
Retrieval and Learning in Analogical Problem Solving

Randolph M. Jones
Artificial Intelligence Laboratory

University of Michigan
1101 Beal Avenue

Ann Arbor, MI 48109-2110
rjones@eecs.umich.edu

Pat Langley
Robotics Laboratory

Computer Science Department
Stanford University
Stanford, CA 94305

langley@cs.stanford.edu

Abstract

EUREKA is a problem-solving system that operates through
a form of analogical reasoning. The system was designed to
study how relatively low-level memory, reasoning, and learn-
ing mechanisms can account for high-level learning in human
problem solvers. Thus, EUREKA’s design has focused on is-
sues of memory representation and retrieval of analogies, at the
expense of complex problem-solving ability or sophisticated
analogical elaboration techniques. Two computational systems
for analogical reasoning, ARCS/ACME and MAC/FAC, are
relatively powerful and well-known in the cognitive science lit-
erature. However, they have not addressed issues of learning,
and they have not been implemented in the context of a per-
formance task that can dictate what makes an analogy “good”.
Thus, it appears that these different research directions have
much to offer each other. We describe the EUREKA system
and compare its analogical retrieval mechanism with those in
ARCS and MAC/FAC. We then discuss the issues involved in
incorporating ARCS and MAC/FAC into a learning problem
solver such as EUREKA.

We are interested in the low-level memory, learning, and
reasoning processes that give rise to improvement in problem-
solving behavior over time. EUREKA is the problem-solving
architecture we are using to study these processes. An explicit
assumption within EUREKA’s design is that all processes are
aspects of analogical reasoning. In addition, we designed the
system so that the low-level retrieval and matching processes
would dominate its behavior. The system does not possess
or learn the types of high-level control knowledge found in
other problem-solving systems. Our intent is to investigate
how much of human learning in problem solving can be mod-
eled with such low-level mechanisms.

This paper presents an overview of EUREKA’s architecture
and some of the learning results it accounts for. We then turn
our attention to two well-known analogical retrieval mech-
anisms in the cognitive science literature. ARCS (Thagard,
Holyoak, Nelson, & Gochfeld, 1990) and MAC/FAC (Gen-
tner & Forbus, 1991) model psychological findings on ana-
logical retrieval and reasoning. However, neither has been
examined in the context of a problem-solving system, or in a
system that learns with experience. The remainder of the pa-
per focuses on the issues of analogical retrieval and learning,
and discusses the possibilities of incorporating these alterna-
tive analogical retrieval mechanisms into a problem-solving
system.

Terminology

Before continuing, it is worth defining some terms to avoid
future confusion. For analogical reasoning, a basic unit of
knowledge is the analogical case, which is further decom-
posed into a set of concepts and relations between those con-
cepts. For our purposes, every analogical case corresponds to
a problem situation. A problem situation is a specific set of
relations describing a state of the world, together with a set
of goal relations that should be achievable by applying a se-
quence of operators to that state. Note that cases in EUREKA

are a bit different from those in case-based reasoning, where
“case” typically denotes an entire problem solution. At any
given time, EUREKA will have a current problem situation,
for which it must decide on an operator to apply. This is the
target problem situation. The analogical reasoning process is
generally divided into three stages. First, a retrieval mecha-
nism identifies a number of candidate sources from the po-
tential analogies stored in memory. Next, the set of candidate
sources undergo further elaboration to fill out the potential
mappings between each source and the target. Finally, evalu-
ation of each candidate source determines how well each can-
didate will serve as an analogical source for the target. Let us
now turn to a description of EUREKA in these terms.

An overview of EUREKA

Jones (1993) presents the computational details of EUREKA,
but here we provide a general overview of the system. EU-
REKA adopts a reasoning formulation called flexible means-
ends analysis (Jones & VanLehn, 1994; Langley & Allen,
1991). As described above, each problem situation includes
a current world state and a set of goal conditions to which the
state should be transformed. Operator selection creates a goal
to apply a particular operator to the current state of the prob-
lem situation. If the preconditions of the operator can all be
matched to the current state, the operator executes, leading to
a new problem situation with a different state but the same
goals. Otherwise, the system sets up a new problem situation
with the same current state, but with the operator’s precondi-
tions as the new goals. EUREKA then treats this new problem
situation in a recursive manner.

The difference between flexible means-ends analysis and
standard means-ends analysis (Ernst & Newell, 1969; Fikes
& Nilsson, 1971) is that the flexible form does not require se-



lected operators to apply directly to the current goal conditions
(i.e., it is not necessary that the selected operator obviously
“reduce any differences”). Rather than using this heuristic
to limit search, EUREKA relies on its retrieval and learning
mechanisms to control which operators are suggested to ap-
ply to any particular problem situation. Because operator se-
lection depends on the entire problem situation (and not just
the goals), EUREKA can blend goal-driven and opportunistic
behavior when appropriate.

Every time EUREKA generates a new problem situation, it
stores a representation of the situation (as well as the opera-
tor the led to this situation) into its long-term semantic net-
work. Each object and relation in a problem situationbecomes
a node in the semantic network. In addition, the network
stores nodes representing instances of architecturally defined
concepts, such as problem situations and operators. Items
are never deleted from long-term memory, and memories are
never stored in an abstract form. Rather, the semantic mem-
ory stores all the specific problem situations that it encoun-
ters. Situations become linked together in memory when they
share objects, relations, or object types. If a particular con-
cept from a problem situation already exists in memory, EU-
REKA increases the trace strengths of the links from the con-
cept, rather than adding a new copy of the concept.

When EUREKA is working on a particular problem situa-
tion, it must select an operator to apply to the problem. To
this end, EUREKA retrieves a subset of the stored problem
situations from long-term memory. This small set of candi-
date sources is further elaborated and evaluated, to see which
would provide the best candidate analogy for the current prob-
lem situation. EUREKA chooses one candidate stochastically,
based on the evaluation score, and identifies the operator as-
sociated with that source analogy. Finally, the system creates
a goal to apply to the newly mapped operator to the current
state.

EUREKA proceeds in this manner until it solves the prob-
lem or the current solutionpath fails (by exceeding a time limit
or detecting a cycle in the solution path). Upon failure, EU-
REKA does not have the luxury of backtracking, which would
allow the system to search the problem space systematically
and possibly exhaustively. Rather, EUREKA begins the prob-
lem anew from the initial problem situation. The inability to
backtrack systematically greatly hinders the system’s ability
to solve problems, but we feel that this is a psychologically
plausible limitation. The limitation also places further impor-
tance on effective learning.

The combination of EUREKA’s learning mechanisms and
its stochastic selection process encourage the system to ex-
plore alternative solution paths on subseqent attempts to solve
a problem. However, there is no guarantee that a previous
search will not be duplicated. If the system fails to find a solu-
tion after a preset number of attempts (50 in our experiments),
it abandons the problem completely.

Analogical retrieval in EUREKA

EUREKA’s analogical reasoner incorporates two stages. The

Table 1: EUREKA’s algorithm for spreading activation.

Let ACTIVATION_THRESHOLD be 0.01;
Let DAMPING_FACTOR be 0.4;
Let INITIAL_ACTIVATION be 1.0;

SPREAD_INIT(Source)
SPREAD(Source,INITIAL_ACTIVATION,NIL)

SPREAD(Source,Value,Path)
If (Value < ACTIVATION_THRESHOLD) or

Source is in Path
Then EXIT
Else Increase Source.Activation

by Value;
For each link X from Source
Let Target be the node
connected to Source by X;
Let Newvalue be
SPREAD_VALUE(Source,X,Value)
* DAMPING_FACTOR;

PUSH Source onto Path;
SPREAD(Target,Newvalue,Path)

SPREAD_VALUE(Source,Link,Value)
Let Total be 0;
For each link X from Source
If X has the same type as Link
Then Increase Total

by X.trace_strength;
Return Value *

(Link.trace_strength / Total)

first retrieves a set of candidate source problem situations
from memory. The second involves a relatively expensive
computation to elaborate the mapping between each candidate
source and the target problem situation. Because the elabora-
tion process is so expensive, it is important that the cheaper
retrieval process return a relatively small set of candidates.
However, the system must also do what it can to make sure
it does not miss good candidates in memory. In EUREKA, we
have focused on the retrieval phase, to analyze how changes in
retrieval patterns can lead to higher-level changes in problem
solving.

As mentioned above, EUREKA stores in its semantic net-
work an episodic memory of every problem situation it en-
counters. Retrieval is implemented as a spreading-activation
process similar to that found in ACT (e.g., Anderson, 1976).
Each node in the representation of the target problem situation
becomes a source of activation, which then spreads to other
nodes according to the strengths of the links to those nodes.
The activation algorithm appears in Table 1.

After the spread of activation terminates, EUREKA checks
the “top-level” node for each problem situation stored in



memory. This node contains a unique name for the problem
situation and has links to all the nodes representing relations
in the problem situation. The problem situation whose top-
level node has the highest level of activation becomes a candi-
date source. In addition, any other problem situation becomes
a candidate source if its top-level node has at least one percent
of the level of activation of the strongest source.

Learning in EUREKA

As Table 1 indicates, the activation that spreads from a source
node, i, to another node, j, depends on the number of nodes
to which i is linked (because activation is divided among links
of the same type), as well as the strength of the link between i
and j. This highlightsan important aspect of the retrieval pro-
cess within EUREKA. That is, the spread of activation (and,
therefore, patterns of retrieval) can change for primarily two
reasons: new nodes and links being added to memory, and
changes in link strengths. It follows that these are the two
ways that learning can change behavior in EUREKA.

Thus, one way in which EUREKA learns is simply by
adding new experiences by rote into memory. Because
spreading activation is a competitive process, introducing
more competitors into memory can change what gets retrieved
in the future. However, simply adding experiences to memory
will not necessarily improve problem-solvingbehavior, which
is what we really want. Therefore, EUREKA also changes its
behavior by updating link trace strengths. When the system
solves a particular target problem situation, it checks which
source analog was used to help solve the problem. The system
then strengthens the links between the target problem situation
and the successfully applied analogical situation. Note that
a problem presented to EUREKA generally involves a set of
problem situations, so EUREKA can learn about solved prob-
lem situations, even if the attempt to solve the global prob-
lem fails. In the long run, stored problem situations that help
solve new problem situations become strongly connected to
the problem situations that they help solve. Thus, they “soak
up” more activation from future problem situations, and be-
come more easily retrieved.

It is also worthwhile to note that EUREKA requires its learn-
ing mechanism to be noise tolerant. Because operator selec-
tion is based on the current structure of memory and the sys-
tem cannot systematically backtrack, a search path that leads
to failure now may turn into a successful path later. EUREKA

might fail simply because it does not “remember” or retrieve
the appropriate operator in a particular situation. As the sys-
tem gathers experience, it may learn to retrieve such opera-
tors, turning bad search paths into good ones.

Qualitative behaviors exhibited by EUREKA

Table 2 presents VanLehn’s (1989) list of a number of robust
qualitative results that have been observed in humans learning
to solve problems. EUREKA addresses these issues to vary-
ing degrees. Jones and Langley (1994; Jones, 1989) present
a number of detailed experiments with EUREKA that address
these results. Due to a lack of space, we will not present the

Table 2: Robust learning behaviors identified in human prob-
lem solvers (VanLehn, 1989).

1. Subjects reduce their verbalizations
of task rules as they become more
experienced with practice.

2. Improvement occurs quickly in
knowledge-lean domains.

3. There is a power-law relationship
between the speed of performance on
perceptual-motor skills (and
possibly problem-solving skills) and
the number of practice trials.

4. Problem isomorphs do not become more
difficult simply by changing surface
features of the problems.

5. Other representation changes can
make problem isomorphs substantially
more difficult.

6. There is asymmetric transfer between
tasks when one task subsumes
another.

7. Negative transfer is rare.
8. "Set" effects (or Einstellung) can

lead to negative transfer.
9. Spontaneous noticing of a potential

analogy is rare.
10. Spontaneous noticing is based on

superficial features.

details here so we can discuss other issues. EUREKA’s re-
trieval and learning methods directly account for most of the
behaviors identified by VanLehn. Behaviors 1 and 3 require
a bit of extra interpretation, and are not modeled as well as
the others. In general, the results indicate that these types of
learning can indeed arise from rather low-level processes.

There are other models of analogical problem solving (e.g.,
Hammond, 1986; Veloso & Carbonell, 1993), which rely on
indexing methods for analogical retrieval, and generally fo-
cus on learning and reasoning at a higher architectural level
than EUREKA. In contrast, there are other analogical mecha-
nisms that share EUREKA’s spirit in modeling analogical rea-
soning as a relatively low-level memory process. The follow-
ing section discusses two of the more well-known models of
this type.

Learning to solve problems with ARCS and
MAC/FAC

ARCS (Thagard et al., 1990) and MAC/FAC (Gentner & For-
bus, 1991) are the analogical retrieval algorithms associated
with two relatively well-known and sophisticated systems for
analogical elaboration and evaluation: ACME (Holyoak &
Thagard, 1989) and SME (Falkenhainer, Forbus, & Gentner,
1989). It is attractive to consider incorporating these sys-



tems into a learning, problem-solving architecture such as
EUREKA. We feel such an attempt could benefit research on
both sides. On the one hand, EUREKA’s analogical mecha-
nisms have been used to model human learning in problem
solving, but it is questionable whether they can model some
of the psychological findings on analogical retrieval and eval-
uation (e.g., Gick & Holyoak, 1983). On the other hand,
ARCS/ACME and MAC/FAC have both been demonstrated
on the retrieval and evaluation results, but they have so far
been used to model analogical retrieval in relative isolation
from other tasks. Although both systems have built-in no-
tions of what makes a good analogy, it is sometimes difficult
to judge why other potential analogs or mappings might not
be better in particular situations. A problem solver provides
a context by which to judge the quality of analogies more ob-
jectively: A good analogy is one that helps solve a problem.
In addition, our work with EUREKA has focused on how ana-
logical reasoning can adapt with experience, but the two other
systems have so far not incorporated mechanisms for chang-
ing their behavior over time. The remainder of this paper dis-
cusses the issues we foresee in incorporating the ARCS and
MAC/FAC retrieval mechanisms into a problem-solving sys-
tem that learns. First, let us provide a quick overview of the
ARCS and MAC/FAC retrieval methods.

Retrieval with ARCS
ARCS divides the retrieval process into two stages, beginning
with a table look-up for each concept in the target. This table
provides a list of all the concepts in memory that are immedi-
ately related to a concept (e.g., by subordinate, superordinate,
or part-of relationships). ARCS then considers retrieving any
source that includes at least one of the collection of concepts
related to the target. This happens by creating a constraint net-
work of possible concept matches, linked together by excita-
tory and inhibitory links. ARCS only sets up match hypothe-
ses between semantically similar concepts (from the look-up
table). More complete match hypotheses are saved for the
more expensive ACME matcher. In addition, special nodes
are created to link concepts that have been marked as impor-
tant in various ways. Finally, activation spreads throughout
the network until the network settles. Each candidate source
receives a retrieval score, computed from the activation of
the concepts in the source. It is not clear, however, that the
ARCS system makes a distinction between candidate sources
that “are retrieved” vs. those that are not.

Retrieval with MAC/FAC
MAC/FAC1 takes quite a different approach to retrieval.
MAC computes a content vector for each source stored in
memory. The content vector ignores concepts that represent
simple objects, and records the number of occurrences of each
concept that can take other concepts as arguments (e.g., rela-
tions and functions). This requires MAC to know the entire1Note that MAC corresponds to the analogical retrieval mecha-
nism, while FAC is the more expensive elaboration and evaluation
algorithm.

space of such concepts ahead of time. MAC then similarly
computes a content vector for the target of the analogy. The
retrieval score for each potential source is computed as the dot
product of the source’s content vector with the target’s content
vector. This gives an estimate of the degree to which relations
are shared between the target and each source, and it is very
quick to compute. The source with the largest dot product is
marked as a retrieved candidate. In addition, any other source
with a dot-product value of at least 10% of the highest value
is retrieved.

Changes in retrieval as knowledge increases
Having a feel for how ARCS and MAC/FAC work, let us turn
our attention to how their behavior might adapt with experi-
ence. We have stressed that our primary focus in EUREKA

is on how learning can change retrieval patterns, leading to
larger changes in problem-solving behavior. Thus, it is most
important for us to examine the types of events that allow EU-
REKA’s retrieval mechanism to learn, and how they would ap-
ply to MAC/FAC or ARCS. Let us first consider how the mere
storage of new experiences can influence retrieval. There are
two aspects of performance to examine when the knowledge
base increases in size. First, new knowledge may change the
time it takes for the retrieval algorithm to execute. Second,
the resulting set of candidate sources may change as new po-
tential sources are added to memory.

Taking the first issue, EUREKA’s spreading-activation
mechanism performs a limited search through memory, and
many portions of memory (those distant from the target con-
cepts) will be completely ignored by the retrieval process.
Jones (1989, 1993) has demonstrated empirically and analyti-
cally that EUREKA’s form of spreading activation takes a con-
stant amount of time relative to the size of memory, even when
implemented as a serial algorithm. On the other hand, the
specific representation or “shape” of memory can sometimes
have a significant impact on retrieval time. This is an impor-
tant issue, related to the utilityproblem (Minton, 1988) in ma-
chine learning. It would not be desirable for a system to slow
down merely because its memory is growing. However, both
ARCS and MAC/FAC are guaranteed to take longer as new
analogical sources are added to memory, because they both
examine every potential source as part of the retrieval pro-
cess. This means that processing is at least linearly related to
the number of potential source analogs in memory. ARCS in-
cludes an even more expensive construction of the constraint
network, which depends on the number of sources that include
concepts similar to those in the target. Thagard et al. (1990)
propose, however, that much of their algorithm can execute
in parallel, so time will be constant if we assume an arbitrary
number of processors (one per potential source stored in mem-
ory). Presumably the same is true of MAC/FAC.

Let us next consider how the mere addition of cases to the
knowledge base can change retrieval patterns. New problem
situations in EUREKA’s memory imply new competitors for
activation. Thus, if a newly stored situation shares concepts
with other problem situations, activation levels necessarily



change. In contrast, MAC/FAC independently associates a
content vector and retrieval score with each stored situation.
The retrieval score has absolutely nothing to do with other
stored cases. Thus, adding new cases will have a limited im-
pact on the set of retrieved candidate sources. Because the
retrieval threshold is based on a percentage of the highest-
valued retrieval item, a newly stored problem situation can
only significantly change retrieval patterns in the cases where
it receives the highest retrieval score.

ARCS uses an activation process that is inherently com-
petitive like Eureka’s. Thus, the final retrieval values for
each candidate source can certainly change as memory grows.
Law, Forbus, and Gentner (1994) showed that increasing the
number of cases can be quite detrimental to ARCS, but did
not adversely affect MAC/FAC’s behavior. Presumably, sim-
ilar detrimental effects would be seen in EUREKA’s retrieval
mechanism as cases begin to compete with each other. On the
other hand, EUREKA (and most likely ARCS) can also ben-
efit from the addition of appropriate knowledge. MAC/FAC
can only benefit in the sense that it may have a new case to
retrieve, but it cannot benefit in any competitive sense. Thus,
we interpret Law, Forbus, and Gentner’s result not as a con-
demnation of competitive retrieval algorithms, but as further
evidence of the importance of associating a learning method
with retrieval.

Tuning retrieval with experience
The second aspect of learning has to do with tuning the
retrieval process to improve and focus itself with experi-
ence. Again, EUREKA achieves this by increasing link trace
strengths associated with stored problem situations when they
aid in the solution of new problem situations. With appro-
priate experiences, the system will eventually retrieve fewer
items, but they will have higher estimated quality. None of
the presentations of ARCS or MAC/FAC have addressed the
issue of learning. Thus, rather than comparing learning mech-
anisms, we are free to hypothesize the types of learning mech-
anisms that might be amenable to ARCS and MAC/FAC.

ARCS has a competitive activation-based retrieval mecha-
nism, so it is tempting to assume that it would benefit from a
learning mechanism similar to EUREKA’s. However, it is im-
portant to note that activation spreads through a very different
type of network in each case. EUREKA’s semantic network
is a long-term structure encoding the representation of prob-
lem situations and the relations and objects they share. In con-
trast, the constraint networks in ARCS are constructed anew
each time a target is presented, and represent potential ways to
match the concepts in each source to the concepts in the tar-
get. Despite these differences, there still seems to be some po-
tential to altering link strengths in ARCS. Some link strengths
are fixed measures of the degree of similarity between differ-
ently related concepts (e.g., synonyms have a similarity value
of 0.6, superordinates a value of 0.3, and subordinates a value
of 0.2). There does not seem to be any reason in principle
that these similarity measures could not be learned for specific
concept pairs, rather than fixed by these abstract types. This is

an attractive option, because it would allow a more pragmatic
view of similarity that adapts to problem-solving experience,
rather than requiringa fixed table of similarities to be provided
to the system. In addition, ARCS gives extra strength to con-
cepts that are marked as “important” and mappings that are
marked as “presumed”. These marks are specified and fixed
before retrieval begins. One of the benefits of a performance
task, such as problem solving, is that it is possible to induce
important concepts over time. Perhaps such an induction al-
gorithm could use experience to adapt the measure of “impor-
tance” of concepts over time.

MAC/FAC is another story entirely, because it does not
share the notion of competition between candidate analogi-
cal sources. As we have mentioned above, retrieval compu-
tations are independent for each target-source pair. However,
the one thing that is common across candidate sources is the
algorithm for computing the content vector. When construct-
ing the vector, MAC/FAC counts each occurrence of every
feature. These counts could instead be weighted by param-
eters for each feature, which would be tuned with experience.

There is a potentially more interesting alternative for learn-
ing. It almost seems that there is a built-in assumption to
MAC/FAC: changes in analogical retrieval should only arise
through a reformulation of the representation of the sources
and targets. It is not clear whether the creators of MAC/FAC
intend this to be a fixed, architectural constraint, but it is cer-
tainly interesting to view it that way. In this case, the only
way for MAC/FAC to tune its retrieval patterns would be
for it to change the representation of its stored cases. These
changes would be based on knowledge of how the retrieval
scoring mechanism works, and would be designed to award
useful candidate sources higher scores in future similar situ-
ations. It is not clear to us what the details of such a mecha-
nism would be. However, it would provide a pragmatic ap-
proach to changing representation within a cognitive agent.
The agent would change its representations in response to
problem-solving success (or failure), and would change them
in such a way as to improve future behavior.

Summary
EUREKA provides a model of analogical retrieval in problem
solving. In addition, it incorporates a learning mechanism that
focuses on tuning the retrieval of candidate analogical sources
from memory. These relatively low-level mechanisms give
rise to larger qualitative changes in problem-solving behav-
ior. We have used the EUREKA model to explain the primary
learning effects that have been identified in human problem
solvers. Because the system includes a memory-based mech-
anism for the retrieval of analogies, it is natural to compare
this mechanism to ARCS and MAC/FAC, two well-known
retrieval mechanisms in the cognitive science literature. We
have used the lessons learned from building EUREKA to guide
our analysis of how ARCS and MAC/FAC would fit into the
context of a performance task (problem solving) where learn-
ing can and should take place. EUREKA demonstrates that
low-level mechanisms can have a significant impact on high-



level behavior. It will be interesting to see what qualitative
differences arise in learning problem solvers that incorporate
the ARCS or MAC/FAC algorithms.

References
Anderson, J. R. (1976). Language, memory, and thought.

Hillsdale, NJ: Lawrence Erlbaum.

Ernst, G., & Newell, A. (1969). GPS: A case study in gener-
ality and problem solving. New York: Academic Press.

Falkenhainer, B., Forbus, K., & Gentner, D. (1989). The
Structure-Mapping Engine: Algorithm and examples. Ar-
tificial Intelligence, 41, 1–63.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence, 2, 189–208.

Gentner, D., & Forbus, K. (1991). MAC/FAC: A model of
similarity-based retrieval. In Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society. Hills-
dale, NJ: Lawrence Erlbaum.

Gick, M., & Holyoak, K. (1983). Schema induction and ana-
logical transfer. Cognitive Psychology, 15, 1–38.

Hammond, K. J. (1986). Case-based planning: An integrated
theory of planning, learning, and memory. Doctoral disser-
tation. Yale University.

Holyoak, K., & Thagard, P. (1989). Analogical mapping by
constraint satisfaction. Cognitive Psychology, 15, 1–38.

Jones, R. M. (1989). A model of retrieval in problem solv-
ing. Doctoral dissertation. Department of Information and
Computer Science, University of California, Irvine.

Jones, R. M. (1993). Problem solving via analogical retrieval
and analogical search control. In S. Chipman & A. Mey-
rowitz (Eds.), Machine learning: Induction, analogy, and
discovery. Boston: Kluwer Academic.

Jones, R. M., & Langley, P. (1994). Learning and problem
solving with limited memory. Manuscript in preparation.

Jones, R. M., & VanLehn, K. (1994). Acquisition of
children’s addition strategies: A model of impasse-free,
knowledge-level learning. Machine Learning, 16, 11–36.

Langley, P., & Allen, J. A. (1991). The acquisition of hu-
man planning expertise. In L. A. Birnbaum & G. C. Collins
(Eds.), Machine Learning: Proceedings of the Eighth Inter-
national Workshop. Los Altos, CA: Morgan Kaufmann.

Law, K., Forbus, K. D., & Gentner, D. (1994). Simulat-
ing similarity-based retrieval: A comparison of ARCS and
MAC/FAC. In A. Ram & K. Eiselt (Eds.), Proceedings of
the Sixteenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Lawrence Erlbaum.

Minton, S. (1988). Learning effective search control knowl-
edge: An explanation-based approach. Boston: Kluwer
Academic.

Thagard, P., Holyoak, K., Nelson, G., & Gochfeld, D. (1990).
Analogical retrieval by constraint satisfaction. Artificial In-
telligence, 46, 259–310.

VanLehn, K. (1989). Problem solving and cognitive skill ac-
quisition. In M. I. Posner (Ed.), Foundations of cognitive
science. Cambridge, MA: MIT Press.

Veloso, M. M., & Carbonell, J. G. (1993). Derivational anal-
ogy in PRODIGY: Automating case acquisition, storage,
and utilization. Machine Learning, 10, 249–278.


