions are supported or contradicted by available evidence, whereas Briggs and Scheutz (2015) 
reported an interactive robot that gives five types of reasons why it cannot carry out a task. 

Preference Explanations 

A second form of self explanation focuses on the desirability of solutions that an agent’s finds, without 
concern for their internal structures. This is especially relevant for tasks like route finding and job 
scheduling that have many possible solutions, some of which are more desirable than others. We can state 
the task of explaining such preferences more precisely in terms of inputs required and the outputs it 
produces: 

• Given: A set of solutions that the agent has generated for some decision-making task; 
• Given: Domain knowledge that defines a problem space of candidate solutions and their quality; 
• Given: A query about why the agent ranks a given solution above other candidates; 
• Produce: An explanation for why the agent prefers that solution over alternatives. 

This activity is quite different from explaining how the component steps of a plan or derivation achieve 
some goal. Rather, it more closely resembles the task addressed by recommender systems, which often 
produce a ranked list of candidates for users to consider. 
 

 
3In this chapter, I focus on indexing and retrieval of elements for a specified task, rather than dealing with cases in which 
the agent must access structures from a memory that stores results for many distinct problems. 
 



The distinction between structural and preference explanations is not a matter of granularity, but whether 
one cares about means of reaching results or about their overall quality. To clarify this point, consider a 
travel planner that finds multiple routes for reaching some target location. A structural account would store, 
for each route, the road segments and turns that lead from the start to end point, including how each step 
enables the next one. In contrast, a preference explanation would describe each candidate route in terms of 
driving distance, number of traffic lights, or other global characteristics. When multiple criteria come into 
play, preference accounts clarify their relative importance and how decisions resolve tradeoffs. They may 
also specify why a candidate’s score did not exceed an acceptability threshold. 
 
The details of this self-explanation ability will depend on how the agent’s scoring and ranking process 
operates. One common method uses a linear utility function that computes each candidate’s score on k 
features, multiplies each score by a weight, and calculates a weighted sum, then orders candidates by this 
total. A second scheme uses a lexicographic function, which orders attributes by importance. Candidates 
are partitioned based on scores for the initial attribute, then ranked within these sets based on the second 
attribute, and so forth, much as words in a dictionary. A third alternative relies on preference rules that rank 
some candidates as better than others, without assigning numeric scores, to give a partial ordering over 
them.  
 
Preference explanations support different types of questions than structural accounts. These include queries 
like Why did you prefer solution X to solution Y?, How did X compare to Y on criterion C?, and Why did X 
not appear in the solution set?. In this case, indexing and retrieval are simple processes, as the agent can 
store values for individual attributes with each solution and retrieve them as needed. As before, the final 
transmission stage can draw on templates that specify forms of answers for alternative types of queries, 
although these will differ from those for structural explanations. They will also depend on whether 
orderings are based on a numeric evaluation function, a lexicographic scheme, or preference rules. For 
instance, to clarify why it favored one solution over another, the agent might unpack calculations for the 
two candidates, note that they tied on the first attribute but that one did better on the second, or report the 
rule responsible for the decision. 
 
This emphasis on preferences does not imply that explanation must deal only with complete solution 
structures. For example, if a planner uses a hierarchical task network to guide its search, then a user should 
be able to question why it selected one subplan for a given subtask rather than an alternative. The same idea 
applies to a system that finds proofs using monotonic inference rules, where a user may ask why it favored 
one subproof over a different candidate that leads to the same intermediate conclusion. The ability to focus 
attention on elements of hierarchical solutions does not necessarily mean that explanations must touch on 
their logical structure or how they were found. Moreover, the same mechanisms for indexing, retrieving, 
and transmitting results can apply to any level of hierarchical explanations. 
 
As noted above, recommender systems often rely on a learned user profile to rank candidate items like 
books or movies, but one can also use such profiles as heuristics to guide search on complex reasoning 
tasks and to rank the solutions. Rogers et al. (1999) applied this idea to route planning, drawing on a user 
profile, represented as weights on complete route features, to find personalized directions in a digital road 
map. Gervasio et al. (1999) adopted a similar approach to personalized scheduling, invoking a user profile, 
encoded as weights on global schedule features, to evaluate candidates and rank solutions. These two efforts 



are interesting because one used best-first search through a space of partial routes, whereas the other used 
repair-space search through a space of complete schedules. This shows that radically different search 
methods can produce the same type of preference accounts. 

Process Explanations 

The final form of self explanation focuses on the processes by which an agent generates its plans or other 
mental structures. This view revolves around the widespread assumption, which had its origins in the 
earliest days of artificial intelligence, that complex cognition requires heuristic search through a problem 
space (Newell & Simon, 1976). This posits that the recipients of explanations are interested in details about 
how the system carried out that search, including which alternatives it considered, why it decided to pursue 
some in favor of others, and even when it decided to change its mind (e.g., by deciding to backtrack). 
 
We can specify the generic task of explaining the problem-solving processes that an agent used to make 
its decisions and generate it solutions as: 

• Given: An annotated search tree that stores options considered and decisions made in problem solving; 
• Given: Domain knowledge that defines a problem space in which the agent seeks solutions; 
• Given: A query about why the agent considered an alternative or made a choice during problem solving; 
• Produce: An explanation for why the agent considered that alternative or made that choice. 

This task formulation is similar in spirit to the generation of think-aloud protocols (Newell & Simon, 1972), 
which gave early insights about human problem solving and which led directly to the creation of early AI 
systems. In this setting, a researcher presents a subject with some problem (e.g., a theorem to prove or a 
puzzle to solve), asking the subject to talk aloud as he works on it. The scientist records this verbal report, 
transcribes it, and analyzes it to understand the subject’s thinking processes. One important difference is 
that our explanation task occurs after problem solving is complete. 
 
As before, the details of process explanations differ considerably depending on the problem-solving 
strategy. For instance, a forward-chaining planner would store actions it considers at each state, including 
the successor states that would result and the order in which each was generated. The system would also 
retain its reasons for pursuing one option before others, as well as reasons for backtracking or declaring 
success. In contrast, a means-ends problem solver would record its reasons for selecting a goal on which to 
focus or an action on which to chain backward. Alternatively, a case-based planner would note why it 
favored one retrieved solution over competitors, why it took certain adaptation steps, and so forth. Even 
within the same framework and given the same goals, different heuristics can guide search down different 
paths. This means that different problem solvers can arrive at the same solutions by divergent trajectories, 
each of which constitutes a separate process account of the agent’s decision making. 
 
Process explanations combine elements of structural and preference accounts, the key difference being that 
they retain decisions about the search effort itself rather than only about solutions. As a result, they support 
questions like Why did you select action A on step S?, How did you achieve goal G on step S?, Why did you 
prefer A over B on step S?, and Why did you backtrack after trying action A?. Note that each of these refers 
to some point in the search process, as the agent may consider the same action or goal in different contexts. 
Thus, the agent must incorporate this information during indexing and retrieval in addition to the cues used 
for structural and preference accounts. There appears to have been little AI research on storing, retrieving, 



and transmitting process explanations either during problem solving or during retrospective reports, 
although studies of verbal protocols (Ericsson & Simon, 1984) offer clues about the mechanisms that 
produce them. 
 
The concern with traces of decision making raises the question of what counts as a legitimate process 
explanation. People are good at generating verbal protocols during problem solving, but they are 
notoriously unreliable at reproducing their reasoning later and instead often provide at least partial 
rationalizations. Such reconstructions are similar to accounts of external events, in that they explain 
incomplete memories in terms of plausible inferences over background knowledge. This form of 
explanation is relevant to modeling humans, but it is less defensible when developing synthetic agents, 
which need not suffer from the same memory limitations. For most applications, researchers can assume 
that process accounts are based on accurate traces based on the decision maker’s actual reasoning and 
conclusions. 

Hypotheses about Explanation Types 

Now that we have identified and characterized three forms of self explanations, we can ask which of them 
is most useful to humans who interact with intelligent agents. Some might argue that process explanations 
are the natural choice, as they provide more details and thus will offer greater insight into an agent’s 
operation. Others might instead hold that structural or preference accounts are inherently superior, because 
people have no need to know how an intelligent system decided on its actions but will care only how it 
achieved the objectives how it ranked the alternative solutions. 
 
I will not take either position, but instead claim that the most appropriate form of self explanation depends 
on its intended purpose. This argument assumes that there are different types of consumers, which leads to 
two hypotheses. We can state the first as: 

• Process explanations will be favored by researchers interested in the details of problem solving. 

This conjecture posits that some users care primarily about the process of finding solutions. This group 
includes cognitive psychologists who want to understand the ways in which an intelligent system mimics, 
or fails to mimic, a human problem solver. Yet it also includes many AI researchers who are concerned 
with the detailed operation of their AI systems, both for debugging purposes and for improving the 
effectiveness of their search mechanisms. 
 
However, not all people who interact with intelligent systems will care about detailed traces of their 
problem-solving behavior. This suggests a second conjecture, which we can state as: 

• Structural and process explanations will be favored by users interested in outcomes of problem solving. 

This group includes end users of autonomous agents who had no role in their development. These are 
analogous to people who use recommender systems but have little idea how they operate, but who still want 
to know why one option was ranked as better than another. But it will also include AI researchers, and even 
psychologists, who are concerned more with the correctness of solutions and the criteria used to evaluate 
them than with the mechanisms used to find them. Preference accounts are likely to be more useful on tasks 
that involve many solutions of differing quality. 



Normative Agency 

Explainable agency is linked to the pursuit of goals, but not all goals are egocentric, which requires us to 
take a slight detour, as humans must operate within their societies. When a hungry person seeks food, he 
buys it rather than stealing it. When a passenger wants to board a bus, she waits in a queue rather than 
cutting in front of others. When a soldier desires sleep, he nevertheless gets up when he hears reveille. In 
other words, people generally follow the norms of their society. These may involve formal laws, military 
orders, informal customs, or moral tenets, but they all influence and canalize behavior in certain directions, 
and we would like intelligent agents to behave in similar ways. We will say that: 

• An intelligent system exhibits normative agency if, to the extent possible, it follows its society’s norms. 

Let us return to the domain of autonomous vehicles. Clearly, we want self-driving cars to obey established 
laws, such as staying within the posted speed limit, driving on the correct side of the road, and stopping at 
red lights. However, we also want them to follow informal customs, such as not cutting in front of other 
vehicles and moving over to let faster ones pass. At the same time, we want them to realize that norms may 
come into conflict and they may need to favor some at the expense of others. 
 
Consider a scenario in which a driver takes a friend with a ruptured appendix to the hospital. He exceeds 
the speed limit, weaves in and out of traffic, slows for red lights but then runs them, and even drives briefly 
on a sidewalk, although he is still careful to avoid hitting other cars or losing control on turns. The driver 
takes these drastic actions because he thinks the passenger’s life is in danger, so reaching medical treatment 
rapidly is more important than being polite to others along the way or obeying routine traffic laws. This 
example of normative agency illustrates that societal norms can conflict with each other and thus requires 
reasoning about tradeoffs. The scenario also reminds us that driving is a far more complex task than simply 
staying on the road and avoiding collisions. 
 
Before intelligent agents can use norms to guide behavior in such a human-like manner, we must first decide 
what content they will encode. One option is to specify what actions the agent should or should not carry 
out in certain classes of situations. This view is closely related to deontological accounts of ethics, 
championed by Kant, which emphasize fulfilling one’s duties or obligations. Another choice is to associate 
different values with distinct states and to favor actions that produce better outcomes. This idea is linked to 
consequentialist approaches to ethics, due originally to Hume, Bentham, and Mill, with utilitarianism an 
important special case. At first glance, these frameworks appear to be competitors, but Spranca, Minsk, and 
Baron (1991) report studies that suggest people use a mixture of deontic and consequentialist methods. 
 
A related issue concerns how an intelligent agent represents such normative content. One approach, adopted 
by Mikhail (2007), specifies moral tenets using logical rules, much as one can do with many formal laws. 
A second alternative is to state norms in terms of numeric value functions, like those used in many game-
playing systems. Rules are often linked to deontic frameworks and value functions to consequentialist ones, 
but one can also apply rules to states and functions to actions. These approaches seem mutually exclusive, 
but Iba and Langley (2011) have shown how they map onto an agent architecture that associates numeric 
values with rule-generated structures. Norms can also specify both prescribed and proscribed actions or 
states (Malle et al., 2015), akin to positive and negated ‘trajectory’ goals.  
 
 



To develop human-like normative agents, the research community must address a number of open issues 
that deserve attention. These include extending intelligent systems to handle: 

• Conditional values. We can easily associate numeric values with normative rules, but some norms may 
only come into play in certain contexts, and their importance may vary with situational factors. Thus, 
we must develop representations for laws, morals, and other norms that specify conditional values or 
utilities. 

• Trade offs among norms. In some cases, norms are incompatible, forcing the agent to decide which to 
obey and which to ignore. We must develop agent architectures that examine the values of relevant 
norms, evaluate trade offs among different choices, and select plans or actions that give better overall 
scores. 

• Mitigating factors. The importance of norms can be altered by other factors that make their violation 
no less serious but more forgivable. We must develop representations of such mitigating factors and 
methods for combining them when making choices about actions. 

• Domain-independent norms. Many norms are domain specific, but others are quite general, like being 
sensitive to a friend’s concerns or avoiding unnecessary emotional harm. These require formalisms for 
beliefs about others’ mental states and ways to combine such constraints with domain-level concerns. 

The AI literature reports some work on such normative reasoning, with the earliest focused on legal 
inference (e.g., Branting, 2000). Equally relevant has been research on machine ethics and moral reasoning 
(e.g., Anderson et al., 2006; Bringsjord et al., 2006; Dehghani et al., 2008; Guarini, 2005; McLaren, 2005). 
Some researchers have developed new representations and mechanisms to support normative judgements 
and decisions, but others (Iba & Langley, 2011; Liu et al., 2013) have treated moral reasoning as a form of 
everyday cognition. Authors have demonstrated their systems on a variety of scenarios, showing that AI 
can address many aspects of legal, moral, and other normative reasoning, but this remains a relatively 
unexplored arena. 

Justified Agency 

Although people can explain their goal-oriented activities, many of their accounts incorporate societal 
norms. When a pedestrian clarifies why he followed an indirect path, he may say that he did it to avoid 
walking across a neighbor’s lawn. When a homeless person is asked why he begs for a handout rather than 
mugging someone, he might state that he knew the latter was against the law. And when a shopper explains 
why she let another customer with only a few items check out ahead of her, she might say that, if their 
positions were reversed, she would have appreciated the same treatment. Our explanations often include a 
mixture of personal goals and more generic social constraints. We maintain that intelligent agents should 
demonstrate similar abilities and we will say that: 

• An intelligent system exhibits justified agency if it follows its society’s norms to the extent possible and 
if it explains its activities in those terms. 

Let us return to the example of taking someone with peritonitis to the emergency room, driving aggressively 
and breaking traffic laws along the way. This scenario is interesting because the explanation revolves almost 
entirely around social norms – not only the laws and customs the driver chose to ignore, but the idea that 
saving someone’s life should take precedence over other factors. Personal goals come into play, such as 
avoiding collisions and not turning over, but they also support this top-level normative aim. 
 



If we want to develop justified agents of this sort, we must decide on how their justifications map onto the 
three forms of explanations discussed earlier. Recall that structural accounts specify how a sequence of 
steps leads to the agent’s goals, so the natural response is to replace some egocentric goals with societal 
ones. Many societal norms specify actions or states that the agent should avoid while achieving its aims, 
but we can encode these in much the same way as trajectory constraints in AI planning systems. Preference 
explanations specify the overall qualities of problem solutions, values of their constituents, and how these 
are combined. They are relevant to scenarios that involve tradeoffs among norms, where the agent must 
balance societal aims against each other or against its own. Process accounts that describe the course of the 
agent’s decision making, including structural relations and preferences, can also incorporate social norms. 
 
Thus, initial analysis suggests there are no serious obstacles to adapting the three types of self explanation 
to include norms in support of justified activities. When generating, evaluating, and storing plans, a justified 
agent must encode, consider, and record not only its personal goals but also social concerns. Some 
justifications will treat norms as hard constraints that forced the agent to carry out some actions and avoid 
others, but others will include reasoning about tradeoffs that arose when norms came into conflict. When 
asked a question about its activities, the agent must be able to retrieve the ways in which its choices relate 
to norms and then communicate them in accessible terms. This leads to another hypothesis: 

• Any intelligent system that supports explainable agency and normative agency will exhibit justified 
agency. 

In other words, once we have developed the representations and mechanisms to support the first two 
abilities, we will need no additional structures or processes to let agents justify their activities in normative 
terms. If we simply augment our goals and preferences with similar encodings of social mores, then we will 
obtain justified agency with no extra effort. This means that developing agents with the ability to justify 
their behavior will not be as difficult as it first appears. 
 
Some readers will think that this conclusion follows logically from our definitions, but it is actually a 
scientific hypothesis that merits empirical tests. The definition of justified agency requires that it 
incorporate both the ability to explain decisions and to reason about norms, but it does not imply these alone 
are sufficient. For example, agency may be more complex than we have posited (Bello & Bridewell, 2017) 
and fuller analysis may reveal that norms demand richer forms of explanation. Similarly, taking such factors 
into account during plan generation may depend on reasoning beyond that needed with goals and utilities, 
or answering normative questions may require new forms of response. Such extensions may not be 
necessary, but we need further research to determine whether the hypothesis is accurate. 
 
One can also ask which form of self explanation is more relevant to settings that require justified agency. 
We have already seen that social norms can appear, in different guises, in structural, preference, and process 
accounts. However, the most challenging instances of justified agency in humans involve conflicts and 
tradeoffs among norms. These are the mainstay of moral dilemmas studied by philosophers, but they also 
occur in legal cases and everyday life. The centrality of tradeoffs suggests that preference explanations will 
play the most important role in justified agency, but we must develop intelligent systems that communicate 
their reasoning about social norms to test this conjecture.  
 



Concluding Remarks 

In this chapter, I defined the notion of explainable agents, which convey the reasons behind their decisions 
and actions. I also distinguished among three varieties of self explanation – structural, preference, and 
process – that store different types of content and I hypothesized when each of them is likely to be most 
useful. In each case, I examined how these accounts might be encoded, along with their implications for 
indexing, retrieval, and transmission. After this, I introduced the idea of normative agents, which attempt 
to follow societal maxims, and justified agents, which explain their decisions and activities in terms of those 
norms, along with a conjecture that joining explainable and normative agency will enable justified agency 
with no additional effort. 
 
The theoretical analysis that I offered for explainable, normative, and justified agency is far from complete, 
but it suggests clear avenues for how to elaborate it. Researchers interested in the topic should develop 
architectures for agents that support all three types of self explanation, develop normative agents that guide 
their decisions by knowledge about social norms, and combine these elements to produce justified agents. 
They should demonstrate and evaluate these agents’ ability to plan and act in complex domains (e.g., in 
urban driving simulations), to take into account laws, customs, and moral tenets when making decisions in 
these settings, and answer questions about the reasons for these decisions. Undoubtedly, these efforts will 
encounter unexpected obstacles that reveal new challenges, but they will take us closer to understanding 
the structures and processes needed to replicate explainable agency in humans. 
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