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t. E
osystem models are used to interpret and predi
t the in-tera
tions of spe
ies and their environment. In this paper, we address thetask of indu
ing e
osystem models from ba
kground knowledge and time-series data, and we review IPM, an algorithm that addresses this prob-lem. We demonstrate the system's ability to 
onstru
t e
osystem modelson two di�erent Earth s
ien
e data sets. We also 
ompare its behaviorwith that produ
ed by a more 
onventional autoregression method. In
losing, we dis
uss related work on model indu
tion and suggest dire
-tions for further resear
h on this topi
.1 Introdu
tion and MotivationE
osystem models aim to simulate the behavior of biologi
al systems as they re-spond to environmental fa
tors. Su
h models typi
ally take the form of algebrai
and di�erential equations that relate 
ontinuous variables, often through feed-ba
k loops. The qualitative relationships are typi
ally well understood, but thereis frequently ambiguity about whi
h fun
tional forms are appropriate and evenless 
ertainty about the pre
ise parameters. Moreover, the spa
e of 
andidatemodels is too large for human s
ientists to examine manually in any systemati
way. Thus, 
omputational methods that 
an 
onstru
t and parameterize e
osys-tem models should prove useful to Earth s
ientists in explaining their data.Unfortunately, most existing methods for knowledge dis
overy and data min-ing 
ast their results as de
ision trees, rules, or some other notation devised by
omputer s
ientists. These te
hniques 
an often indu
e models with high pre-di
tive a

ura
y, but they are seldom interpretable by s
ientists, who are usedto di�erent formalisms. Methods for equation dis
overy produ
e knowledge informs that are familiar to Earth s
ientists, but most generate des
riptive mod-els rather than explanatory ones, in that they 
ontain no theoreti
al terms andmake little 
onta
t with ba
kground knowledge.



In this paper, we present an approa
h to dis
overing dynami
al e
osystemmodels from time-series data and ba
kground knowledge. We begin by des
ribingIPM, an algorithm for indu
ing pro
ess models that, we maintain, should beinterpretable by Earth s
ientists. After this, we demonstrate IPM's 
apabilitieson two modeling tasks, one involving data on a simple predator-prey e
osystemand another 
on
erning more 
omplex data from the Antar
ti
 o
ean. We 
losewith a dis
ussion of related work on model dis
overy in s
ienti�
 domains andprospe
ts for future resear
h on the indu
tion of e
osystem models.2 An Approa
h to Indu
tive Pro
ess ModelingAs des
ribed above, we are interested in 
omputational methods that 
an dis-
over explanatory models for the observed behavior of e
osystems. In an earlierpaper (Langley et al., in press), we posed the task of indu
ing pro
ess mod-els from time-series data and presented an initial algorithm for addressing thisproblem. We de�ned a quantitative pro
ess model as a set of pro
esses, ea
hspe
ifying one or more algebrai
 or di�erential equations that denote 
ausal re-lations among variables, along with optional a
tivation 
onditions. At least twoof the variables must be observed, but a pro
ess model 
an also in
lude unob-served theoreti
al terms.The IPM algorithm generates pro
ess models of this sort from training dataabout observable variables and ba
kground knowledge about the domain. Thisknowledge in
ludes generi
 pro
esses that have a form mu
h like those in mod-els, in that they relate variables with equations and may in
lude 
onditions. Thekey di�eren
es are that a generi
 pro
ess does not 
ommit to spe
i�
 variables,although it 
onstrains their types, and it does not 
ommit to parti
ular param-eter values, although it limits their allowed ranges. Generi
 pro
esses are thebuilding blo
ks from whi
h the system 
onstru
ts its spe
i�
 models.More spe
i�
ally, the user provides IPM with three inputs that guide itsdis
overy e�orts:1. A set of generi
 pro
esses, in
luding 
onstraints on variable types and pa-rameter values;2. A set of spe
i�
 variables that should appear in the model, in
luding theirnames and types;3. A set of observations for two or more of the variables as they vary over time.In addition, the system requires three 
ontrol parameters: the maximum num-ber of pro
esses allowed in a model, the minimum number of pro
esses, andthe number of times ea
h generi
 pro
ess 
an o

ur. Given this information, thesystem �rst generates all instantiations of generi
 pro
esses with spe
i�
 vari-ables that are 
onsistent with the type 
onstraints. After this, it �nds all waysto 
ombine these instantiated pro
esses to form instantiated models that havea

eptable numbers of pro
esses. The resulting models refer to spe
i�
 variables,but their parameters are still unknown. Next, IPM uses a nonlinear optimiza-tion routine to determine these parameter values. Finally, the system sele
ts andreturns the 
andidate that produ
es the smallest squared error on the trainingdata, modulated by a minimum des
ription length 
riterion.



The pro
edure for generating all a

eptable model stru
tures is straightfor-ward, but the method for parameter optimization deserves some dis
ussion. Theaim is to �nd, for ea
h model stru
ture, parameters that minimize the model'ssquared predi
tive error on the observations. We have tried a number of stan-dard optimization algorithms, in
luding Newton's method and the Levenberg-Marquardt method, but we have found these te
hniques en
ounter problems with
onvergen
e and lo
al optima. In response, we designed and implemented ourown parameter-�tting method, whi
h has given us the best results to date.A nonlinear optimization algorithm attempts to �nd a set of parameters �that minimizes an obje
tive fun
tion E(�). In our 
ase, we de�ne E as thesquared error between the observed and predi
ted time series:E(�) = TXt=1 JXj=1(ln(xoj (t))� ln(xj(t)))2 ; (1)where xoj and xj represent the observed and predi
ted values of J observedvariables, t denotes time instants, and ln(�) is the natural logarithmi
 fun
tion.Standard least-squares estimation is widely re
ognized as relatively brittlewith respe
t to outliers in samples that 
ontain gross error. Instead, as shown inEquation (1), we minimize the sum of squared di�eren
es between logarithmi-
ally transformed variables, whi
h is one approa
h to robust estimation proposedby Box and Cox (1964). In addition, we maintain positivity 
onstraints on pro-
ess variables by performing a logarithmi
 transformation on the di�erentialequations in whi
h they appear. Predi
ted values for xj are obtained by solv-ing �nite-di�eren
e approximations of the di�erential equations spe
i�ed in themodel. The parameter ve
tor � in
orporates all unknowns, in
luding any initial
onditions for unobserved variables needed to solve the di�erential equations.In order to minimize our error fun
tion, E, de�ned as a sum of squared er-rors, we 
an 
al
ulate its gradient ve
tor with respe
t to a parameter ve
tor. Forthis purpose, we borrowed the basi
 idea of error ba
kpropagation through time(Rumelhart, Hinton, & Williams, 1986), frequently used for learning in re
urrentneural networks. However, the task of pro
ess model indu
tion required us to ex-tend this method to support the many di�erent fun
tional forms that 
an o

ur.Our 
urrent solution relies on hand-
rafted derivatives for ea
h generi
 pro
ess,but it utilizes the additive nature of pro
ess models to retain the modularity ofba
kpropagation and its 
ompositional 
hara
ter. These in turn let the method
arry out gradient sear
h to �nd parameters for ea
h model stru
ture.Given a model stru
ture and its 
orresponding ba
kpropagation equations,our parameter-�tting algorithm 
arries out a se
ond-order gradient sear
h (Saito& Nakano, 1997). By adopting a quasi-Newton framework (e.g., Luenberger,1984), this 
al
ulates des
ent dire
tion as a partial Broyden-Flet
her-Goldfarb-Shanno update and then 
al
ulates the step length as the minimal point of ase
ond-order approximation. In earlier experiments on a variety of data sets,this algorithm worked quite eÆ
iently as 
ompared to standard gradient sear
hmethods. Of 
ourse, this approa
h does not eliminate all problems with lo
aloptima; thus, for ea
h model stru
ture, IPM runs the parameter-�tting algorithmten times with random initial parameter values, then sele
ts the best result.



Using these te
hniques, IPM over
omes many of the problems with lo
alminima and slow 
onvergen
e that we en
ountered in our early e�orts, givingreasonable performan
e a

ording to the squared error 
riterion. However, weanti
ipate that solving more 
omplex problems will require the utilization ofeven more sophisti
ated algorithms for non-linear minimization.However, relian
e on squared error as the sole optimization 
riterion tendsto sele
t overly 
omplex pro
ess models that over�t the training data. Instead,IPM 
omputes the des
ription length of ea
h parameterized model as the sum ofits 
omplexity and the information 
ontent of the data left unexplained by themodel. We de�ne 
omplexity as the number of free parameters and variables ina model and the unexplained 
ontent as the number of bits needed to en
ode thesquared error of the model. Rather than sele
ting the model with the lowest error,IPM prefers the 
andidate with the shortest des
ription length, thus balan
ingmodel 
omplexity against �t to the training data.3 Modeling Predator-Prey Intera
tionNow we are ready to 
onsider IPM's operation on an e
osystem modeling task.Within Earth s
ien
e, models of predator-prey systems are among the simplestin terms of the number of variables and parameters involved, making them goodstarting points for our evaluation. We fo
us here on the protozoan system 
om-posed of the predator P. aurelia and the prey D. nasutum, whi
h is well knownin population e
ology. Jost and Adiriti (2000) present time-series data for thissystem, re
overed from an earlier report by Veilleux (1976), that are now avail-able on the World Wide Web. The data set in
ludes measurements for the twospe
ies' populations at 12-hour intervals over 35 days, as shown in Figure 1.The data are fairly smooth over the entire period, with observations at regularintervals and several 
lear 
y
les. We de
ided to use these observations as aninitial test of IPM's ability to indu
e an e
osystem model.3.1 Ba
kground Knowledge about Predator-Prey Intera
tionA s
ientist who wants IPM to 
onstru
t explanatory models of his observationsmust �rst provide a set of generi
 pro
esses that en
ode his knowledge of thedomain. Table 1 presents a set of pro
esses that we extra
ted from our readingof the Jost and Adiriti arti
le. As illustrated, ea
h generi
 pro
ess spe
i�es aset of generi
 variables with type 
onstraints (in bra
es), a set of parameterswith ranges for their values (in bra
kets), and a set of algebrai
 or di�erentialequations that en
ode 
ausal relations among the variables (where d[X; t; 1℄ refersto the �rst derivative of X with respe
t to time). Ea
h pro
ess 
an also in
ludeone or more 
onditions, although none appear in this example.The table shows �ve su
h generi
 pro
esses. Two stru
tures, predation hollingand predation volterra, des
ribe alternative forms of feeding; both 
ause thepredator population to in
rease and the prey population to de
rease, but theydi�er in their pre
ise fun
tional forms. Two additional pro
esses { logisti
 growthand exponential growth { 
hara
terize the manner in whi
h a spe
ies' population



Table 1. A set of generi
 pro
esses for predator-prey models.generi
 pro
ess logisti
 growth; generi
 pro
ess exponential growth;variables Sfspe
iesg; variables Sfspe
iesg;parameters  [0; 10℄; � [0; 10℄; parameters � [0; 10℄;equations d[S; t; 1℄ =  � S � (1� � � S); equations d[S; t; 1℄ = � � S;generi
 pro
ess predation volterra; generi
 pro
ess exponential de
ay;variables S1fspe
iesg; S2fspe
iesg; variables Sfspe
iesg;parameters � [0; 10℄; � [0; 10℄; parameters � [0; 1℄;equations d[S1; t; 1℄ = �1 � � � S1 � S2; equations d[S; t; 1℄ = �1 � � � S;d[S2; t; 1℄ = � � � � S1 � S2;generi
 pro
ess predation holling;variables S1fspe
iesg; S2fspe
iesg;parameters � [0; 1℄; 
 [0; 1℄; � [0; 1℄;equations d[S1; t; 1℄ = �1 � 
 � S1 � S2=(1 + � � 
 � S1);d[S2; t; 1℄ = � � 
 � S1 � S2=(1 + � � 
 � S1);in
reases in an environment with unlimited resour
es, again di�ering mainly inthe forms of their equations. Finally, the exponential de
ay pro
ess refers to thede
rease in a spe
ies' population due to natural death. All �ve pro
esses aregeneri
 in the sense that they do not 
ommit to spe
i�
 variables. For example,the generi
 variable S in exponential de
ay does not state whi
h parti
ular spe
iesdies when it is a
tive. IPM must assign variables to these pro
esses before it 
anutilize them to 
onstru
t 
andidate models.Although the generi
 pro
esses in Table 1 do not 
ompletely en
ode knowl-edge about predator-prey dynami
s, they are adequate for the purpose of eval-uating the IPM algorithm on the Veilleux data. If needed, a domain s
ientist
ould add more generi
 pro
esses or remove ones that he 
onsiders irrelevant.The user is responsible for spe
ifying an appropriate set of generi
 pro
esses fora given modeling task. If the pro
esses re
ruited for a parti
ular task do notrepresent all the me
hanisms that are a
tive in that environment, the indu
edmodels may �t the data poorly. Similarly, the in
lusion of unne
essary pro
esses
an in
rease 
omputation time and heighten the 
han
es of over�tting the data.Before the user 
an invoke IPM, he must also provide the system with thevariables that the system should 
onsider in
luding in the model, along with theirtypes. This information in
ludes both observable variables, in this 
ase predatorand prey, both with type spe
ies, and unobservable variables, whi
h do not arisein this modeling task. In addition, he must state the minimum a

eptable numberof pro
esses (in this 
ase one), the maximum number of pro
esses (four), andthe number of times ea
h generi
 pro
ess 
an o

ur (two).3.2 Indu
ing Models for Predator-Prey Intera
tionGiven this information, IPM uses the generi
 pro
esses in Table 1 to generate allpossible model stru
tures that relate the two spe
ies P. aurelia and D. nasutum,both of whi
h are observed. In this 
ase, the system produ
ed 228 
andidate



Table 2. Pro
ess model indu
ed for predator-prey intera
tion.model Predator Prey;variables Predator;Prey;observables Predator; Prey;pro
ess exponential de
ay;equations d[Predator; t; 1℄ = �1 � 1:1843 � Predator;pro
ess logisti
 growth;equations d[Prey; t; 1℄ = 2:3049 � Prey � (1� 0:0038 � Prey);pro
ess predation volterra;equations d[Prey; t; 1℄ = �1 � 0:0298 � Prey � Predator;d[Predator; t; 1℄ = 0:4256 � 0:0298 � Prey � Predator;stru
tures, for ea
h of whi
h it invoked the parameter-�tting routine des
ribedearlier. Table 2 shows the parameterized model that the system sele
ted fromthis set, whi
h makes general biologi
al sense. It states that, left in isolation, theprey (D. nasutum) population grows logisti
ally, while the predator (P. aurelia)population de
reases exponentially. Predation leads to more predators and tofewer prey, 
ontrolled by multipli
ative equations that add 0.4256 predators forea
h prey that is 
onsumed.Qualitatively, the model predi
ts that, when the predator population is high,the prey population is depleted at a faster rate. However, a redu
tion in theprey population lowers the rate of in
rease in the predator population, whi
hshould produ
e an os
illation in both populations. Indeed, Figure 1 shows thatthe model's predi
ted traje
tories produ
e su
h an os
illation, with nearly thesame period as that found in the data reported by Jost and Adiriti. The modelprodu
es a squared error of 18:62 on the training data and a minimum des
riptionlength s
ore of 286:68. The r2 between the predi
ted and observed values is 0.42for the prey and 0.41 for the predator, whi
h indi
ates that the model explainsa substantial amount of the observed variation.3.3 Experimental Comparison with AutoregressionAlternative approa
hes to indu
tion from time-series data, su
h as multivariateautoregression, do not yield the explanatory insight of pro
ess models. However,they are widely used in pra
ti
e, so naturally we were interested in how the twomethods 
ompare in their predi
tive abilities. To this end, we ran the Matlabpa
kage ARFit (S
hneider & Neumaier, 2001) on the Veilleux data to infer thestru
ture and parameters of an autoregressive model. This uses a stepwise least-squares pro
edure to estimate parameters and a Bayesian 
riterion to sele
t thebest model. For the runs reported here, we let ARFit 
hoose the best modelorder from zero to �ve.To test the two methods' abilities to fore
ast future observations, we dividedthe time series into su

essive training and test sets while varying their relativesizes. In parti
ular, we 
reated 35 training sets of size n = 35 : : : 69 by sele
ting
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Fig. 1. Predi
ted and observed log 
on
entrations of protozoan prey (left) and predator(right) over a period of 36 hours.the �rst n examples of the time series, ea
h with a 
orresponding test set that
ontained all su

essive observations. In addition to using these training setsto indu
e the IPM and autoregressive models, we also used their �nal values toinitialize simulation with these models. Later predi
tions were based on predi
tedvalues from earlier in the traje
tory. For example, to make predi
tions for t = 40,both the pro
ess model and an autoregressive model of order one would utilizetheir predi
tions for t = 39, whereas an autoregressive model of order two woulddraw on predi
tions for t = 38 and t = 39.Figure 2 plots the resulting 
urves for the models indu
ed by IPM, ARFit,and a 
onstant approximator. In every run, ARFit sele
ted a model of order one.Both IPM and autoregression have lower error than the straw man, ex
ept latein the 
urve, when few training 
ases are available. The �gure also shows that,for 13 to 21 test instan
es, the predi
tive abilities of IPM's models are roughlyequal to or better than those for the autoregressive models. Thus, IPM appearsable to infer models whi
h are as a

urate as those found by an autoregressivemethod that is widely used, while providing interpretability that is la
king inthe more traditional models.4 Modeling an Aquati
 E
osystemAlthough the predator-prey system we used in the previous se
tion was appropri-ate to demonstrate the 
apabilities of the IPM algorithm, rarely does one �ndsu
h simple modeling tasks in Earth s
ien
e. Many e
osystem models involveintera
tions not only among the spe
ies but also between the spe
ies and envi-ronmental fa
tors. To further test IPM's ability, we provided it with knowledgeand data about the aquati
 e
osystem of the Ross Sea in Antar
ti
a (Arrigoet al., in press). The data 
ame from the ROAVERRS program, whi
h involvedthree 
ruises in the austral spring and early summers of 1996, 1997, and 1998.The measurements in
luded time-series data for phytoplankton and nitrate 
on-
entrations, as shown in Figure 3.
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Fig. 2. Predi
tive error for indu
ed pro
ess models, autoregressive models, and 
on-stant models, vs. the number of proje
ted time steps, on the predator-prey data.4.1 Ba
kground Knowledge about Aquati
 E
osystemsTaking into a

ount knowledge about aquati
 e
osystems, we 
rafted the set ofgeneri
 pro
esses shown in Table 3. In 
ontrast to the 
omponents for predator-prey systems, the exponential de
ay pro
ess now involves not only redu
tion in aspe
ies' population, but also the generation of residue as a side e�e
t. Formationof this reside is the me
hanism by whi
h minerals and nutrients return to thee
osystem. Knowledge about the generation of residue is also re
e
ted in thepro
ess predation.The generi
 pro
ess nutrient uptake en
odes knowledge that plants derivetheir nutrients dire
tly from the environment and do not depend on other spe
iesfor their survival. Two other pro
esses { remineralization and 
onstant in
ow {
onvey information about how nutrients be
ome available in e
osystems Finally,the growth pro
ess posits that some spe
ies 
an grow in number independent ofpredation or nutrient uptake.As in the �rst domain, our approa
h to pro
ess model indu
tion requires theuser to spe
ify the variables to be 
onsidered, along with their types. In this
ase, we knew that the Ross Sea e
osystem in
luded two spe
ies, phytoplanktonand zooplankton, with the 
on
entration of the �rst being measured in our dataset and the se
ond being unobserved. We also knew that the sea 
ontainednitrate, an observable nutrient, and detritus, an unobserved residue generatedwhen members of a spe
ies die.4.2 Indu
ing Models for an Aquati
 E
osystemGiven this ba
kground knowledge about the Ross Sea e
osystem and data fromthe ROAVERRS 
ruises, we wanted IPM to �nd a pro
ess model that explainedthe variations in these data. To make the system's sear
h tra
table, we intro-



Table 3. Five generi
 pro
esses for aquati
 e
osystems with 
onstraints on their vari-ables and parameters.generi
 pro
ess exponential de
ay; generi
 pro
ess 
onstant in
ow;variables Sfspe
iesg; Dfdetritusg; variables Nfnutrientg;parameters � [0; 10℄; parameters � [0; 10℄;equations d[S; t; 1℄ = �1 � � � S; equations d[N; t; 1℄ = �;d[D; t; 1℄ = � � S;generi
 pro
ess nutrient uptake; generi
 pro
ess remineralization;variables Sfspe
iesg; Nfnutrientg; variables Nfnutrientg; Dfdetritusg;parameters � [0; 10℄; � [0; 10℄; parameters  [0; 10℄ ;
onditions N > � ; equations d[N; t; 1℄ =  �D ;equations d[S; t; 1℄ = � � S; d[D; t; 1℄ = �1 �  �D;d[N; t; 1℄ = �1 � � � � � S;generi
 pro
ess predation;variables S1fspe
iesg; S2fspe
iesg; Dfdetritusg;parameters � [0; 10℄; 
 [0; 10℄;equations d[S1; t; 1℄ = 
 � � � S1;d[D; t; 1℄ = (1� 
) � � � S1;d[S2; t; 1℄ = �1 � � � S1;du
ed further 
onstraints by restri
ting ea
h generi
 pro
ess to o

ur no morethan twi
e and 
onsidering models with no fewer than three pro
esses andno more than six. Using the four variables des
ribed above { Phytofspe
iesg,Zoofspe
iesg, Nitratefnutrientg, and Detritusfresidueg { IPM 
ombined thesewith the available generi
 pro
esses to generate some 200 model stru
tures. Sin
ePhyto and Nitrate were observable variables, the system 
onsidered only thosemodels that in
luded equations with these variables on their left-hand sides.The parameter-�tting routine and the des
ription length 
riterion sele
ted themodel in Table 4, whi
h produ
ed a mean squared error of 23.26 and a des
rip-tion length of 131.88. Figure 3 displays the log values this 
andidate predi
tsfor phytoplankton and nitrate, along with those observed in the �eld. The r2value is 0.51 for Phyto but only 0.27 for Nitrate, whi
h indi
ates that the modelexplains substantially less of the varian
e than in our �rst domain.Note that the model in
ludes only three pro
esses and that it makes no refer-en
e to zooplankton. The �rst pro
ess states that the phytoplankton populationdies away at an exponential rate and, in doing so, generates detritus. The se
ondpro
ess involves the growth of phytoplankton, whi
h in
reases its population asit absorbs the nutrient nitrate. This growth happens only when the nitrate 
on-
entration is above a threshold, and it 
auses a de
rease in the 
on
entrationof the nutrient. The �nal pro
ess states that the residue is 
onverted to the
onsumable nitrate at a 
onstant rate.In fa
t, the model with the lowest squared error in
luded a predation pro-
ess whi
h stated that zooplankton feeds on phytoplankton, thereby in
reasingthe former population, de
reasing the latter, and produ
ing detritus. However,



Table 4. Indu
ed model for the aquati
 e
osystem of the Ross Sea.model Aquati
 E
osystem;variables Phyto;Nitrate;Detritus;Zoo;observables Phyto;Nitrate;pro
ess exponential de
ay 1;equations d[Phyto; t; 1℄ = �1 � 1:9724 � Phyto;d[Detritus; t; 1℄ = 1:9724 � Phyto;generi
 pro
ess nutrient uptake;
onditions Nitrate > 3:1874;equations d[Phyto; t; 1℄ = 3:6107 � Phyto;d[Nitrate; t; 1℄ = �1 � 0:3251 � 3:6107 � Phyto;generi
 pro
ess remineralization;equations d[Nitrate; t; 1℄ = 0:032 �Detritus;d[Detritus; t; 1℄ = �1 � 0:032 �Detritus;IPM 
al
ulated that the improved �t was outweighed by the 
ost of in
ludingan additional pro
ess in the model. This de
ision may well have resulted froma small population of zooplankton, for whi
h no measurements were availablebut whi
h is 
onsistent with other eviden
e about the Ross Sea e
osystem. Wesuspe
t that, given a more extended time series, IPM would rank this modelas best even using its des
ription length, but this is an empiri
al question thatmust await further data.5 Dis
ussionThere is a large literature on the subje
t of e
osystem modeling. For example,many Earth s
ientists develop their models in STELLA (Ri
hmond et al., 1987),an environment that lets one spe
ify quantitative models and simulate theirbehavior over time. However, work in this and similar frameworks has fo
usedalmost entirely on the manual 
onstru
tion and tuning of models, whi
h involvesmu
h trial and error. Re
ently, in
reased 
omputing power has led a few Earths
ientists to try automating this a
tivity. For instan
e, Morris (1997) reportsa method for �tting a predator-prey model to time-series data, whereas Jostand Adiriti (2000) use 
omputation to determine whi
h fun
tional forms bestmodel similar data. Our approa
h has a 
ommon goal, but IPM 
an handle more
omplex models and uses domain knowledge about generi
 pro
esses to 
onstrainsear
h through a larger model spa
e.On another front, our approa
h di�ers from most earlier work on equationdis
overy (e.g., Washio et al., 2000) by fo
using on di�erential equation modelsof dynami
al systems. The most similar resear
h 
omes from Todorovski andD~zeroski (1997), Bradley et al. (1999), and Koza et al. (2001), who also reportmethods that indu
e di�erential equation models by sear
hing for model stru
-tures and parameters that �t time-series data. Our framework extends theirs by
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Fig. 3. Predi
ted and observed log 
on
entrations of phytoplankton (left) and nitrate(right) in the Ross Sea over 31 days.fo
using on pro
esses, whi
h play a 
entral role in many s
ien
es and providea useful framework for en
oding domain knowledge that 
onstrains sear
h andprodu
es more interpretable results. Also, be
ause IPM 
an 
onstru
t modelsthat in
lude theoreti
al terms, it supports aspe
ts of abdu
tion (e.g., Josephson,2000) as well as indu
tion.Still, however promising our approa
h to e
osystem modeling, 
onsiderablework remains before it will be ready for use by pra
ti
ing s
ientists. Some hand-
rafted models 
ontain tens or hundreds of equations, and we must �nd waysto 
onstrain sear
h further if we want our system to dis
over su
h models. Thenatural sour
e of 
onstraints is additional ba
kground knowledge. Earth s
ien-tists often know the qualitative pro
esses that should appear in a model (e.g.,that one spe
ies preys on another), even when they do not know their fun
tionalforms. Moreover, they typi
ally organize large models into modules that are rel-atively independent, whi
h should further redu
e sear
h. Future versions of IPMshould take advantage of this knowledge, along with more powerful methods forparameter �tting that will in
rease its 
han
es of �nding the best model.In summary, we believe that indu
tive pro
ess modeling provides a valuablealternative to the manual 
onstru
tion of e
osystem models whi
h 
ombines do-main knowledge, heuristi
 sear
h, and data in a powerful way. The resultingmodels are 
ast in a formalism re
ognizable to Earth s
ientists and they refer topro
esses that domain experts will �nd familiar. Our initial results on two e
osys-tem modeling tasks are en
ouraging, but we must still extend the framework ina number of dire
tions before it 
an serve as a pra
ti
al s
ienti�
 aid.A
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