Discovering Ecosystem Models
from Time-Series Data

Dileep George,! Kazumi Saito,? Pat Langley,'
Stephen Bay,! and Kevin R. Arrigo?

! Computational Learning Laboratory, CSLI
Stanford University, Stanford, California 94305 USA
{dil,langley,sbay}@apres.stanford.edu
2 NTT Communication Science Laboratories
2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japan
saito@cslab.kecl.ntt.co. jp
% Department of Geophysics, Mitchell Building

Stanford University, Stanford, CA 94305 USA

arrigo@pangea.stanford.edu

Abstract. Ecosystem models are used to interpret and predict the in-
teractions of species and their environment. In this paper, we address the
task of inducing ecosystem models from background knowledge and time-
series data, and we review IPM, an algorithm that addresses this prob-
lem. We demonstrate the system’s ability to construct ecosystem models
on two different Earth science data sets. We also compare its behavior
with that produced by a more conventional autoregression method. In
closing, we discuss related work on model induction and suggest direc-
tions for further research on this topic.

1 Introduction and Motivation

Ecosystem models aim to simulate the behavior of biological systems as they re-
spond to environmental factors. Such models typically take the form of algebraic
and differential equations that relate continuous variables, often through feed-
back loops. The qualitative relationships are typically well understood, but there
is frequently ambiguity about which functional forms are appropriate and even
less certainty about the precise parameters. Moreover, the space of candidate
models is too large for human scientists to examine manually in any systematic
way. Thus, computational methods that can construct and parameterize ecosys-
tem models should prove useful to Earth scientists in explaining their data.

Unfortunately, most existing methods for knowledge discovery and data min-
ing cast their results as decision trees, rules, or some other notation devised by
computer scientists. These techniques can often induce models with high pre-
dictive accuracy, but they are seldom interpretable by scientists, who are used
to different formalisms. Methods for equation discovery produce knowledge in
forms that are familiar to Earth scientists, but most generate descriptive mod-
els rather than explanatory ones, in that they contain no theoretical terms and
make little contact with background knowledge.

In this paper, we present an approach to discovering dynamical ecosystem
models from time-series data and background knowledge. We begin by describing
IPM, an algorithm for inducing process models that, we maintain, should be
interpretable by Earth scientists. After this, we demonstrate IPM’s capabilities
on two modeling tasks, one involving data on a simple predator-prey ecosystem
and another concerning more complex data from the Antarctic ocean. We close
with a discussion of related work on model discovery in scientific domains and
prospects for future research on the induction of ecosystem models.

2 An Approach to Inductive Process Modeling

As described above, we are interested in computational methods that can dis-
cover explanatory models for the observed behavior of ecosystems. In an earlier
paper (Langley et al., in press), we posed the task of inducing process mod-
els from time-series data and presented an initial algorithm for addressing this
problem. We defined a quantitative process model as a set of processes, each
specifying one or more algebraic or differential equations that denote causal re-
lations among variables, along with optional activation conditions. At least two
of the variables must be observed, but a process model can also include unob-
served theoretical terms.

The IPM algorithm generates process models of this sort from training data
about observable variables and background knowledge about the domain. This
knowledge includes generic processes that have a form much like those in mod-
els, in that they relate variables with equations and may include conditions. The
key differences are that a generic process does not commit to specific variables,
although it constrains their types, and it does not commit to particular param-
eter values, although it limits their allowed ranges. Generic processes are the
building blocks from which the system constructs its specific models.

More specifically, the user provides IPM with three inputs that guide its
discovery efforts:

1. A set of generic processes, including constraints on variable types and pa-
rameter values;

2. A set of specific variables that should appear in the model, including their
names and types;

3. A set of observations for two or more of the variables as they vary over time.

In addition, the system requires three control parameters: the maximum num-
ber of processes allowed in a model, the minimum number of processes, and
the number of times each generic process can occur. Given this information, the
system first generates all instantiations of generic processes with specific vari-
ables that are consistent with the type constraints. After this, it finds all ways
to combine these instantiated processes to form instantiated models that have
acceptable numbers of processes. The resulting models refer to specific variables,
but their parameters are still unknown. Next, IPM uses a nonlinear optimiza-
tion routine to determine these parameter values. Finally, the system selects and
returns the candidate that produces the smallest squared error on the training
data, modulated by a minimum description length criterion.

The procedure for generating all acceptable model structures is straightfor-
ward, but the method for parameter optimization deserves some discussion. The
aim is to find, for each model structure, parameters that minimize the model’s
squared predictive error on the observations. We have tried a number of stan-
dard optimization algorithms, including Newton’s method and the Levenberg-
Marquardt method, but we have found these techniques encounter problems with
convergence and local optima. In response, we designed and implemented our
own parameter-fitting method, which has given us the best results to date.

A nonlinear optimization algorithm attempts to find a set of parameters ©
that minimizes an objective function E(@®). In our case, we define E as the
squared error between the observed and predicted time series:

T J
E©) = 3 3 (@2 (1) — In(a; (1)))? , 1)
t=1 j=1
where zj and z; represent the observed and predicted values of J observed
variables, ¢ denotes time instants, and In(+) is the natural logarithmic function.

Standard least-squares estimation is widely recognized as relatively brittle
with respect to outliers in samples that contain gross error. Instead, as shown in
Equation (1), we minimize the sum of squared differences between logarithmi-
cally transformed variables, which is one approach to robust estimation proposed
by Box and Cox (1964). In addition, we maintain positivity constraints on pro-
cess variables by performing a logarithmic transformation on the differential
equations in which they appear. Predicted values for x; are obtained by solv-
ing finite-difference approximations of the differential equations specified in the
model. The parameter vector ® incorporates all unknowns, including any initial
conditions for unobserved variables needed to solve the differential equations.

In order to minimize our error function, E, defined as a sum of squared er-
rors, we can calculate its gradient vector with respect to a parameter vector. For
this purpose, we borrowed the basic idea of error backpropagation through time
(Rumelhart, Hinton, & Williams, 1986), frequently used for learning in recurrent
neural networks. However, the task of process model induction required us to ex-
tend this method to support the many different functional forms that can occur.
Our current solution relies on hand-crafted derivatives for each generic process,
but it utilizes the additive nature of process models to retain the modularity of
backpropagation and its compositional character. These in turn let the method
carry out gradient search to find parameters for each model structure.

Given a model structure and its corresponding backpropagation equations,
our parameter-fitting algorithm carries out a second-order gradient search (Saito
& Nakano, 1997). By adopting a quasi-Newton framework (e.g., Luenberger,
1984), this calculates descent direction as a partial Broyden-Fletcher-Goldfarb-
Shanno update and then calculates the step length as the minimal point of a
second-order approximation. In earlier experiments on a variety of data sets,
this algorithm worked quite efficiently as compared to standard gradient search
methods. Of course, this approach does not eliminate all problems with local
optima; thus, for each model structure, IPM runs the parameter-fitting algorithm
ten times with random initial parameter values, then selects the best result.

Using these techniques, IPM overcomes many of the problems with local
minima and slow convergence that we encountered in our early efforts, giving
reasonable performance according to the squared error criterion. However, we
anticipate that solving more complex problems will require the utilization of
even more sophisticated algorithms for non-linear minimization.

However, reliance on squared error as the sole optimization criterion tends
to select overly complex process models that overfit the training data. Instead,
IPM computes the description length of each parameterized model as the sum of
its complexity and the information content of the data left unexplained by the
model. We define complexity as the number of free parameters and variables in
a model and the unexplained content as the number of bits needed to encode the
squared error of the model. Rather than selecting the model with the lowest error,
IPM prefers the candidate with the shortest description length, thus balancing
model complexity against fit to the training data.

3 Modeling Predator-Prey Interaction

Now we are ready to consider IPM’s operation on an ecosystem modeling task.
Within Earth science, models of predator-prey systems are among the simplest
in terms of the number of variables and parameters involved, making them good
starting points for our evaluation. We focus here on the protozoan system com-
posed of the predator P. aurelia and the prey D. nasutum, which is well known
in population ecology. Jost and Adiriti (2000) present time-series data for this
system, recovered from an earlier report by Veilleux (1976), that are now avail-
able on the World Wide Web. The data set includes measurements for the two
species’ populations at 12-hour intervals over 35 days, as shown in Figure 1.
The data are fairly smooth over the entire period, with observations at regular
intervals and several clear cycles. We decided to use these observations as an
initial test of IPM’s ability to induce an ecosystem model.

3.1 Background Knowledge about Predator-Prey Interaction

A scientist who wants IPM to construct explanatory models of his observations
must first provide a set of generic processes that encode his knowledge of the
domain. Table 1 presents a set of processes that we extracted from our reading
of the Jost and Adiriti article. As illustrated, each generic process specifies a
set of generic variables with type constraints (in braces), a set of parameters
with ranges for their values (in brackets), and a set of algebraic or differential
equations that encode causal relations among the variables (where d[X, ¢, 1] refers
to the first derivative of X with respect to time). Each process can also include
one or more conditions, although none appear in this example.

The table shows five such generic processes. Two structures, predation_holling
and predation_volterra, describe alternative forms of feeding; both cause the
predator population to increase and the prey population to decrease, but they
differ in their precise functional forms. Two additional processes — logistic_growth
and ezponential_growth characterize the manner in which a species’ population

Table 1. A set of generic processes for predator-prey models.

generic process logistic_growth; generic process exponential_growth;
variables S{species}; variables S{species};
parameters ¢ [0, 10], s [0, 10]; parameters (3 [0, 10];
equations d[S,t,1] =¥ * S* (1 — k x S); equations d[S,t,1] = 8% S;
generic process predation_volterra; generic process exponential_decay;
variables S1{species}, S2{species}; variables S{species};
parameters m [0, 10], v [0, 10]; parameters a [0, 1];
equations d[S1,t,1] = —1 % w % S1 % S2; equations d[S,t,1] = —1* a* S,

d[S2,t,1] = v *xm* S1 % S52;
generic process predation_holling;
variables S1{species}, S2{species};
parameters p [0,1],v [0, 1], 5 [0, 1];
equations d[S1,¢,1] = =1 % v % S1 % S2/(1 + p x~y x S1);
d[S2,t,1] =n*~vy*S1%S2/(1 + p=*~x*S1);

increases in an environment with unlimited resources, again differing mainly in
the forms of their equations. Finally, the exponential_decay process refers to the
decrease in a species’ population due to natural death. All five processes are
generic in the sense that they do not commit to specific variables. For example,
the generic variable S in exponential_decay does not state which particular species
dies when it is active. IPM must assign variables to these processes before it can
utilize them to construct candidate models.

Although the generic processes in Table 1 do not completely encode knowl-
edge about predator-prey dynamics, they are adequate for the purpose of eval-
uating the IPM algorithm on the Veilleux data. If needed, a domain scientist
could add more generic processes or remove ones that he considers irrelevant.
The user is responsible for specifying an appropriate set of generic processes for
a given modeling task. If the processes recruited for a particular task do not
represent, all the mechanisms that are active in that environment, the induced
models may fit the data poorly. Similarly, the inclusion of unnecessary processes
can increase computation time and heighten the chances of overfitting the data.

Before the user can invoke IPM, he must also provide the system with the
variables that the system should consider including in the model, along with their
types. This information includes both observable variables, in this case predator
and prey, both with type species, and unobservable variables, which do not arise
in this modeling task. In addition, he must state the minimum acceptable number
of processes (in this case one), the maximum number of processes (four), and
the number of times each generic process can occur (two).

3.2 Inducing Models for Predator-Prey Interaction

Given this information, IPM uses the generic processes in Table 1 to generate all
possible model structures that relate the two species P. aurelia and D. nasutum,
both of which are observed. In this case, the system produced 228 candidate

Table 2. Process model induced for predator-prey interaction.

model Predator_Prey;
variables Predator, Prey;
observables Predator, Prey;
process exponential_decay;
equations d[Predator,t,1] = —1 % 1.1843 % Predator;
process logistic_growth;
equations d[Prey,t,1] = 2.3049 * Prey % (1 — 0.0038 * Prey);
process predation_volterra;
equations d[Prey,t,1] = —1 % 0.0298 = Prey * Predator;
d[Predator,t,1] = 0.4256 = 0.0298 = Prey * Predator;

structures, for each of which it invoked the parameter-fitting routine described
earlier. Table 2 shows the parameterized model that the system selected from
this set, which makes general biological sense. It states that, left in isolation, the
prey (D. nasutum) population grows logistically, while the predator (P. aurelia)
population decreases exponentially. Predation leads to more predators and to
fewer prey, controlled by multiplicative equations that add 0.4256 predators for
each prey that is consumed.

Qualitatively, the model predicts that, when the predator population is high,
the prey population is depleted at a faster rate. However, a reduction in the
prey population lowers the rate of increase in the predator population, which
should produce an oscillation in both populations. Indeed, Figure 1 shows that
the model’s predicted trajectories produce such an oscillation, with nearly the
same period as that found in the data reported by Jost and Adiriti. The model
produces a squared error of 18.62 on the training data and a minimum description
length score of 286.68. The r2 between the predicted and observed values is .42
for the prey and 0.41 for the predator, which indicates that the model explains
a substantial amount of the observed variation.

3.3 Experimental Comparison with Autoregression

Alternative approaches to induction from time-series data, such as multivariate
autoregression, do not yield the explanatory insight of process models. However,
they are widely used in practice, so naturally we were interested in how the two
methods compare in their predictive abilities. To this end, we ran the Matlab
package ARFit (Schneider & Neumaier, 2001) on the Veilleux data to infer the
structure and parameters of an autoregressive model. This uses a stepwise least-
squares procedure to estimate parameters and a Bayesian criterion to select the
best model. For the runs reported here, we let ARFit choose the best model
order from zero to five.

To test the two methods’ abilities to forecast future observations, we divided
the time series into successive training and test sets while varying their relative
sizes. In particular, we created 35 training sets of size n = 35...69 by selecting

Log(Concentration)
Log(Concentration)

Predicted Predicted
Observed ________ Observed ________
- - .
°© T T T T T T 1 °© T T T T T T 1
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time Time

Fig. 1. Predicted and observed log concentrations of protozoan prey (left) and predator
(right) over a period of 36 hours.

the first n examples of the time series, each with a corresponding test set that
contained all successive observations. In addition to using these training sets
to induce the IPM and autoregressive models, we also used their final values to
initialize simulation with these models. Later predictions were based on predicted
values from earlier in the trajectory. For example, to make predictions for ¢ = 40,
both the process model and an autoregressive model of order one would utilize
their predictions for ¢ = 39, whereas an autoregressive model of order two would
draw on predictions for ¢ = 38 and ¢ = 39.

Figure 2 plots the resulting curves for the models induced by IPM, ARFit,
and a constant approximator. In every run, ARFit selected a model of order one.
Both IPM and autoregression have lower error than the straw man, except late
in the curve, when few training cases are available. The figure also shows that,
for 13 to 21 test instances, the predictive abilities of IPM’s models are roughly
equal to or better than those for the autoregressive models. Thus, IPM appears
able to infer models which are as accurate as those found by an autoregressive
method that is widely used, while providing interpretability that is lacking in
the more traditional models.

4 Modeling an Aquatic Ecosystem

Although the predator-prey system we used in the previous section was appropri-
ate to demonstrate the capabilities of the IPM algorithm, rarely does one find
such simple modeling tasks in Earth science. Many ecosystem models involve
interactions not only among the species but also between the species and envi-
ronmental factors. To further test IPM’s ability, we provided it with knowledge
and data about the aquatic ecosystem of the Ross Sea in Antarctica (Arrigo
et al., in press). The data came from the ROAVERRS program, which involved
three cruises in the austral spring and early summers of 1996, 1997, and 1998.
The measurements included time-series data for phytoplankton and nitrate con-
centrations, as shown in Figure 3.

0.5
1

8
5
kel
9
8 <
g5
2]
=4
<
Q
= (32}

X

N

N4

! IPM model
1,
g B / i Autoregressive model ________
N
P Constant model . __ .
\//
°© T T T T T T 1
0 5 10 15 20 25 30 35

Number of projected time steps

Fig. 2. Predictive error for induced process models, autoregressive models, and con-
stant models, vs. the number of projected time steps, on the predator-prey data.

4.1 Background Knowledge about Aquatic Ecosystems

Taking into account knowledge about aquatic ecosystems, we crafted the set of
generic processes shown in Table 3. In contrast to the components for predator-
prey systems, the exponential_decay process now involves not only reduction in a
species’ population, but also the generation of residue as a side effect. Formation
of this reside is the mechanism by which minerals and nutrients return to the
ecosystem. Knowledge about the generation of residue is also reflected in the
process predation.

The generic process nutrient_uptake encodes knowledge that plants derive
their nutrients directly from the environment and do not depend on other species
for their survival. Two other processes remineralization and constant_inflow
convey information about how nutrients become available in ecosystems Finally,
the growth process posits that some species can grow in number independent of
predation or nutrient uptake.

As in the first domain, our approach to process model induction requires the
user to specify the variables to be considered, along with their types. In this
case, we knew that the Ross Sea ecosystem included two species, phytoplankton
and zooplankton, with the concentration of the first being measured in our data
set and the second being unobserved. We also knew that the sea contained
nitrate, an observable nutrient, and detritus, an unobserved residue generated
when members of a species die.

4.2 Inducing Models for an Aquatic Ecosystem

Given this background knowledge about the Ross Sea ecosystem and data from
the ROAVERRS cruises, we wanted IPM to find a process model that explained
the variations in these data. To make the system’s search tractable, we intro-

Table 3. Five generic processes for aquatic ecosystems with constraints on their vari-
ables and parameters.

generic process exponential_decay; generic process constant_inflow;
variables S{species}, D{detritus}; variables N{nutrient};
parameters a [0, 10]; parameters v [0, 10];
equations d[S,¢,1] = —1xa * Sj equations d[N,t,1] = v;

dD,t, 1] = ax*S;

generic process nutrient_uptake; generic process remineralization;
variables S{species}, N{nutrient}; variables N{nutrient}, D{detritus};
parameters 3 [0, 10], p [0, 10]; parameters ¢ [0, 10] ;
conditions N > 7; equations d[N,t,1] =9 * D ;
equations d[S,¢,1] = p * S; d[D,t,1] = =1 % * D;

dIN,t, 1] = -1 B pux* S,
generic process predation;
variables S1{species}, S2{species}, D{detritus};
parameters p [0, 10], v [0, 10];
equations d[S1,t,1] = v * p* S1;
d[D,t,1] = (1 —v) % p* S1;
d[S2,t,1] = —1 % p = S1;

duced further constraints by restricting each generic process to occur no more
than twice and considering models with no fewer than three processes and
no more than six. Using the four variables described above — Phyto{species},
Zoo{species}, Nitrate{nutrient}, and Detritus{residue} IPM combined these
with the available generic processes to generate some 200 model structures. Since
Phyto and Nitrate were observable variables, the system considered only those
models that included equations with these variables on their left-hand sides.
The parameter-fitting routine and the description length criterion selected the
model in Table 4, which produced a mean squared error of 23.26 and a descrip-
tion length of 131.88. Figure 3 displays the log values this candidate predicts
for phytoplankton and nitrate, along with those observed in the field. The r?
value is 0.51 for Phyto but only 0.27 for Nitrate, which indicates that the model
explains substantially less of the variance than in our first domain.

Note that the model includes only three processes and that it makes no refer-
ence to zooplankton. The first process states that the phytoplankton population
dies away at an exponential rate and, in doing so, generates detritus. The second
process involves the growth of phytoplankton, which increases its population as
it absorbs the nutrient nitrate. This growth happens only when the nitrate con-
centration is above a threshold, and it causes a decrease in the concentration
of the nutrient. The final process states that the residue is converted to the
consumable nitrate at a constant rate.

In fact, the model with the lowest squared error included a predation pro-
cess which stated that zooplankton feeds on phytoplankton, thereby increasing
the former population, decreasing the latter, and producing detritus. However,

Table 4. Induced model for the aquatic ecosystem of the Ross Sea.

model Aquatic_Ecosystem;

variables Phyto, Nitrate, Detritus, Zoo;
observables Phyto, Nitrate;

process exponential_decay_1;
equations d[Phyto,t,1] = —1 % 1.9724 % Phyto;
d[Detritus,t,1] = 1.9724 x Phyto;
generic process nutrient_uptake;
conditions Nitrate > 3.1874;
equations d[Phyto,t,1] = 3.6107 * Phyto;
d[Nitrate,t,1] = —1 % 0.3251 * 3.6107 * Phyto;
generic process remineralization;
equations d[Nitrate,t,1] = 0.032 * Detritus;
d[Detritus,t,1] = —1 % 0.032 % Detritus;

IPM calculated that the improved fit was outweighed by the cost of including
an additional process in the model. This decision may well have resulted from
a small population of zooplankton, for which no measurements were available
but which is consistent with other evidence about the Ross Sea ecosystem. We
suspect that, given a more extended time series, IPM would rank this model
as best even using its description length, but this is an empirical question that
must await further data.

5 Discussion

There is a large literature on the subject of ecosystem modeling. For example,
many Earth scientists develop their models in STELLA (Richmond et al., 1987),
an environment that lets one specify quantitative models and simulate their
behavior over time. However, work in this and similar frameworks has focused
almost entirely on the manual construction and tuning of models, which involves
much trial and error. Recently, increased computing power has led a few Earth
scientists to try automating this activity. For instance, Morris (1997) reports
a method for fitting a predator-prey model to time-series data, whereas Jost
and Adiriti (2000) use computation to determine which functional forms best
model similar data. Our approach has a common goal, but IPM can handle more
complex models and uses domain knowledge about generic processes to constrain
search through a larger model space.

On another front, our approach differs from most earlier work on equation
discovery (e.g., Washio et al., 2000) by focusing on differential equation models
of dynamical systems. The most similar research comes from Todorovski and
Dzeroski (1997), Bradley et al. (1999), and Koza et al. (2001), who also report
methods that induce differential equation models by searching for model struc-
tures and parameters that fit time-series data. Our framework extends theirs by

35
1

Predicted
Observed ________

Log(Concentration)
2
1
Log(Concentration)
33
1

Predicted
Observed ________

25

T T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time

Fig. 3. Predicted and observed log concentrations of phytoplankton (left) and nitrate
(right) in the Ross Sea over 31 days.

focusing on processes, which play a central role in many sciences and provide
a useful framework for encoding domain knowledge that constrains search and
produces more interpretable results. Also, because IPM can construct models
that include theoretical terms, it supports aspects of abduction (e.g., Josephson,
2000) as well as induction.

Still, however promising our approach to ecosystem modeling, considerable
work remains before it will be ready for use by practicing scientists. Some hand-
crafted models contain tens or hundreds of equations, and we must find ways
to constrain search further if we want our system to discover such models. The
natural source of constraints is additional background knowledge. Earth scien-
tists often know the qualitative processes that should appear in a model (e.g.,
that one species preys on another), even when they do not know their functional
forms. Moreover, they typically organize large models into modules that are rel-
atively independent, which should further reduce search. Future versions of IPM
should take advantage of this knowledge, along with more powerful methods for
parameter fitting that will increase its chances of finding the best model.

In summary, we believe that inductive process modeling provides a valuable
alternative to the manual construction of ecosystem models which combines do-
main knowledge, heuristic search, and data in a powerful way. The resulting
models are cast in a formalism recognizable to Earth scientists and they refer to
processes that domain experts will find familiar. Our initial results on two ecosys-
tem modeling tasks are encouraging, but we must still extend the framework in
a number of directions before it can serve as a practical scientific aid.

Acknowledgements

This work was supported by the NTT Communication Science Laboratories,
Nippon Telegraph and Telephone Corporation. We thank Tasha Reddy and
Alessandro Tagliabue for preparing the ROAVERRS data and for discussions
about ecosystem processes. We also thank Saso Dzeroski and Ljupco Todorovski
for useful discussions about approaches to inductive process modeling.

References

Arrigo, K. R., Worthen, D. L. & Robinson, D. H. (in press). A coupled ocean-
ecosystem model of the Ross Sea. Part 2: Phytoplankton taxonomic variability
and primary production. Journal of Geophysical Research.

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of
the Royal Statistical Society, Series B, 26, 211 252.

Bradley, E., Easley, M., & Stolle, R. (2001). Reasoning about nonlinear system
identification. Artificial Intelligence, 133, 139 188.

Josephson, J. R. (2000). Smart inductive generalizations are abductions. In P.
A. Flach & A. C. Kakas (Eds.), Abduction and induction. Kluwer.

Jost, C., & Adiriti, R. (2000). Identifying predator-prey processes from time-
series. Theoretical Population Biology, 57, 325 337.

Koza, J., Mydlowec, W., Lanza, G., Yu, J., & Keane, M. (2001). Reverse en-
gineering and automatic synthesis of metabolic pathways from observed data
using genetic programming. Pacific Symposium on Biocomputing, 6, 434-445.

Langley, P., George, D., Bay, S. & Saito, K. (in press). Robust induction of pro-
cess models from time-series data. Proceedings of the Twentieth International
Conference on Machine Learning. Washington, DC: AAAI Press.

Luenberger, D.G. (1984). Linear and monlinear programming. Reading, MA:
Addison-Wesley.

Morris, W. F. (1997). Disentangling effects of induced plant defenses and food
quantity on herbivores by fitting nonlinear models. American Naturalist, 150,
299 327.

Richmond, B., Peterson, S., & Vescuso, P. (1987). An academic user’s guide to
STELLA. Lyme, NH: High Performance Systems.

Rumelhart, D. E.; Hinton, G. E.; & Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart & J. L. McClelland
(Eds.), Parallel distributed processing. Cambridge: MIT Press.

Saito, K., & Nakano, R. (1997). Law discovery using neural networks. Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence (pp.
1078 1083). Yokohama: Morgan Kaufmann.

Schneider, T., & Neumaier, A. (2001). Algorithm 808: ARFIT — A Matlab pack-
age for the estimation of parameters and eigenmodes of multivariate autore-
gressive models. ACM Transactions on Mathematical Software, 27, 58—65.

Todorovski, L., & Dzeroski, S. (1997). Declarative bias in equation discovery.
Proceedings of the Fourteenth International Conference on Machine Learning
(pp. 376-384). San Francisco: Morgan Kaufmann.

Veilleux, B. G. (1979). An analysis of the predatory interaction between Parame-
cium and Didinium. Journal of Animal Ecology, 48, 787 803.

Washio, T., Motoda, H., & Niwa, Y. (2000). Enhancing the plausibility of law

equation discovery. Proceedings of the Seventeenth International Conference
on Machine Learning (pp. 1127 1134). Stanford, CA: Morgan Kaufmann.

