Retrieval and Learningin Analogical Problem Solving

Randolph M. Jones
Artificid Intelligence Laboratory
University of Michigan
1101 Beal Avenue
Ann Arbor, M| 48109-2110
rj ones@ecs. uni ch. edu

Abstract

EUREKA is a problem-solving system that operates through
aform of analogical reasoning. The system was designed to
study how relatively low-level memory, reasoning, and learn-
ing mechanisms can account for high-level learning in human
problem solvers. Thus, EUREKA’s design has focused on is-
suesof memory representation and retrieval of analogies, at the
expense of complex problem-solving ability or sophisticated
anal ogical elaboration techniques. Two computational systems
for analogical reasoning, ARCS/ACME and MAC/FAC, are
relatively powerful and well-known in the cognitive sciencelit-
erature. However, they have not addressed issues of learning,
and they have not been implemented in the context of a per-
formance task that can dictate what makes an analogy “good” .
Thus, it appears that these different research directions have
much to offer each other. We describe the EUREK A system
and compare its analogical retrieval mechanism with those in
ARCS and MAC/FAC. We then discussthe issuesinvolved in
incorporating ARCS and MAC/FAC into a learning problem
solver such as EUREKA.

We are interested in the low-level memory, learning, and
reasoning processes that giverisetoimprovement in problem-
solving behavior over time. EUREK A isthe problem-solving
architecturewe areusing to study these processes. An explicit
assumption within EUREKA’s design is that all processes are
aspects of analogical reasoning. In addition, we designed the
system so that the low-level retrieval and matching processes
would dominate its behavior. The system does not possess
or learn the types of high-level control knowledge found in
other problem-solving systems. Our intent is to investigate
how much of human learning in problem solving can be mod-
eled with such low-level mechanisms.

This paper presents an overview of EUREKA’s architecture
and some of the learning results it accounts for. We then turn
our attention to two well-known analogical retrieval mech-
anisms in the cognitive science literature. ARCS (Thagard,
Holyoak, Nelson, & Gochfeld, 1990) and MAC/FAC (Gen-
tner & Forbus, 1991) model psychological findings on ana-
logicd retrieval and reasoning. However, neither has been
examined in the context of a problem-solving system, orina
system that learns with experience. The remainder of the pa
per focuses on the issues of analogical retrieva and learning,
and discusses the possibilitiesof incorporating these alterna-
tive analogical retrieval mechanisms into a problem-solving
system.

Pat Langley
Robotics Laboratory
Computer Science Department
Stanford University
Stanford, CA 94305
| angl ey@s. st anf ord. edu

Terminology

Before continuing, it is worth defining some terms to avoid
future confusion. For anaogica reasoning, a basic unit of
knowledge is the analogical case, which is further decom-
posed into a set of concepts and rel ations between those con-
cepts. For our purposes, every analogica case corresponds to
a problem situation. A problem situation is a specific set of
relations describing a state of the world, together with a set
of goal relations that should be achievable by applying a se-
guence of operatorsto that state. Note that cases in EUREKA
are a hit different from those in case-based reasoning, where
“case” typicaly denotes an entire problem solution. At any
given time, EUREKA will have a current problem situation,
for which it must decide on an operator to apply. Thisisthe
target problem situation. The analogical reasoning processis
generaly divided into three stages. First, a retrieval mecha
nism identifies a number of candidate sources from the po-
tential anal ogies stored in memory. Next, the set of candidate
sources undergo further elaboration to fill out the potential
mappings between each source and the target. Finally, evalu-
ation of each candidate source determines how well each can-
didatewill serve as an analogica source for thetarget. Let us
now turn to a description of EUREKA in these terms.

An overview of EUREK A

Jones (1993) presents the computational details of EUREKA,
but here we provide a general overview of the system. Eu-
REKA adopts a reasoning formulation called flexible means-
ends analysis (Jones & VanLehn, 1994; Langley & Allen,
1991). Asdescribed above, each problem situation includes
acurrent world state and a set of goal conditionsto which the
state should be transformed. Operator selection creates agoal
to apply a particular operator to the current state of the prob-
lem situation. If the preconditions of the operator can all be
matched to the current state, the operator executes, leading to
a new problem situation with a different state but the same
goals. Otherwise, the system sets up anew problem situation
with the same current state, but with the operator’s precondi-
tionsasthe new goals. EUREK A then treats thisnew problem
situation in arecursive manner.

The difference between flexible means-ends analysis and
standard means-ends analysis (Ernst & Newell, 1969; Fikes
& Nilsson, 1971) isthat the flexible form does not require se-

lected operatorsto apply directly tothe current goa conditions
(i.e., it is not necessary that the selected operator obviously
“reduce any differences’). Rather than using this heuristic
to limit search, EUREKA relies on its retrieva and learning
mechanisms to control which operators are suggested to ap-
ply to any particular problem situation. Because operator se-
lection depends on the entire problem situation (and not just
the goals), EUREKA can blend goal-driven and opportunistic
behavior when appropriate.

Every time EUREKA generates a new problem situation, it
stores a representation of the situation (as well as the opera-
tor the led to this situation) into its long-term semantic net-
work. Each object and relationin aproblem situationbecomes
a node in the semantic network. In addition, the network
stores nodes representing instances of architecturally defined
concepts, such as problem situations and operators. Items
are never deleted from long-term memory, and memories are
never stored in an abstract form. Rather, the semantic mem-
ory stores al the specific problem situations that it encoun-
ters. Situationsbecome linked together in memory when they
share objects, relations, or object types. If a particular con-
cept from a problem situation already exists in memory, Eu-
REKA increases the trace strengths of the linksfrom the con-
cept, rather than adding a new copy of the concept.

When EUREKA isworking on a particular problem situa
tion, it must select an operator to apply to the problem. To
this end, EUREKA retrieves a subset of the stored problem
situations from long-term memory. This small set of candi-
date sources is further elaborated and evaluated, to see which
would providethebest candidate anal ogy for the current prob-
lem situation. EUREK A chooses one candidate stochastically,
based on the evaluation score, and identifies the operator as-
sociated with that source analogy. Finaly, the system creates
agoa to apply to the newly mapped operator to the current
State.

EUREKA proceeds in this manner until it solves the prob-
lem or thecurrent solution path fails(by exceeding atimelimit
or detecting a cycle in the solution path). Upon failure, Eu-
REKA does not have the luxury of backtracking, which would
allow the system to search the problem space systematically
and possibly exhaustively. Rather, EUREK A beginsthe prob-
lem anew from the initial problem situation. Theinability to
backtrack systematically grestly hinders the system’s ability
to solve problems, but we fedl that thisis a psychologically
plausiblelimitation. The limitation also places further impor-
tance on effective learning.

The combination of EUREKA’S learning mechanisms and
its stochastic selection process encourage the system to ex-
ploreaternative solution paths on subsegent attemptsto solve
a problem. However, there is no guarantee that a previous
search will not beduplicated. If thesystemfailstofind asolu-
tion after a preset number of attempts (50 in our experiments),
it abandons the problem completely.

Analogical retrieval in EUREK A
EUREKA’s analogical reasoner incorporates two stages. The

Table 1: EUREKA’s dgorithm for spreading activation.

Let ACTI VATI ON_THRESHOLD be 0. 01;
Let DAMPI NG_FACTCOR be 0. 4;
Let I NI TI AL_ACTI VATI ON be 1. 0;

SPREAD | NI T(Sour ce)
SPREAD(Sour ce, | NI TI AL_ACTI VATI ON, NI L)

SPREAD(Sour ce, Val ue, Pat h)
I f (Val ue < ACTI VATI ON_THRESHOLD) or
Source is in Path

Then EXIT
El se | ncrease Source. Activation
by Val ue;

For each link X from Source
Let Target be the node
connected to Source by X
Let Newval ue be
SPREAD VALUE(Sour ce, X, Val ue)

* DAMPI NG_FACTOR;

PUSH Source onto Pat h;
SPREAD(Tar get , Newal ue, Pat h)

SPREAD VALUE(Sour ce, Li nk, Val ue)
Let Total be O;
For each link X from Source
If X has the same type as Link
Then | ncrease Tot al
by X. trace_strength;
Return Val ue *
(Link.trace_strength / Total)

first retrieves a set of candidate source problem situations
from memory. The second involves a relatively expensive
computationto el aboratethe mapping between each candidate
source and the target problem situation. Because the el abora-
tion process is so expensive, it isimportant that the cheaper
retrieval process return a relatively small set of candidates.
However, the system must also do what it can to make sure
it does not miss good candidates in memory. In EUREKA, we
havefocused ontheretrieval phase, to analyze how changesin
retrieval patterns can lead to higher-level changesin problem
solving.

As mentioned above, EUREKA stores in its semantic net-
work an episodic memory of every problem situation it en-
counters. Retrieval isimplemented as a spreading-activation
process similar to that found in ACT (e.g., Anderson, 1976).
Each nodeintherepresentation of thetarget problem situation
becomes a source of activation, which then spreads to other
nodes according to the strengths of the links to those nodes.
The activation algorithm appearsin Table 1.

After the spread of activation terminates, EUREKA checks
the “top-level” node for each problem situation stored in

memory. This node contains a unique name for the problem
situation and has linksto all the nodes representing relati ons
in the problem situation. The problem situation whose top-
level nodehasthe highest level of activation becomes a candi-
date source. In addition, any other problem situation becomes
acandidate sourceif itstop-level node has at | east one percent
of thelevel of activation of the strongest source.

Learningin EUREKA

AsTable1 indicates, the activation that spreads from a source
node, ¢, to another node, j, depends on the number of nodes
towhich islinked (because activationisdivided among links
of the sametype), aswell as the strength of the link between i
and j. Thishighlightsan important aspect of theretrieval pro-
cess within EUREKA. That is, the spread of activation (and,
therefore, patterns of retrieval) can change for primarily two
reasons: new nodes and links being added to memory, and
changes in link strengths. It follows that these are the two
ways that |earning can change behavior in EUREK A.

Thus, one way in which EUREKA learns is simply by
adding new experiences by rote into memory. Because
spreading activation is a competitive process, introducing
more competitorsinto memory can change what getsretrieved
inthefuture. However, simply adding experiencesto memory
will not necessarily improve probl em-solving behavior, which
iswhat we redlly want. Therefore, EUREKA also changesits
behavior by updating link trace strengths. When the system
solves a particular target problem situation, it checks which
source anal og was used to hel p solvethe problem. The system
then strengthensthelinksbetween thetarget problem situation
and the successfully applied analogical situation. Note that
a problem presented to EUREKA generaly involves a set of
problem situations, so EUREK A can learn about solved prob-
lem situations, even if the attempt to solve the global prob-
lem fails. In thelong run, stored problem situationsthat help
solve new problem situations become strongly connected to
the problem situationsthat they help solve. Thus, they “soak
up” more activation from future problem situations, and be-
come more easily retrieved.

Itisalso worthwhileto notethat EUREK A requiresitslearn-
ing mechanism to be noise tolerant. Because operator selec-
tion is based on the current structure of memory and the sys-
tem cannot systematically backtrack, a search path that leads
to failure now may turn into a successful path later. EUREKA
might fail simply because it does not “remember” or retrieve
the appropriate operator in a particular situation. As the sys-
tem gathers experience, it may learn to retrieve such opera
tors, turning bad search paths into good ones.

Qualitative behaviorsexhibited by EUREKA

Table 2 presents VanLehn's (1989) list of a number of robust
qualitativeresultsthat have been observedin humanslearning
to solve problems. EUREKA addresses these issues to vary-
ing degrees. Jones and Langley (1994; Jones, 1989) present
anumber of detailed experiments with EUREK A that address
these results. Due to alack of space, we will not present the

Table 2: Robust learning behaviorsidentified in human prob-
lem solvers (VanLehn, 1989).

1. Subjects reduce their verbalizations
of task rules as they becone nore
experienced with practice.

2. lInmprovenent occurs quickly in
know edge-| ean domai ns.

3. There is a power-law rel ationship
bet ween t he speed of perfornmance on
per ceptual -nmotor skills (and
possi bly probl em sol ving skills) and
t he nunber of practice trials.

4. Probl emisonorphs do not becone nore
difficult sinmply by changi ng surface
features of the probl ens.

5. Ot her representati on changes can
make probl emisonorphs substantially
nore difficult.

6. There is asymetric transfer

tasks when one task subsunes

anot her.

Negative transfer is rare

8. "Set" effects (or Einstellung) can
| ead to negative transfer.

9. Spontaneous noticing of a potenti al
analogy is rare.

10. Spontaneous noticing is based on

superficial features.

bet ween

N

details here so we can discuss other issues. EUREKA’S re-
trieval and learning methods directly account for most of the
behaviors identified by VanLehn. Behaviors 1 and 3 require
a bit of extra interpretation, and are not modeled as well as
the others. 1n general, the results indicate that these types of
learning can indeed arise from rather low-level processes.

There are other model s of analogica problem solving (e.g.,
Hammond, 1986; Veloso & Carbonell, 1993), which rely on
indexing methods for analogica retrieval, and generally fo-
cus on learning and reasoning at a higher architectura level
than EUREKA. In contrast, there are other analogical mecha
nismsthat share EUREKA’s spiritin modeling analogical rea-
soning asare atively low-level memory process. The follow-
ing section discusses two of the more well-known model s of
thistype.

L earning to solve problems with ARCS and
MAC/FAC

ARCS(Thagard et a., 1990) and MAC/FAC (Gentner & For-
bus, 1991) are the analogical retrieval agorithms associated
with two rel atively well-known and sophi sticated systems for
analogical elaboration and evaluation: ACME (Holyoak &
Thagard, 1989) and SME (Falkenhainer, Forbus, & Gentner,
1989). It is attractive to consider incorporating these sys-

tems into a learning, problem-solving architecture such as
EUREKA. We fed such an attempt could benefit research on
both sides. On the one hand, EUREKA’s analogical mecha
nisms have been used to model human learning in problem
solving, but it is questionable whether they can model some
of the psychol ogical findingson analogical retrieval and eval-
uation (e.g., Gick & Holyoak, 1983). On the other hand,
ARCS/ACME and MAC/FAC have both been demonstrated
on the retrieval and evaluation results, but they have so far
been used to model analogical retrieva in relative isolation
from other tasks. Although both systems have built-in no-
tions of what makes a good analogy, it is sometimes difficult
to judge why other potential analogs or mappings might not
be better in particular situations. A problem solver provides
acontext by which to judge the quality of anal ogies more ob-
jectively: A good analogy is one that helps solve a problem.
In addition, our work with EUREK A has focused on how ana-
logical reasoning can adapt with experience, but thetwo other
systems have so far not incorporated mechanisms for chang-
ing their behavior over time. The remainder of this paper dis-
cusses the issues we foresee in incorporating the ARCS and
MAC/FAC retrieval mechanisms into a problem-solving sys-
tem that learns. First, let us provide a quick overview of the
ARCS and MAC/FAC retrieval methods.

Retrieval with ARCS

ARCSdividestheretrieval processinto two stages, beginning
with atablelook-up for each concept inthetarget. Thistable
providesalist of al the conceptsin memory that are immedi-
ately related to a concept (e.g., by subordinate, superordi nate,
or part-of relationships). ARCS then considers retrieving any
source that includes at least one of the collection of concepts
related to thetarget. Thishappensby creating aconstraint net-
work of possible concept matches, linked together by excita-
tory and inhibitory links. ARCS only sets up match hypothe-
ses between semantically similar concepts (from the look-up
table). More complete match hypotheses are saved for the
more expensive ACME matcher. In addition, specia nodes
are created to link concepts that have been marked as impor-
tant in various ways. Finaly, activation spreads throughout
the network until the network settles. Each candidate source
receives a retrieval score, computed from the activation of
the concepts in the source. It is not clear, however, that the
ARCS system makes a distinction between candidate sources
that “are retrieved” vs. those that are not.

Retrieval with MAC/FAC

MAC/FAC' takes quite a different approach to retrieval.
MAC computes a content vector for each source stored in
memory. The content vector ignores concepts that represent
simpleobjects, and recordsthe number of occurrences of each
concept that can take other concepts as arguments (e.g., rela
tions and functions). This requires MAC to know the entire

! Note that MAC corresponds to the analogical retrieval mecha-
nism, while FAC is the more expensive elaboration and evaluation
algorithm.

space of such concepts ahead of time. MAC then similarly
computes a content vector for the target of the analogy. The
retrieval scorefor each potential sourceiscomputed asthe dot
product of the source’ s content vector with thetarget’s content
vector. Thisgivesan estimate of the degree to which relations
are shared between the target and each source, and it isvery
quick to compute. The source with the largest dot product is
marked as aretrieved candidate. I1n addition, any other source
with a dot-product value of at least 10% of the highest value
isretrieved.

Changesin retrieval as knowledgeincreases

Having afed for how ARCSand MAC/FAC work, let usturn
our attention to how their behavior might adapt with experi-
ence. We have stressed that our primary focus in EUREKA
is on how learning can change retrieval patterns, leading to
larger changes in problem-solving behavior. Thus, it is most
important for usto examine thetypes of eventsthat allow Eu-
REKA’sretrieval mechanism tolearn, and how they would ap-
plyto MAC/FACor ARCS. Let usfirst consider how the mere
storage of new experiences can influenceretrieval. There are
two aspects of performance to examine when the knowledge
base increases in size. First, new knowledge may change the
time it takes for the retrieval agorithm to execute. Second,
the resulting set of candidate sources may change as new po-
tential sources are added to memory.

Taking the first issue, EUREKA’S spreading-activation
mechanism performs a limited search through memory, and
many portions of memory (those distant from the target con-
cepts) will be completely ignored by the retrieval process.
Jones (1989, 1993) has demonstrated empirically and anal yti-
cally that EUREK A’sform of spreading activationtakesacon-
stant amount of timerel ativeto thesize of memory, even when
implemented as a seria algorithm. On the other hand, the
specific representation or “shape” of memory can sometimes
have a significant impact on retrieval time. Thisis an impor-
tant issue, related to the utility problem (Minton, 1988) in ma-
chinelearning. It would not be desirable for a system to slow
down merely because itsmemory is growing. However, both
ARCS and MAC/FAC are guaranteed to take longer as new
analogical sources are added to memory, because they both
examine every potential source as part of the retrieval pro-
cess. Thismeans that processing is at least linearly related to
the number of potential source analogsin memory. ARCSin-
cludes an even more expensive construction of the constraint
network, which depends on the number of sourcesthat include
concepts similar to those in the target. Thagard et al. (1990)
propose, however, that much of their agorithm can execute
inparalle, so timewill be constant if we assume an arbitrary
number of processors (one per potentia source stored in mem-
ory). Presumably the same istrue of MAC/FAC.

Let us next consider how the mere addition of cases to the
knowledge base can change retrieva patterns. New problem
Situationsin EUREKA’S memory imply new competitors for
activation. Thus, if a newly stored situation shares concepts
with other problem situations, activation levels necessarily

change. In contrast, MAC/FAC independently associates a
content vector and retrieval score with each stored situation.
The retrieval score has absolutely nothing to do with other
stored cases. Thus, adding new cases will have alimited im-
pact on the set of retrieved candidate sources. Because the
retrieval threshold is based on a percentage of the highest-
valued retrieval item, a newly stored problem situation can
only significantly changeretrieva patternsin the cases where
it receives the highest retrieval score.

ARCS uses an activation process that is inherently com-
petitive like Eureka's. Thus, the fina retrieval values for
each candidate source can certainly change as memory grows.
Law, Forbus, and Gentner (1994) showed that increasing the
number of cases can be quite detrimenta to ARCS, but did
not adversdly affect MAC/FAC’sbehavior. Presumably, sim-
ilar detrimental effects would be seen in EUREKA’s retrieval
mechani sm as cases begin to compete with each other. On the
other hand, EUREKA (and most likely ARCS) can also ben-
efit from the addition of appropriate knowledge. MAC/FAC
can only benefit in the sense that it may have a new case to
retrieve, but it cannot benefit in any competitive sense. Thus,
we interpret Law, Forbus, and Gentner’s result not as a con-
demnation of competitiveretrieval algorithms, but as further
evidence of the importance of associating a learning method
with retrieval.

Tuning retrieval with experience

The second aspect of learning has to do with tuning the
retrieval process to improve and focus itself with experi-
ence. Again, EUREKA achieves thisby increasing link trace
strengths associated with stored problem situationswhen they
aid in the solution of new problem situations. With appro-
priate experiences, the system will eventually retrieve fewer
items, but they will have higher estimated quality. None of
the presentations of ARCS or MAC/FAC have addressed the
issueof learning. Thus, rather than comparing | earning mech-
anisms, we are free to hypothesizethe types of |earning mech-
anisms that might be amenable to ARCS and MAC/FAC.
ARCS has a competitive activation-based retrieval mecha-
nism, so it istempting to assume that it would benefit from a
learning mechanism similar to EUREKA’S. However, it isim-
portant to notethat activation spreads through avery different
type of network in each case. EUREKA’S semantic network
is along-term structure encoding the representation of prob-
lem situationsand the rel ationsand objectsthey share. In con-
trast, the constraint networksin ARCS are constructed anew
each timeatarget is presented, and represent potential waysto
match the concepts in each source to the concepts in the tar-
get. Despitethese differences, there still seems to be some po-
tential to alteringlink strengthsin ARCS. Some link strengths
are fixed measures of the degree of similarity between differ-
ently related concepts (e.g., synonymshave asimilarity value
of 0.6, superordinatesavalue of 0.3, and subordinatesava ue
of 0.2). There does not seem to be any reason in principle
that these similarity measures could not belearned for specific
concept pairs, rather than fixed by these abstract types. Thisis

an attractive option, because it would all ow amore pragmatic
view of similarity that adapts to problem-solving experience,
rather than requiring afixed tableof similaritiesto beprovided
to the system. In addition, ARCS gives extra strength to con-
cepts that are marked as “important” and mappings that are
marked as “presumed”. These marks are specified and fixed
beforeretrieval begins. One of the benefits of a performance
task, such as problem solving, isthat it is possible to induce
important concepts over time. Perhaps such an induction al-
gorithm could use experience to adapt the measure of “impor-
tance” of concepts over time.

MAC/FAC is another story entirely, because it does not
share the notion of competition between candidate analogi-
cal sources. Aswe have mentioned above, retrieval compu-
tations are independent for each target-source pair. However,
the one thing that is common across candidate sources is the
algorithm for computing the content vector. When construct-
ing the vector, MAC/FAC counts each occurrence of every
feature. These counts could instead be weighted by param-
etersfor each feature, which would be tuned with experience.

Thereisapotentially more interesting aternativefor learn-
ing. It amost seems that there is a built-in assumption to
MAC/FAC: changesin anaogical retrieval should only arise
through a reformulation of the representation of the sources
and targets. It is not clear whether the creators of MAC/FAC
intend thisto be afixed, architectural constraint, but it is cer-
tainly interesting to view it that way. In this case, the only
way for MAC/FAC to tune its retrieval patterns would be
for it to change the representation of its stored cases. These
changes would be based on knowledge of how the retrieva
scoring mechanism works, and would be designed to award
useful candidate sources higher scores in future similar situ-
ations. It is not clear to us what the details of such a mecha-
nism would be. However, it would provide a pragmatic ap-
proach to changing representation within a cognitive agent.
The agent would change its representations in response to
problem-solving success (or failure), and would change them
in such away asto improve future behavior.

Summary

EUREKA providesamode of analogical retrieva in problem
solving. Inaddition, itincorporatesal earning mechanism that
focuseson tuningtheretrieva of candidate anal ogical sources
from memory. These relatively low-level mechanisms give
rise to larger qualitative changes in problem-solving behav-
ior. We have used the EUREKA model to explain the primary
learning effects that have been identified in human problem
solvers. Because the system includes a memory-based mech-
anism for the retrieval of analogies, it is natura to compare
this mechanism to ARCS and MAC/FAC, two well-known
retrieval mechanisms in the cognitive science literature. We
have used thelessons|earned from building EUREK A to guide
our anaysis of how ARCS and MAC/FAC would fit into the
context of a performance task (problem solving) where learn-
ing can and should take place. EUREKA demonstrates that
low-level mechanisms can have a significant impact on high-

level behavior. It will be interesting to see what qualitative
differences arise in learning problem solvers that incorporate
the ARCS or MAC/FAC agorithms.

References

Anderson, J. R. (1976). Language, memory, and thought.
Hillsdale, NJ: Lawrence Erlbaum.

Ernst, G., & Newdl, A. (1969). GPS A case study in gener-
ality and problem solving. New York: Academic Press.

Fakenhainer, B., Forbus, K., & Gentner, D. (1989). The
Structure-Mapping Engine: Algorithm and examples. Ar-
tificial Intelligence, 41, 1-63.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence, 2, 189-208.

Gentner, D., & Forbus, K. (1991). MAC/FAC: A modd of
similarity-based retrieval. In Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society. Hills-
dale, NJ: Lawrence Erlbaum.

Gick, M., & Holyoak, K. (1983). Schema induction and ana-
logicdl transfer. Cognitive Psychology, 15, 1-38.

Hammond, K. J. (1986). Case-based planning: Anintegrated
theory of planning, earning, and memory. Doctoral disser-
tation. Yale University.

Holyoak, K., & Thagard, P. (1989). Analogica mapping by
congtraint satisfaction. Cognitive Psychology, 15, 1-38.

Jones, R. M. (1989). A modedl of retrieval in problem solv-
ing. Doctord dissertation. Department of Information and
Computer Science, University of California, Irvine.

Jones, R. M. (1993). Problem solving viaanalogical retrieval
and analogical search control. In S. Chipman & A. Mey-
rowitz (Eds.), Machine learning: Induction, anal ogy, and
discovery. Boston: Kluwer Academic.

Jones, R. M., & Langley, P. (1994). Learning and problem
solving with limited memory. Manuscript in preparation.

Jones, R. M., & VanLehn, K. (1994). Acquisition of
children’s addition strategies: A model of impasse-free,
knowledge-level learning. Machine Learning, 16, 11-36.

Langley, P, & Allen, J. A. (1991). The acquisition of hu-
man planning expertise. InL. A. Birnbaum & G. C. Collins
(Eds.), MachineLearning: Proceedingsof theEighthInter-
national Workshop. Los Altos, CA: Morgan Kaufmann.

Law, K., Forbus, K. D., & Gentner, D. (1994). Simulat-
ing similarity-based retrieval: A comparison of ARCS and
MAC/FAC. In A. Ram & K. Eisdt (Eds.), Proceedings of
the Sixteenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Lawrence Erlbaum.

Minton, S. (1988). Learning effective search control knowl-
edge: An explanation-based approach. Boston: Kluwer
Academic.

Thagard, P, Holyoak, K., Nelson, G., & Gochfeld, D. (1990).
Analogical retrieval by constraint satisfaction. Artificial In-
telligence, 46, 259-310.

VanLehn, K. (1989). Problem solving and cognitive skill ac-
quisition. In M. |. Posner (Ed.), Foundations of cognitive
science. Cambridge, MA: MIT Press.

Veloso, M. M., & Carbonell, J. G. (1993). Derivationa anal-
ogy in PRODIGY: Automating case acquisition, storage,
and utilization. Machine Learning, 10, 249-278.

