
Experimental Studies of Integrated Cognitive Systems

Pat Langley
Computational Learning Laboratory

Center for the Study of Language & Information
Stanford University, Stanford, CA 94305 USA

langley@csli.stanford.edu

Elena Messina
National Institute of Standards & Technology

100 Bureau Drive, Mail Stop 8230
Gaithersburg, MD 20899 USA

elena.messina@nist.gov

Abstract—In this paper, we examine the issues that arise
in the experimental study of integrated cognitive systems. We
review the reasons why such artifacts are difficult to evaluate,
then consider some dependent measures that can be used
to characterize their behavior. Next we discuss independent
variables that can influence this behavior, in particular features
of the domain and characteristics of the system, including
its knowledge and experience. We then turn to domains and
testbeds that support experiments with such systems, giving
examples of some promising candidates. We conclude with
a discussion of the scientific goals of experimentation, which
involve understanding the mapping from domain and system
characteristics onto behavior.

I. Introduction and Motivation

For more than a decade, research in artificial intelligence
has relied on experimentation as a key element in evalua-
tion. Machine learning was perhaps the first subdiscipline
to adopt systematic experiments (e.g., Kibler & Langley,
1988), but their use has spread throughout the broader
community (e.g., Cohen, 1995). Today, experiments are
the primary means by which AI researchers evaluate their
methods, and the experimental techniques as mature and
well understood.

However, the experimental study of integrated cognitive
systems is less well established and clearly needs more
development. The reasons should be clear from the phrase
itself, which reflects the nature of the intelligent artifacts
being constructed. First, it is inherently more difficult to
evaluate systems than component algorithms, since they
are harder to construct and analyze. Second, it is more
challenging to run experiments with cognitive systems,
since they rely on complex, multi-step reasoning rather
than simple classification or reactive control. Finally,
evaluating claims about integrated systems is problematic
because it involves the examination of interactions among
their components. Together, these distinctive factors have
slowed the development of an experimental method for
such complex entities.

In this paper, we propose an experimental framework
that is appropriate for the study of integrated cogni-
tive systems. In the next section, we discuss basic and
higher-order dependent measures that can arise in such
experiments. After this, we consider three main classes of
independent factors that can influence system behavior,
then turn to domains and testbeds that would support
the experimental evaluation of such systems. In closing,

we discuss the broader scientific goals of experimentation,
which aim not to show superiority but to identify reasons
for observed behaviors.

II. Dependent Measures of System Behavior

As scientists, we are concerned with understanding
the behavior of integrated cognitive systems, which in
turn means that we require ways to observe and char-
acterize this behavior. In this context, it is important
to distinguish between between metrics and dependent
measures. These terms are closely related, but the first is
typically associated with prescriptive benchmarks that are
used to determine one system’s superiority other another,
whereas the second is generally associated with systematic
experiments that aim at scientific understanding. The
comments that follow are relevant to both approaches
to evaluation, but our focus here is on the latter, which
we think is far more appropriate for the current stage
of the field. We organize our treatment into three broad
categories: basic measures, averaged metrics, and higher-
order variables.

A. Basic Measures of System Behavior

The existing literature reports a variety of basic mea-
sures that are relevant to integrated cognitive systems.
These provide the simplest ways to describe the observed
behavior of an intelligent construct. We should clarify
that behavior always occurs in the context of some task,
whether provided externally or generated by the agent
itself, and some situation, whether it involves the agent’s
physical environment or its mental state. We will refer to
this context informally as the problem that the agent is
attempting to solve.

Perhaps the most straightforward behavioral measure
concerns whether the agent succeeds or fails at handling a
given problem. For example, a cognitive system may prove
or fail to prove a geometry theorem, it may or may not
solve a novel puzzle, it may or may not deliver a package
to a specified address, and it may win or lose a given
game. This measure offers only one bit of information,
but it may still be valuable when combined with other
results, as we will see shortly.

However, other problem-related measures provide more
detail. One such metric is the efficiency or speed with
which the cognitive system handles a given problem.



For instance, one can count the number of states in a
problem space considered during a geometry proof, the
time it takes a UPS driver to deliver a package, and the
number of moves until checkmate in a chess game. Such a
dependent variable gives information about the cognitive
or physical efficiency with which the agent handles a
particular problem.

Of course, some paths to success are more desirable than
others, so we may also want to measure the quality of the
cognitive system’s solution to a problem. For example, a
geometry proof may have few or many steps and thus
be more or less elegant, a package deliverer may drive
safely and politely or dangerously and impolitely on his
way to an address, and a chess player may lose only
a few unimportant pieces or many important ones in
defeating an opponent. Metrics of this sort offer details
about the desirability of the cognitive agent’s behavior in
accomplishing a given task.

B. Combined Measures of Behavior

The field of statistics tells us we should not draw con-
clusions from individual cases, but rather that we should
rely on multiple samples. We can then combine the results
from these samples and calculate a more robust dependent
variable. Taking the average of sampled measurements
is the most common and obvious combination scheme,
but calculating cumulative scores is another possibility.
The important thing is that, by combining measures for
different samples, we can partly cancel out variation due
to unknown or unavailable factors, and thus increase the
chance of meaningful results.

Naturally, this approach requires some population from
which to draw samples, typically different problems from
within a single domain, although sampling from across
domains is also possible. For instance, we might present
the cognitive system with different geometry theorems to
prove, ask it to deliver packages to distinct addresses or
even in different cities, and confront it with different chess
opponents or even chess-like games with alternative rules.
The population from which one draws samples determines
the generality of one’s conclusions about the cognitive
system’s behavior. We may suspect that the agent can
prove theorems not only in geometry but also in algebra,
but sampling from the former domain provides no evidence
for the latter. An empirical study should state clearly
the population being sampled, ideally in formal terms
but always in enough detail that others can replicate the
sampling process.

We should note that combined measures of behavior
offer more than guards against unknown factors and
random noise. This approach also lets one convert quali-
tative measures, such as success or failure on a problem,
into quantitative ones, such as the percentage or total
number of problems solved. This makes them especially
useful for researchers who want to make claims about
new functionality, which at first glance appear to involve

only qualitative evidence, but which can be handled in
quantitative terms with averaged, cumulative, or other
combined measurements of system performance.

C. Higher-Order Measures of Behavior

Although combined measures guard against unknown
influences and offer quantitative variables, they still
present only a small window into often complex behavior.
Metrics that average across domains improve the situation,
since they provide information about a cognitive system’s
broader generality, but more sophisticated responses are
certainly possible.

For instance, we might plot the dependent measure for
a novel system against the same measure for a baseline
or control system, with each point summarizing the two
systems’ behaviors on a distinct problem. We can then
use regression to fit a line to the points, which gives
both a slope and an intercept as higher-order measures.
A positive intercept means the novel system does better
than the control even on easy problems, whereas a slope
greater than one means it scales to difficulty better than
the baseline system.

Another example, which we will discuss more later,
involves learning curves, in which one plots a behavioral
measure like efficiency or quality against the number of
training cases a learning system has encountered. Such
curves typically have either an exponential or sigmoid
shape, so that linear regression is not appropriate, but we
can fit them with other parametric forms. These produce
higher-order measures for the system’s performance at the
outset, its rate of improvement as a function of experience,
and its asymptotic performance.

Both of these examples involve some form of variation,
though this need not be systematic. In general, whenever
one collects simple measures of a cognitive system’s
behavior under a number of distinct conditions, these can
be used to calculate higher-order measures that summarize
its behavioral characteristics across the conditions from
which the samples were taken.

III. Influences on System Behavior

A scientific experiment should do more than measure
a system’s behavior under one or more condition. The
goal of experimentation is to understand the factors that
influence the behavior, which means one should measure
the dependent variables in multiple situations that differ
along some dimension. Such a factor is often referred to
as an independent variable, since one can typically vary
it independently of others. As with dependent measures,
different independent variables can reveal different facets
of the system under study. In this section, we examine
three broad classes of controllable factors that are ap-
propriate for the experimental evaluation of integrated
cognitive systems.



A. Characteristics of the Task and Domain

One important type of independent variable concerns
aspects of the problem domain and the tasks which
occur within it. The simplest version of this idea involves
collecting multiple samples for an experimental condition,
which we have already discussed above. For studies with an
intelligent system, this means running the system multiple
times on different problems from a domain, and then
combining the results in some fashion. For this purpose,
one draws sample tasks from some distribution over the
problem domain. This may involve specifying a fixed set of
problems or tasks, but another strategy involves creating
a generator that can produce sample problems. In either
case, one should state the relation between these samples
and the broader class of problems over which one hopes
to generalize.

An important variation on this idea involves running
the system on problems from different domains to ensure
its generality. If we are interested in this central issue, then
it is essential to demonstrate successful behavior not only
across different tasks within the same domain, but across
a variety of distinct domains. For instance, most AI work
on game playing has focused on a single game like chess,
which Pell (1996) argues has produced systems that are
optimized for that domain but do not demonstrate general
intelligence. Instead, he defined an entire class of chess-like
games and developed a system that plays reasonably when
given information about their board, pieces, and rules.

Such studies ensure generality, but they do not by
themselves reveal the reasons for variations in system
behavior. For this, we must examine the relation between
problem difficulty and response. We can order problems
by the results they produce on some behavioral measure
like problems solved or efficiency of solutions, but this
does not provide much insight. Ideally, one should vary
experimentally the problem difficulty and examine its
effects on system behavior. This in turn requires an
analysis of the domain that suggests what factors influence
the difficulty of problems.

Kibler and Langley (1998) provide an early domain
analysis for machine learning. They propose a number
of factors that affect the difficulty of induction tasks,
including the complexity of the target concept, the number
of irrelevant features, and the amount of noise in the
training data. Their analysis focused on classification, but
they mention analogous difficulty factors for other areas,
such as the regularity of problem spaces and the structure
of target grammars. One factor they overlooked was the
rate of environmental change, which can pose a challenge
for any learning system.

Studies that vary problem difficulty typically rely on
synthetic domains to control this factor, but Langley
(1996) warns against their casual use. Synthetic problems
give one fine-grained control over domain characteristics,
which can let one determine how these factors influence

behavior. But one must be careful to ensure that these
problems are sufficiently similar to ones which arise in
natural domains that they remain relevant. Nor should
one utilize synthetic problems except to support the
systematic variation of domain features. In general, a well-
balanced experimental program includes studies with both
synthetic domains, to provide insight, and natural ones,
to ensure relevance.1

B. Characteristics of the System

If we want to understand why a cognitive system
behaves well or poorly, then we must vary characteristics
of that system. The simplest version of this idea involves
replacing the entire system with another, as typically
occurs in competitions. Unfortunately, even when one
system behaves uniformly better than another, which
seldom happens, such comparisons provide no insight into
the reasons for their behavioral differences.

One form of finer-grained study involves varying the
parameters associated with the cognitive system and
measuring the effect on its behavior. For instance, one
might alter the depth to which search occurs in a system
that proves geometry theorems, the utility function used to
guide a driving system’s choices, and the relative values
of pieces in a chess player. Such experiments can lead
to conclusions about the importance of a parameter to
system behavior, which may be unchanged across a wide
range of parameter values, change slowly as the parameter
varies, or produce sudden shifts at certain threshold
values. Parametric studies may also detect interactions
among settings that indicate nonlinear effects.

Another experimental approach compares the basic
system’s behavior with that when one or more of its
modules has been removed. For example, one might
compare a driving agent with and without a component for
planning routes. Similarly, one might examine a geometry
theorem prover with and without a module that learns
from previous proofs or a chess player that can or cannot
analyze its opponent’s strategy. Such lesion studies let one
draw conclusions about the contribution of the removed
components to the system’s overall behavior. They can be
especially useful in understanding integrated cognitive sys-
tems, since they can reveal interactions among modules.
For instance, inclusion of planning and learning abilities in
a driving system may provide benefits greater than their
sum when used alone.

C. Knowledge and Experience of the System

Cognitive systems rely centrally on knowledge about
a domain to make inferences and generate candidate
solutions to the problems they encounter. Knowledge is
just as important a determinant of behavior as the domain
and system characteristics. However, the precise impact of

1Unfortunately, this mixture is quite rare in the literature, pre-
sumably because it requires extra effort from experimenters, but this
does not reduce its importance for the study of intelligent systems.



knowledge on a specific intelligent system is an open issue
that can be studied experimentally.

The methodology of lesion studies, which we discussed
above in the context of system components, can be
adapted easily to knowledge. We can run a geometry theo-
rem prover with and without access to lemmas, we can ask
a driver to deliver packages with and without a cognitive
map of the city, and we can provide or not provide a chess
player with a library of opening moves. In some cases, such
lesion studies are equivalent to experiments with system
modules, since certain components may be included only
to utilize a specific type of knowledge. But the modules
of many cognitive systems have more general abilities, so
that running them with and without access to knowledge
can uncover its importance independent of the component
processes themselves.

Of course, the knowledge utilized by a cognitive system
does not usually come in large packages, but rather in
small, modular knowledge elements. As a result, one can
also vary systematically the amount of knowledge available
to the agent of a given type. For instance, a theorem
prover may have access to many or few lemmas, a driver
responsible for delivering packages may have a more or
less complete cognitive map, and a chess player may know
about different numbers of opening moves. Experiments
that treat knowledge in this manner produce graphs that
plot behavioral measures like efficiency and quality against
knowledge. These can also provide higher-order metrics
that describe the rate of improvement per knowledge
element, as we discussed earlier.

For cognitive systems that learn, we can examine the
effects of experience in a similar manner. Here one relates
the number of problems solved, the time spent by the
agent, or other measures of experience to the standard
behavioral variables. For example, one can graph the
percentage of geometry theorems proved as a function of
the number of previous efforts, the efficiency of package de-
livery against the number of earlier trips, and the number
of chess pieces lost against the number of games played.
As mentioned earlier, such learning curves also provide
higher-order information about the rate of improvement
and asymptotic behavior.

IV. Repositories for Cognitive Systems

As we have noted, experimental studies of intelligent
systems require some class of problems on which to
measure behavior, but developing such tasks can be time
consuming and expensive. The natural response is to
develop a common repository of domains and problems
for use by the research community. The earliest example
was the UCI Machine Learning Repository (Blake & Merz,
1998), launched by David Aha in the late 1980s. This
provided a variety of well-documented data sets for the
evaluation of supervised learning systems, and within a
few years it became so popular that most papers on

machine learning utilized it in their experimental stud-
ies. Another model came from computational linguistics,
where the annual TREC competitions came to drive many
research efforts and has been imitated by other fields, such
as the AI planning community.

Unfortunately, despite their advantages, repositories
and competitions also have negative aspects. Their very
ease of use can encourage a community to focus only
on the technical issues they represent. For example, the
UCI repository encouraged increased learning research on
classification domains at the expense of work on problem-
solving tasks. Moreover, many learning researchers have
adopted a ‘bake-off’ mentality that is concerned only with
improving performance scores over earlier systems, and
competitions like TREC have much the same effect. To
the extent that the contents of repositories come to be
viewed as benchmark problems, they lose their usefulness
for genuine scientific studies.

A. Desirable Characteristics of Testbeds

Nevertheless, a common repository is an obvious means
to encourage and support research on integrated cognitive
systems, so we should consider what characteristics would
make it most useful. Like the UCI repository, it must
include a variety of distinct domains to ensure the gener-
ality of experimental results. Moreover, its contents must
be well documented and it must be easy for researchers
to use, with a standardized format or interface to simplify
interaction with different cognitive systems. These are key
characteristics of existing repositories that are well worth
replicating in new ones.

However, the repository should support experiments
with integrated cognitive systems in ways that previous
ones have not. For example, it should not contain data
sets like the UCI site or the TREC competitions, or even
sets of problems, like the planning competitions. Instead,
it should provide the community with environments or
testbeds in which researchers can evaluate their creations.
Unlike many component AI algorithms, a cognitive system
exists over time and requires some environment in which
to operate. This environment need not be a physical one,
but embodied cognitive systems are perhaps the most
interesting variety, so the repository should contain some
testbeds that support the study of physical agents.

A testbed provides supporting or enabling infrastructure
for work on a given problem domain. Each testbed must
include a definition of the tasks or missions that arise in
its domain, stated in terms of initial situations and the
desired states or objectives. Each domain should support
a range of such tasks and, ideally, come with a problem
generator that researchers can use to produce novel ones.
A testbed provides infrastructure that facilitates experi-
mentation by the community and thus can lead to insights
about alternative approaches. Examples of infrastructural
support include: external databases, such as geographic
information systems, and the means to connecting to



these resources; the controlled capture, replay, halting, and
restart of scenarios; and methods for capturing relevant
performance measures via application programming in-
terfaces, access to variables and parameters, and external
physical instrumentation.

A well-designed testbed for cognitive systems eases their
experimental evaluation, which follows naturally from cer-
tain desirable attributes of the infrastructure and problem
set. To assist researchers in evaluating high-level behavior,
it should provide an environment that has little or no
dependence on actuation or sensor processing. In addition,
the infrastructure and problem domain should offer a rich
operating environment, with the ability to model and
control various entities. The testbed should let researchers
vary, in quantifiable ways, the difficulty or complexity
of the environment or mission. Moreover, although the
study of integrated systems is crucial, a testbed should
also support evaluation of component subsystems, such as
reasoning and learning methods, through parametric and
lesion studies.

For domains that involve an external setting, one can
certainly create a physical testbed to support evaluation,
but another option is to develop a realistic simulated envi-
ronment that can be used by many more research groups at
much lower cost. For example, Jacoff, Messina, and Evans
(2001) describe a physical testbed for evaluating robot
search and rescue, whereas Balakirsky and Messina (2002)
report a simulated environment to support research on
the same problem. Simulated testbeds have an additional
advantage in that they allow easy variation of domain pa-
rameters, ranging from details of the environmental layout
to noise in the agent’s sensors. Moreover, they let one
record detailed traces of the intelligent system’s physical
behavior and its mapping onto cognitive state, which in
turn supports detailed analyses and replay starting from
any point along the agent’s behavioral trajectory.

However, as we noted above, testbeds that rely on syn-
thetic domains also come with the danger of irrelevance.
Whenever possible, they should be based closely on a
physical testbed and provide simulations of sufficiently
high fidelity. Wang (2003) describes one such simulated do-
main that incorporates models, based on a gaming engine
that supports kinematics and dynamics, of the physical
NIST arenas for urban search and rescue. To further
ensure relevance for intelligent systems that sense their
environment, a testbed may provide data sets collected
from real sensors in analogous locations (e.g., Shneier,
2003). Such additions can help retain the advantages of
physical environments while offering the affordability and
ease of simulated ones.

B. Promising Domains and Testbeds

We can clarify the desirable features of testbeds with
some examples. We have already mentioned the search
and rescue domain, for which NIST has developed both
physical and simulated testbeds. The primary task in-

volves searching for survivors in an urban area after
an earthquake or similar disaster. This domain requires
the combination of sensing, planning, and action in an
integrated cognitive system that can recognize humans,
find routes through dangerous areas, and execute its plans
successfully. The testbeds have been in place for a number
of years and have been used effectively in a number of
international competitions.

Another candidate domain involves flying a simulated
aircraft in a military setting. Keeping an airplane aloft
can be a challenging control task, but by itself this
does not require much cognitive activity or integration of
different capabilities. However, Jones et al. (1999) report
a complex environment in which an agent must fly a jet
fighter, distinguish friendly from enemy aircraft, respond
according to established doctrine, and communicate with
other pilots. Their intelligent agent operated within the
ModSAF environment, which was populated by other
aircraft, some controlled by programs and others by
humans. A related set of problems would involve flying
an unmanned reconnaissance vehicle over enemy territory
to gather information while avoiding dangerous areas.

A third challenging domain involves in-city driving. This
raises few problems at the control level, since keeping a
car upright, on the road, and within its lane does not
require much intelligence. But the presence of buildings,
sidewalks, traffic signs and signals, moving and parked
vehicles, and pedestrians make for a very rich environment
that requires the allocation of perceptual attention and
other resources. Moreover, driving can support many dis-
tinct high-level tasks, such as delivering packages, tailing
another car unobtrusively, and pulling over vehicles for
moving violations. These all require the integration of
cognitive, perceptual, and motor components in a complex
dynamical setting.

There already exist many simulated driving environ-
ments, but few have been developed with the intention
of evaluating intelligent systems. Moriarty and Langley
(1998) report a simulator for highway driving, but this
environment had low fidelity and agents had limited
options. More recently, Choi et al. (2004) describe an in-
city driving environment, which they have used to evaluate
a cognitive driving agent, that includes many more objects
and a broader range of activities. Balakirsky, Scrapper,
and Messina (in press) are developing another infrastruc-
ture, Mobility Open Architecture Simulation and Tools,
that provides well-defined interfaces to the various driving
subsystems and rich visualization at various levels of
resolution. Several organizations are using this system to
test subsystems for vehicle control, but it remains to be
seen whether the environment meets all the requirements
for evaluating an integrated cognitive system.

Both driving and flying involve control of an individual
agent, but an equally important class of domains involve
managing a large set of other agents. Commanding troops
in a battlefield scenario is one example that requires capa-



bilities like monitoring, situation assessment, planning and
scheduling of activities, and allocation of resources. How-
ever, interactive strategy games like Civilization have simi-
lar characteristics and complexity, and they are familiar to
more people. Aha and Molineaux (2004) are constructing
a framework that simplifies the interface to such games,
and thus will provide a set of related testbeds for the ex-
perimental study of integrated cognitive systems. Michael
Genesereth (personal communication, 2004) is developing
a different infrastructure to support an annual competition
in generalized game playing (http://games.stanford.edu/),
with the intent of fostering research efforts on flexible
approaches to intelligent behavior.

V. Concluding Remarks

In the preceding pages, we have considered the depen-
dent measures and independent factors that arise in study-
ing integrated cognitive systems, along with characteristics
of repositories and testbeds to support such experiments.
Before closing, we should situate these comments in
the broader context of scientific experimentation. As in
other fields, the aim of systematic experiments is not
to show that one approach is superior to another but
rather to increase our understanding of complex systems.
Such understanding may also lead to improved artifacts,
but the overriding goal is to produce replicable and
interpretable results that add to our scientific knowledge
about intelligent behavior.

To this end, researchers should not carry out unmoti-
vated comparisons between different systems or environ-
ments. In most cases, one should have a clear question
in mind or a specific hypothesis that one wants to test,
and the experimental design should reflect this intention.
Simple demonstrations of functionality and generality are
reasonable when one first develops a cognitive system, but
they should quickly give way to scaling studies that reveal
its ability to handle complexity and to lesion studies that
identify the roles that its components play in determining
overall behavior.

Whenever possible, experimental results should be uti-
lized to test such hypotheses. Because most studies involve
averaging across samples, one should be careful about
drawing conclusions. Statistical tests can be useful for
this purpose, but they are overrated, in that one can
sometimes obtain ‘significant’ differences between exper-
imental conditions even when they are not substantial.
Nor are statistical tests required when differences are
large, although reporting confidence intervals is crucial
for conditions with high variance.

Results that agree with an hypothesis lend it evidence,
though they do not ‘confirm’ it; science can never draw
final conclusions about any situation. Results that diverge
from one’s expectations count as evidence against a claim,
and thus require additional explanation. Negative results
need not imply failure, since they can lead one to alter
assumptions about system behavior and suggest new ways

to test them. The iterative loop of hypothesize and test
is as central the study of intelligent systems as to other
experimental disciplines.

Nevertheless, integrated cognitive systems pose special
challenges that require creative adaptation of standard
experimental methods. We must develop testbeds that
exercise the full capabilities of such systems, rather than
emphasizing tasks that can be handled by simple clas-
sification or reactive control. We must study behavior
at the system level, rather than focusing on component
algorithms. Finally, we must design experiments that
illuminate the manner in which the modules of such
systems interact to produce flexible and robust behavior.
Taken together, these steps should let us transform the
study of integrated cognitive systems into a dynamic and
well-balanced experimental science.

Acknowledgements

This research was funded in part by Grant HR0011-04-
1-0008 from Rome Laboratories. Discussions with David
Aha, Michael Genesereth, and Barney Pell contributed to
the ideas presented in this paper.

References

Aha, D. W., & Molineaux, M. (2004). Integrating learning
in interactive gaming simulators. Proceedings of the
AAAI-2004 Workshop on Challenges of Game AI. San
Jose, CA: AAAI Press.

Balakirsky, S., & Messina, E. (2002). A simulation frame-
work for evaluating mobile robots. Proceedings of the
Performance Metrics for Intelligent Systems Workshop.
Gaithersburg, MD.

Balakirsky, S., Scrapper, C., & Messina, E. (in press).
Mobility Open Architecture Simulation and Tools En-
vironment. Proceedings of the International Conference
Integration of Knowledge Intensive Multi-Agent Sys-
tems. Boston.

Blake, C. L. & Merz, C. J. (1998). UCI repository of
machine learning databases [http://www.ics.uci.edu/
∼mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer
Science.

Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro,
D. (2004). An architecture for persistent reactive be-
havior. Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi Agent
Systems (pp. 988–995). New York: ACM Press.

Cohen, P. R. (1995). Empirical methods for artificial
intelligence. Cambridge, MA: The MIT Press.

Jacoff, A., Messina, E., & Evans, J. (2001). Experiences
in deploying test arenas for autonomous mobile robots.
Proceedings of the Performance Metrics for Intelligent
Systems Workshop. Mexico City, Mexico.



Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P. G., & Koss, F. V. (1999). Automated intel-
ligent pilots for combat flight simulation. AI Magazine,
20, 27–41.

Kibler, D., & Langley, P. (1988). Machine learning as
an experimental science. Proceedings of the Third
European Working Session on Learning (pp. 81–92).
Glasgow, Scotland: Pittman.

Langley, P. (October, 1996). Relevance and insight in
experimental studies. IEEE Expert, 11–12.

Moriarty, D., & Langley, P. (1998). Learning cooperative
lane selection strategies for highways. Proceedings of the
Fifteenth National Conference on Artificial Intelligence
(pp. 684–691). Madison, WI: AAAI Press.

Pell, B. (1996). A strategic Metagame player for general
chess-like games. Computational Intelligence, 12, 177–
198.

Shneier, M., Chang, T., Hong, T.H., Cheok, G., Scott, H.,
Legowik, S., & Lytle, A. (2003). A repository of sensor
data for autonomous driving research. Proceedings of
the SPIE Aerosense Conference. Orlando, FL.

Wang, J., Lewis, M., & Gennari, J. (2003). A game
engine based simulation of the NIST USAR arenas.
Proceedings of the 2003 Winter Simulation Conference
(pp. 1039–1045). New Orleans, LA.


