
Disovering Eosystem Modelsfrom Time-Series DataDileep George,1 Kazumi Saito,2 Pat Langley,1Stephen Bay,1 and Kevin R. Arrigo31 Computational Learning Laboratory, CSLIStanford University, Stanford, California 94305 USAfdil,langley,sbayg�apres.stanford.edu2 NTT Communiation Siene Laboratories2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japansaito�slab.kel.ntt.o.jp3 Department of Geophysis, Mithell BuildingStanford University, Stanford, CA 94305 USAarrigo�pangea.stanford.eduAbstrat. Eosystem models are used to interpret and predit the in-terations of speies and their environment. In this paper, we address thetask of induing eosystem models from bakground knowledge and time-series data, and we review IPM, an algorithm that addresses this prob-lem. We demonstrate the system's ability to onstrut eosystem modelson two di�erent Earth siene data sets. We also ompare its behaviorwith that produed by a more onventional autoregression method. Inlosing, we disuss related work on model indution and suggest dire-tions for further researh on this topi.1 Introdution and MotivationEosystem models aim to simulate the behavior of biologial systems as they re-spond to environmental fators. Suh models typially take the form of algebraiand di�erential equations that relate ontinuous variables, often through feed-bak loops. The qualitative relationships are typially well understood, but thereis frequently ambiguity about whih funtional forms are appropriate and evenless ertainty about the preise parameters. Moreover, the spae of andidatemodels is too large for human sientists to examine manually in any systematiway. Thus, omputational methods that an onstrut and parameterize eosys-tem models should prove useful to Earth sientists in explaining their data.Unfortunately, most existing methods for knowledge disovery and data min-ing ast their results as deision trees, rules, or some other notation devised byomputer sientists. These tehniques an often indue models with high pre-ditive auray, but they are seldom interpretable by sientists, who are usedto di�erent formalisms. Methods for equation disovery produe knowledge informs that are familiar to Earth sientists, but most generate desriptive mod-els rather than explanatory ones, in that they ontain no theoretial terms andmake little ontat with bakground knowledge.



In this paper, we present an approah to disovering dynamial eosystemmodels from time-series data and bakground knowledge. We begin by desribingIPM, an algorithm for induing proess models that, we maintain, should beinterpretable by Earth sientists. After this, we demonstrate IPM's apabilitieson two modeling tasks, one involving data on a simple predator-prey eosystemand another onerning more omplex data from the Antarti oean. We losewith a disussion of related work on model disovery in sienti� domains andprospets for future researh on the indution of eosystem models.2 An Approah to Indutive Proess ModelingAs desribed above, we are interested in omputational methods that an dis-over explanatory models for the observed behavior of eosystems. In an earlierpaper (Langley et al., in press), we posed the task of induing proess mod-els from time-series data and presented an initial algorithm for addressing thisproblem. We de�ned a quantitative proess model as a set of proesses, eahspeifying one or more algebrai or di�erential equations that denote ausal re-lations among variables, along with optional ativation onditions. At least twoof the variables must be observed, but a proess model an also inlude unob-served theoretial terms.The IPM algorithm generates proess models of this sort from training dataabout observable variables and bakground knowledge about the domain. Thisknowledge inludes generi proesses that have a form muh like those in mod-els, in that they relate variables with equations and may inlude onditions. Thekey di�erenes are that a generi proess does not ommit to spei� variables,although it onstrains their types, and it does not ommit to partiular param-eter values, although it limits their allowed ranges. Generi proesses are thebuilding bloks from whih the system onstruts its spei� models.More spei�ally, the user provides IPM with three inputs that guide itsdisovery e�orts:1. A set of generi proesses, inluding onstraints on variable types and pa-rameter values;2. A set of spei� variables that should appear in the model, inluding theirnames and types;3. A set of observations for two or more of the variables as they vary over time.In addition, the system requires three ontrol parameters: the maximum num-ber of proesses allowed in a model, the minimum number of proesses, andthe number of times eah generi proess an our. Given this information, thesystem �rst generates all instantiations of generi proesses with spei� vari-ables that are onsistent with the type onstraints. After this, it �nds all waysto ombine these instantiated proesses to form instantiated models that haveaeptable numbers of proesses. The resulting models refer to spei� variables,but their parameters are still unknown. Next, IPM uses a nonlinear optimiza-tion routine to determine these parameter values. Finally, the system selets andreturns the andidate that produes the smallest squared error on the trainingdata, modulated by a minimum desription length riterion.



The proedure for generating all aeptable model strutures is straightfor-ward, but the method for parameter optimization deserves some disussion. Theaim is to �nd, for eah model struture, parameters that minimize the model'ssquared preditive error on the observations. We have tried a number of stan-dard optimization algorithms, inluding Newton's method and the Levenberg-Marquardt method, but we have found these tehniques enounter problems withonvergene and loal optima. In response, we designed and implemented ourown parameter-�tting method, whih has given us the best results to date.A nonlinear optimization algorithm attempts to �nd a set of parameters �that minimizes an objetive funtion E(�). In our ase, we de�ne E as thesquared error between the observed and predited time series:E(�) = TXt=1 JXj=1(ln(xoj (t))� ln(xj(t)))2 ; (1)where xoj and xj represent the observed and predited values of J observedvariables, t denotes time instants, and ln(�) is the natural logarithmi funtion.Standard least-squares estimation is widely reognized as relatively brittlewith respet to outliers in samples that ontain gross error. Instead, as shown inEquation (1), we minimize the sum of squared di�erenes between logarithmi-ally transformed variables, whih is one approah to robust estimation proposedby Box and Cox (1964). In addition, we maintain positivity onstraints on pro-ess variables by performing a logarithmi transformation on the di�erentialequations in whih they appear. Predited values for xj are obtained by solv-ing �nite-di�erene approximations of the di�erential equations spei�ed in themodel. The parameter vetor � inorporates all unknowns, inluding any initialonditions for unobserved variables needed to solve the di�erential equations.In order to minimize our error funtion, E, de�ned as a sum of squared er-rors, we an alulate its gradient vetor with respet to a parameter vetor. Forthis purpose, we borrowed the basi idea of error bakpropagation through time(Rumelhart, Hinton, & Williams, 1986), frequently used for learning in reurrentneural networks. However, the task of proess model indution required us to ex-tend this method to support the many di�erent funtional forms that an our.Our urrent solution relies on hand-rafted derivatives for eah generi proess,but it utilizes the additive nature of proess models to retain the modularity ofbakpropagation and its ompositional harater. These in turn let the methodarry out gradient searh to �nd parameters for eah model struture.Given a model struture and its orresponding bakpropagation equations,our parameter-�tting algorithm arries out a seond-order gradient searh (Saito& Nakano, 1997). By adopting a quasi-Newton framework (e.g., Luenberger,1984), this alulates desent diretion as a partial Broyden-Flether-Goldfarb-Shanno update and then alulates the step length as the minimal point of aseond-order approximation. In earlier experiments on a variety of data sets,this algorithm worked quite eÆiently as ompared to standard gradient searhmethods. Of ourse, this approah does not eliminate all problems with loaloptima; thus, for eah model struture, IPM runs the parameter-�tting algorithmten times with random initial parameter values, then selets the best result.



Using these tehniques, IPM overomes many of the problems with loalminima and slow onvergene that we enountered in our early e�orts, givingreasonable performane aording to the squared error riterion. However, weantiipate that solving more omplex problems will require the utilization ofeven more sophistiated algorithms for non-linear minimization.However, reliane on squared error as the sole optimization riterion tendsto selet overly omplex proess models that over�t the training data. Instead,IPM omputes the desription length of eah parameterized model as the sum ofits omplexity and the information ontent of the data left unexplained by themodel. We de�ne omplexity as the number of free parameters and variables ina model and the unexplained ontent as the number of bits needed to enode thesquared error of the model. Rather than seleting the model with the lowest error,IPM prefers the andidate with the shortest desription length, thus balaningmodel omplexity against �t to the training data.3 Modeling Predator-Prey InterationNow we are ready to onsider IPM's operation on an eosystem modeling task.Within Earth siene, models of predator-prey systems are among the simplestin terms of the number of variables and parameters involved, making them goodstarting points for our evaluation. We fous here on the protozoan system om-posed of the predator P. aurelia and the prey D. nasutum, whih is well knownin population eology. Jost and Adiriti (2000) present time-series data for thissystem, reovered from an earlier report by Veilleux (1976), that are now avail-able on the World Wide Web. The data set inludes measurements for the twospeies' populations at 12-hour intervals over 35 days, as shown in Figure 1.The data are fairly smooth over the entire period, with observations at regularintervals and several lear yles. We deided to use these observations as aninitial test of IPM's ability to indue an eosystem model.3.1 Bakground Knowledge about Predator-Prey InterationA sientist who wants IPM to onstrut explanatory models of his observationsmust �rst provide a set of generi proesses that enode his knowledge of thedomain. Table 1 presents a set of proesses that we extrated from our readingof the Jost and Adiriti artile. As illustrated, eah generi proess spei�es aset of generi variables with type onstraints (in braes), a set of parameterswith ranges for their values (in brakets), and a set of algebrai or di�erentialequations that enode ausal relations among the variables (where d[X; t; 1℄ refersto the �rst derivative of X with respet to time). Eah proess an also inludeone or more onditions, although none appear in this example.The table shows �ve suh generi proesses. Two strutures, predation hollingand predation volterra, desribe alternative forms of feeding; both ause thepredator population to inrease and the prey population to derease, but theydi�er in their preise funtional forms. Two additional proesses { logisti growthand exponential growth { haraterize the manner in whih a speies' population



Table 1. A set of generi proesses for predator-prey models.generi proess logisti growth; generi proess exponential growth;variables Sfspeiesg; variables Sfspeiesg;parameters  [0; 10℄; � [0; 10℄; parameters � [0; 10℄;equations d[S; t; 1℄ =  � S � (1� � � S); equations d[S; t; 1℄ = � � S;generi proess predation volterra; generi proess exponential deay;variables S1fspeiesg; S2fspeiesg; variables Sfspeiesg;parameters � [0; 10℄; � [0; 10℄; parameters � [0; 1℄;equations d[S1; t; 1℄ = �1 � � � S1 � S2; equations d[S; t; 1℄ = �1 � � � S;d[S2; t; 1℄ = � � � � S1 � S2;generi proess predation holling;variables S1fspeiesg; S2fspeiesg;parameters � [0; 1℄;  [0; 1℄; � [0; 1℄;equations d[S1; t; 1℄ = �1 �  � S1 � S2=(1 + � �  � S1);d[S2; t; 1℄ = � �  � S1 � S2=(1 + � �  � S1);inreases in an environment with unlimited resoures, again di�ering mainly inthe forms of their equations. Finally, the exponential deay proess refers to thederease in a speies' population due to natural death. All �ve proesses aregeneri in the sense that they do not ommit to spei� variables. For example,the generi variable S in exponential deay does not state whih partiular speiesdies when it is ative. IPM must assign variables to these proesses before it anutilize them to onstrut andidate models.Although the generi proesses in Table 1 do not ompletely enode knowl-edge about predator-prey dynamis, they are adequate for the purpose of eval-uating the IPM algorithm on the Veilleux data. If needed, a domain sientistould add more generi proesses or remove ones that he onsiders irrelevant.The user is responsible for speifying an appropriate set of generi proesses fora given modeling task. If the proesses reruited for a partiular task do notrepresent all the mehanisms that are ative in that environment, the induedmodels may �t the data poorly. Similarly, the inlusion of unneessary proessesan inrease omputation time and heighten the hanes of over�tting the data.Before the user an invoke IPM, he must also provide the system with thevariables that the system should onsider inluding in the model, along with theirtypes. This information inludes both observable variables, in this ase predatorand prey, both with type speies, and unobservable variables, whih do not arisein this modeling task. In addition, he must state the minimum aeptable numberof proesses (in this ase one), the maximum number of proesses (four), andthe number of times eah generi proess an our (two).3.2 Induing Models for Predator-Prey InterationGiven this information, IPM uses the generi proesses in Table 1 to generate allpossible model strutures that relate the two speies P. aurelia and D. nasutum,both of whih are observed. In this ase, the system produed 228 andidate



Table 2. Proess model indued for predator-prey interation.model Predator Prey;variables Predator;Prey;observables Predator; Prey;proess exponential deay;equations d[Predator; t; 1℄ = �1 � 1:1843 � Predator;proess logisti growth;equations d[Prey; t; 1℄ = 2:3049 � Prey � (1� 0:0038 � Prey);proess predation volterra;equations d[Prey; t; 1℄ = �1 � 0:0298 � Prey � Predator;d[Predator; t; 1℄ = 0:4256 � 0:0298 � Prey � Predator;strutures, for eah of whih it invoked the parameter-�tting routine desribedearlier. Table 2 shows the parameterized model that the system seleted fromthis set, whih makes general biologial sense. It states that, left in isolation, theprey (D. nasutum) population grows logistially, while the predator (P. aurelia)population dereases exponentially. Predation leads to more predators and tofewer prey, ontrolled by multipliative equations that add 0.4256 predators foreah prey that is onsumed.Qualitatively, the model predits that, when the predator population is high,the prey population is depleted at a faster rate. However, a redution in theprey population lowers the rate of inrease in the predator population, whihshould produe an osillation in both populations. Indeed, Figure 1 shows thatthe model's predited trajetories produe suh an osillation, with nearly thesame period as that found in the data reported by Jost and Adiriti. The modelprodues a squared error of 18:62 on the training data and a minimum desriptionlength sore of 286:68. The r2 between the predited and observed values is 0.42for the prey and 0.41 for the predator, whih indiates that the model explainsa substantial amount of the observed variation.3.3 Experimental Comparison with AutoregressionAlternative approahes to indution from time-series data, suh as multivariateautoregression, do not yield the explanatory insight of proess models. However,they are widely used in pratie, so naturally we were interested in how the twomethods ompare in their preditive abilities. To this end, we ran the Matlabpakage ARFit (Shneider & Neumaier, 2001) on the Veilleux data to infer thestruture and parameters of an autoregressive model. This uses a stepwise least-squares proedure to estimate parameters and a Bayesian riterion to selet thebest model. For the runs reported here, we let ARFit hoose the best modelorder from zero to �ve.To test the two methods' abilities to foreast future observations, we dividedthe time series into suessive training and test sets while varying their relativesizes. In partiular, we reated 35 training sets of size n = 35 : : : 69 by seleting
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Fig. 1. Predited and observed log onentrations of protozoan prey (left) and predator(right) over a period of 36 hours.the �rst n examples of the time series, eah with a orresponding test set thatontained all suessive observations. In addition to using these training setsto indue the IPM and autoregressive models, we also used their �nal values toinitialize simulation with these models. Later preditions were based on preditedvalues from earlier in the trajetory. For example, to make preditions for t = 40,both the proess model and an autoregressive model of order one would utilizetheir preditions for t = 39, whereas an autoregressive model of order two woulddraw on preditions for t = 38 and t = 39.Figure 2 plots the resulting urves for the models indued by IPM, ARFit,and a onstant approximator. In every run, ARFit seleted a model of order one.Both IPM and autoregression have lower error than the straw man, exept latein the urve, when few training ases are available. The �gure also shows that,for 13 to 21 test instanes, the preditive abilities of IPM's models are roughlyequal to or better than those for the autoregressive models. Thus, IPM appearsable to infer models whih are as aurate as those found by an autoregressivemethod that is widely used, while providing interpretability that is laking inthe more traditional models.4 Modeling an Aquati EosystemAlthough the predator-prey system we used in the previous setion was appropri-ate to demonstrate the apabilities of the IPM algorithm, rarely does one �ndsuh simple modeling tasks in Earth siene. Many eosystem models involveinterations not only among the speies but also between the speies and envi-ronmental fators. To further test IPM's ability, we provided it with knowledgeand data about the aquati eosystem of the Ross Sea in Antartia (Arrigoet al., in press). The data ame from the ROAVERRS program, whih involvedthree ruises in the austral spring and early summers of 1996, 1997, and 1998.The measurements inluded time-series data for phytoplankton and nitrate on-entrations, as shown in Figure 3.
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Fig. 2. Preditive error for indued proess models, autoregressive models, and on-stant models, vs. the number of projeted time steps, on the predator-prey data.4.1 Bakground Knowledge about Aquati EosystemsTaking into aount knowledge about aquati eosystems, we rafted the set ofgeneri proesses shown in Table 3. In ontrast to the omponents for predator-prey systems, the exponential deay proess now involves not only redution in aspeies' population, but also the generation of residue as a side e�et. Formationof this reside is the mehanism by whih minerals and nutrients return to theeosystem. Knowledge about the generation of residue is also reeted in theproess predation.The generi proess nutrient uptake enodes knowledge that plants derivetheir nutrients diretly from the environment and do not depend on other speiesfor their survival. Two other proesses { remineralization and onstant inow {onvey information about how nutrients beome available in eosystems Finally,the growth proess posits that some speies an grow in number independent ofpredation or nutrient uptake.As in the �rst domain, our approah to proess model indution requires theuser to speify the variables to be onsidered, along with their types. In thisase, we knew that the Ross Sea eosystem inluded two speies, phytoplanktonand zooplankton, with the onentration of the �rst being measured in our dataset and the seond being unobserved. We also knew that the sea ontainednitrate, an observable nutrient, and detritus, an unobserved residue generatedwhen members of a speies die.4.2 Induing Models for an Aquati EosystemGiven this bakground knowledge about the Ross Sea eosystem and data fromthe ROAVERRS ruises, we wanted IPM to �nd a proess model that explainedthe variations in these data. To make the system's searh tratable, we intro-



Table 3. Five generi proesses for aquati eosystems with onstraints on their vari-ables and parameters.generi proess exponential deay; generi proess onstant inow;variables Sfspeiesg; Dfdetritusg; variables Nfnutrientg;parameters � [0; 10℄; parameters � [0; 10℄;equations d[S; t; 1℄ = �1 � � � S; equations d[N; t; 1℄ = �;d[D; t; 1℄ = � � S;generi proess nutrient uptake; generi proess remineralization;variables Sfspeiesg; Nfnutrientg; variables Nfnutrientg; Dfdetritusg;parameters � [0; 10℄; � [0; 10℄; parameters  [0; 10℄ ;onditions N > � ; equations d[N; t; 1℄ =  �D ;equations d[S; t; 1℄ = � � S; d[D; t; 1℄ = �1 �  �D;d[N; t; 1℄ = �1 � � � � � S;generi proess predation;variables S1fspeiesg; S2fspeiesg; Dfdetritusg;parameters � [0; 10℄;  [0; 10℄;equations d[S1; t; 1℄ =  � � � S1;d[D; t; 1℄ = (1� ) � � � S1;d[S2; t; 1℄ = �1 � � � S1;dued further onstraints by restriting eah generi proess to our no morethan twie and onsidering models with no fewer than three proesses andno more than six. Using the four variables desribed above { Phytofspeiesg,Zoofspeiesg, Nitratefnutrientg, and Detritusfresidueg { IPM ombined thesewith the available generi proesses to generate some 200 model strutures. SinePhyto and Nitrate were observable variables, the system onsidered only thosemodels that inluded equations with these variables on their left-hand sides.The parameter-�tting routine and the desription length riterion seleted themodel in Table 4, whih produed a mean squared error of 23.26 and a desrip-tion length of 131.88. Figure 3 displays the log values this andidate preditsfor phytoplankton and nitrate, along with those observed in the �eld. The r2value is 0.51 for Phyto but only 0.27 for Nitrate, whih indiates that the modelexplains substantially less of the variane than in our �rst domain.Note that the model inludes only three proesses and that it makes no refer-ene to zooplankton. The �rst proess states that the phytoplankton populationdies away at an exponential rate and, in doing so, generates detritus. The seondproess involves the growth of phytoplankton, whih inreases its population asit absorbs the nutrient nitrate. This growth happens only when the nitrate on-entration is above a threshold, and it auses a derease in the onentrationof the nutrient. The �nal proess states that the residue is onverted to theonsumable nitrate at a onstant rate.In fat, the model with the lowest squared error inluded a predation pro-ess whih stated that zooplankton feeds on phytoplankton, thereby inreasingthe former population, dereasing the latter, and produing detritus. However,



Table 4. Indued model for the aquati eosystem of the Ross Sea.model Aquati Eosystem;variables Phyto;Nitrate;Detritus;Zoo;observables Phyto;Nitrate;proess exponential deay 1;equations d[Phyto; t; 1℄ = �1 � 1:9724 � Phyto;d[Detritus; t; 1℄ = 1:9724 � Phyto;generi proess nutrient uptake;onditions Nitrate > 3:1874;equations d[Phyto; t; 1℄ = 3:6107 � Phyto;d[Nitrate; t; 1℄ = �1 � 0:3251 � 3:6107 � Phyto;generi proess remineralization;equations d[Nitrate; t; 1℄ = 0:032 �Detritus;d[Detritus; t; 1℄ = �1 � 0:032 �Detritus;IPM alulated that the improved �t was outweighed by the ost of inludingan additional proess in the model. This deision may well have resulted froma small population of zooplankton, for whih no measurements were availablebut whih is onsistent with other evidene about the Ross Sea eosystem. Wesuspet that, given a more extended time series, IPM would rank this modelas best even using its desription length, but this is an empirial question thatmust await further data.5 DisussionThere is a large literature on the subjet of eosystem modeling. For example,many Earth sientists develop their models in STELLA (Rihmond et al., 1987),an environment that lets one speify quantitative models and simulate theirbehavior over time. However, work in this and similar frameworks has fousedalmost entirely on the manual onstrution and tuning of models, whih involvesmuh trial and error. Reently, inreased omputing power has led a few Earthsientists to try automating this ativity. For instane, Morris (1997) reportsa method for �tting a predator-prey model to time-series data, whereas Jostand Adiriti (2000) use omputation to determine whih funtional forms bestmodel similar data. Our approah has a ommon goal, but IPM an handle moreomplex models and uses domain knowledge about generi proesses to onstrainsearh through a larger model spae.On another front, our approah di�ers from most earlier work on equationdisovery (e.g., Washio et al., 2000) by fousing on di�erential equation modelsof dynamial systems. The most similar researh omes from Todorovski andD~zeroski (1997), Bradley et al. (1999), and Koza et al. (2001), who also reportmethods that indue di�erential equation models by searhing for model stru-tures and parameters that �t time-series data. Our framework extends theirs by
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Fig. 3. Predited and observed log onentrations of phytoplankton (left) and nitrate(right) in the Ross Sea over 31 days.fousing on proesses, whih play a entral role in many sienes and providea useful framework for enoding domain knowledge that onstrains searh andprodues more interpretable results. Also, beause IPM an onstrut modelsthat inlude theoretial terms, it supports aspets of abdution (e.g., Josephson,2000) as well as indution.Still, however promising our approah to eosystem modeling, onsiderablework remains before it will be ready for use by pratiing sientists. Some hand-rafted models ontain tens or hundreds of equations, and we must �nd waysto onstrain searh further if we want our system to disover suh models. Thenatural soure of onstraints is additional bakground knowledge. Earth sien-tists often know the qualitative proesses that should appear in a model (e.g.,that one speies preys on another), even when they do not know their funtionalforms. Moreover, they typially organize large models into modules that are rel-atively independent, whih should further redue searh. Future versions of IPMshould take advantage of this knowledge, along with more powerful methods forparameter �tting that will inrease its hanes of �nding the best model.In summary, we believe that indutive proess modeling provides a valuablealternative to the manual onstrution of eosystem models whih ombines do-main knowledge, heuristi searh, and data in a powerful way. The resultingmodels are ast in a formalism reognizable to Earth sientists and they refer toproesses that domain experts will �nd familiar. Our initial results on two eosys-tem modeling tasks are enouraging, but we must still extend the framework ina number of diretions before it an serve as a pratial sienti� aid.AknowledgementsThis work was supported by the NTT Communiation Siene Laboratories,Nippon Telegraph and Telephone Corporation. We thank Tasha Reddy andAlessandro Tagliabue for preparing the ROAVERRS data and for disussionsabout eosystem proesses. We also thank Sa�so D�zeroski and Ljup�o Todorovskifor useful disussions about approahes to indutive proess modeling.
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