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Abstract  In this paper we distinguish between two computational paradigms for
knowledge discovery that share the notion of heuristic search, but differ
in the importance they place on using scientific formalisms to state dis-
covered knowledge. We also report progress on computational methods
for discovering such communicable knowledge in two domains, one in-
volving the regulation of photosynthesis in phytoplankton and the other
involving carbon production by vegetation in the Earth ecosystem. In
each case, we describe a representation for models, methods for using
data to revise existing models, and some initial results. In closing, we
discuss related work on the computational discovery of communicable
scientific knowledge and outline directions for future research.

1. Introduction

Scientific discovery is generally viewed as one of the most complex
human creative activities. As such, it seems worth understanding for
both theoretical and practical reasons. One powerful metaphor treats
the discovery process as a form of computation, and in fact work that
adopts this metaphor has a long history that dates back over two decades
(e.g., Langley, 1979; Lenat, 1977; Lindsay et al., 1980). Research within
this framework has advanced steadily until, in recent years, it has led
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to new discoveries deemed worth publication in the scientific literature
(e.g., see Langley, 2000). However, despite this progress, work on the
topic remains subject to important limitations.

In this paper, we describe a new computational approach to discov-
ery of scientific knowledge and illustrate its application to two domains.
The first focuses on constructing regulatory models for photosynthesis in
phytoplankton using data from DNA microarrays. The second involves
finding a quantitative model of the Earth ecosystem that fits environ-
mental data obtained from satellites and ground stations. In both cases,
we report our formalism for representing models, a computational tech-
nique for producing them from observations, and initial results with
actual data.

Although these two applications differ on many dimensions, they also
share a reliance on three concerns: the discovered knowledge must be
communicable to domain scientists; the new model must be linked to
previous domain knowledge; and the model must move beyond a de-
scriptive summary to explain the observations. We should also note
that our long-term goal is not to automate the discovery process, but
instead to provide interactive tools that scientists can direct and use to
aid their model development.

After describing our approaches to discovery in microbiology and
Earth science, we discuss related work on computational discovery and
outline some likely directions for future research. However, before pre-
senting our computational framework and its application, we must first
place it in a broader historical context of work on knowledge discovery.

2. Paradigms for computational discovery

As Kuhn [1962] has noted, the paradigm within which scientific re-
search occurs has a major impact on both its content and its method, and
computational research on knowledge discovery is no exception. For this
reason, we should review the two major frameworks for studying the dis-
covery process in computational terms. These two paradigms hold some
important assumptions in common, but they diverge on a key issue.

2.1 The data mining paradigm

A number of developments have made possible the progress on com-
putational approaches to knowledge discovery. The most recent break-
through, which we may call the data revolution, came from the in-
sight that one can benefit by collecting and storing, automatically, vast
amounts of data that describe natural, engineering, and social domains
of interest. These abilities have been made practical by the availability of
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inexpensive computer memory storage, the advent of new measurement
techniques that ease data acquisition, and the introduction of communi-
cation infrastructure (e.g., the Internet) that supports rapid transfer of
data. We can set the date for this revolution around 1995, when these
technologies became common, but awareness of the coming situation was
widespread five years earlier. Naturally, the access to electronic data sets
holds great potential to support knowledge discovery, and many scien-
tists, engineers, and businessmen have focused their energies on fulfilling
that potential.

A somewhat earlier development, which we may call the search rev-
olution, resulted from the insight that computers are general symbol
manipulators and that one can view many tasks which require intelli-
gence as involving search through a space of symbolic structures. This
ability became practical with the introduction of computer programming
languages that could represent and manipulate symbolic structures, as
well as algorithms for carrying out heuristically-guided search through
a space of such structures. We can date this revolution to the middle
1950s, when Newell and Simon [1956] created the first list-processing
language and used it to automate search for proofs of logical theorems.
Notions of heuristic search preceded this achievement, but computation-
alists began to apply the idea in earnest only after this proof of concept.
Simon [1966] was also one of the first authors to view the discovery
process in terms of search.

In recent years, these two insights have been combined by researchers
and developers in a paradigm known as data mining or knowledge dis-
covery in databases. Work in this arena emphasizes the availability and
potential of large, electronic data sets, as well as computational tech-
niques that can represent and search for knowledge implicit in those
data. The data mining community has inherited its key techniques from
two parent disciplines — machine learning and databases — that have fo-
cused historically on computational processing of data. This approach
has become especially popular in the commercial sector, where it has
been applied successfully to manufacturing, marketing, and finance, but
it has also been put to good effect in a variety of scientific fields.

However, despite its impressive track record, the data mining frame-
work has an important drawback related to its emphasis on the discov-
ery of knowledge in understandable forms. In principle, this concern is
perfectly legitimate, since we typically assume that knowledge can be
represented explicitly and communicated among humans. Yet the data
mining community’s efforts along these lines have focused on particular
formalisms it has inherited from its parent disciplines, notably decision
trees, logical rules, and Bayesian networks. Researchers regularly take
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positions about the understandability of such representations, but their
stances are based more on popular myths than on careful reasoning or
empirical evidence.

One such myth concerns the claim that univariate decision trees, with
their logical semantics, are inherently easier to understand than alterna-
tive notations, like probabilistic classifiers, that involve numeric weights
and degrees of match. Yet Igor Kononenko [personal communication,
1993], who originally believed this intuition, found that medical doctors
felt a naive Bayesian classifier, which computes probabilistic summaries,
was easier to comprehend than decision trees induced from the same
patient data. Presumably, this was because the physicians had more ex-
posure to probability theory than to nonparametric schemes like decision
trees. We can draw a tentative conclusion from this result: knowledge is
more understandable when cast in a formalism familiar to the recipient.

A similar myth involves the claim that computational methods like
backpropagation, which learns weights in a multilayer neural network,
produce results that are inherently opaque. Yet Saito and Nakano [1997]
have shown that, by carefully structuring the network architecture, one
can use backpropagation to discover numeric equations like those central
to physics and other sciences, and which, presumably, are interpretable
by experts in those domains. We can draw another plausible lesson from
this result: whether the discovered knowledge is understandable depends
far less on the search algorithm than on the manner in which one uses
that algorithm.

2.2 Computational scientific discovery

These observations suggest the relevance of a third, much older, his-
torical development, the scientific revolution, which introduced not only
the idea of evaluating laws and theories in terms of their ability to fit
observations, but also emphasized the casting of such knowledge in some
formal notation. We can date this insight to around 1700, when New-
ton’s theory of gravitation became widely accepted, though it was pre-
dated by similar formal statements like Kepler’s laws. Over the past 300
years, scientists and engineers have developed a variety of formalisms to
represent knowledge that bear little resemblance to the notations which
dominate the data mining community. We hold that such formalisms
from science and engineering are more appropriate targets for knowl-
edge discovery, at least in such domains, than data mining notations.

In fact, there exists an alternative computational paradigm, predating
the data mining framework, that combines the representational insights
of the scientific revolution with the notion of heuristic search. We will
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refer to this framework as computational scientific discovery, since its
primary focus has been finding laws and theories in scientific domains.
This paradigm also assumes the presence of data or observations, but
emphasizes their role less than the search metaphor and scientific no-
tations. Research in this area addressed originally the rediscovery of
knowledge from the history of science (e.g., Langley et al., 1987; Shrager
and Langley, 1990), but the last decade has seen numerous examples of
novel discoveries that have led to publications in the relevant scientific
literature [Langley, 2000]. We maintain that this approach is more ap-
propriate for the discovery of communicable knowledge than the data
mining framework precisely because it utilizes formalisms already famil-
iar to domain experts.

Note that there has been considerable work within the KDD tradition
on scientific domains. Much of this has focused on applications to molec-
ular biology, such as learning predictors for protein folding, but Fayyad
et al. [1996] review similar efforts in astronomy, such as distinguish-
ing stars from galaxies, and planetology, such as detecting volcanoes on
Venus. This work has proven valuable to the disciplines involved, but we
hold that the knowledge discovered in these cases is not communicable
in the same sense as described above. The learned predictors, whether
stated as decision trees, neural networks, or probabilistic classifiers, are
unlikely to appear as knowledge themselves in scientific papers, and thus
would not be communicated. Rather, they play the role of measuring in-
struments, which are essential to scientific progress but which constitute
tacit knowledge [Polanyi, 1958] rather than the communicable variety.

By this point, we hope to have convinced readers that the task of
communicable knowledge discovery differs in important ways from the
problems typically pursued in the data mining community, and that this
task deserves significantly increased attention among knowledge discov-
ery researchers. For despite the success stories to date, there remain
many open problems that require additional effort. For instance, most
research on computational scientific discovery has focused on finding
knowledge from scratch, but scientists are typically concerned with re-
vising and improving existing theories. Researchers in the field have also
concentrated primarily on discovery of descriptive regularities, but sci-
entists often aim for models that explain observed phenomena in terms
of unobserved variables and processes. Finally, most work on computa-
tional discovery has emphasized automating this activity, but scientists
would benefit more from interactive tools that assist them in their efforts
rather than ones that aim to replace them.

In the sections that follow, we report progress on these issues in the
context of two scientific domains. In both cases, we review an existing
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explanatory model that accounts partially for some phenomena, describe
a computational system that revises this model to fit these data better,
and present some initial results of such improvement. Our research on
interactive tools has advanced less, but we have designed our revision
techniques to support such a capability. As in other work on computa-
tional scientific discovery, the systems cast their discovered knowledge
in a familiar scientific notation to ensure communicability.

3. Revising regulatory models in microbiology

Although biologists understand the basic mechanisms through which
DNA produces biochemical behavior, they have not yet determined most
of the regulatory networks that control the degree to which each gene is
expressed. However, for particular organisms under certain conditions,
they have developed partial models of gene regulation. The measurement
and analysis of gene expression levels, either through Northern blots
or cDNA microarrays, has played a central role in the elucidation of
regulatory models, as both measures quantify gene activity in terms of
RNA concentration.

The most popular computational approach to processing such expres-
sion data — clustering genes into coregulated classes — is a clear example
of the data mining paradigm. This knowledge-lean method lets one re-
duce the high dimensionality of microarray data to a manageable level,
but the results take the form of descriptions rather than explanations.
A second paradigm, more commonly used by practicing biologists, uses
data about expression levels to test specific pathway hypotheses. This
knowledge-rich approach lets one evaluate proposed explanations, but it
generally does not move beyond these hypotheses to suggest improved
regulatory models.

In this section, we describe an approach that combines knowledge with
data to revise an initial biological model. We focus on the regulation of
photosynthesis in Cyanobacteria, an area for which we have both a model
proposed by domain scientists and microarray data collected to evaluate
this model. As outlined above, our goal is to develop computational
methods that can utilize data to improve such a model while retaining
its communicability and its links to existing biological knowledge.

3.1 Representing models of gene regulation

Any computational method designed to improve regulatory models
must first have some representation for those models. As we have noted,
most work in machine learning and data mining draws on representa-
tional formalisms that were designed by artificial intelligence researchers
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and that make little contact with notations commonly used by practic-
ing scientists. In contrast, we are committed to representing biological
models in terms that are familiar to biologists themselves.

Figure 1 presents a regulatory model, obtained from a plankton biol-
ogist, that aims to explain why Cyanobacteria bleaches when exposed
to high light conditions. Each node corresponds to some variable, either
observable or theoretical, whereas each link depicts some biological pro-
cess through which one variable influences another. Solid lines denote
internal processes, whereas dashes indicate processes connected to the
environment.

[Light |-~~~ aspa

Figure 1. An initial model for regulation of photosynthesis in Cyanobacteria.

The model states that changes in light level modulate the activity of
dspA, a protein hypothesized to serve as a sensor. This in turn regu-
lates NBLR and NBLA, which then reduce the number of phycobilisome
(PBS) rods that absorb light, which is measurable photometrically as
the organism’s greenness. The reduction in PBS protects the organ-
ism’s health because it decreases the absorbtion of light, which can be
damaging at high levels. The organism’s health under high light con-
ditions can be measured in terms of culture density. The sensor dspA
also impacts health through a second pathway by influencing a hypoth-
esized response regulator, RR, which in turn down regulates expression
of the gene products psbAl, psbA2, and cpcB. The first two influence
positively the level of photosynthetic activity (Photo) by altering the
photosystem’s structure. If left unaltered, this second pathway would
also damage the organism under high light conditions.

Although this model incorporates quantitative variables, it specifies
only the directions of influence and not their specific form or their pa-
rameters. Al research in qualitative physics (e.g., Forbus, 1984) has used
similar notations to support common sense reasoning. We have focused
on such qualitative models not because quantitative ones are undesir-
able, but because biologists usually operate on the former, and we want
our computational tools to support their typical reasoning styles.
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The example model is also partial and abstract, in that the biolo-
gist who proposed it clearly viewed it as a working hypothesis. Some
processes are abstract in that they denote entire chains of subprocesses.
For instance, the link from dspA to NBLR denotes a complex signaling
pathway for which the details are unknown or irrelevant at this level
of analysis. The model also includes abstract variables like RR, which
refers to an unspecified gene (or set of genes) that acts as an interme-
diary controller. Thus, our formalism can express partial, abstract, and
qualitative models like those often used by biologists.

For the sake of analytical tractability, we also assume that each vari-
able is a linear function of its direct causes plus an error term. This
means that we can represent the entire model as a system of linear
equations, which Glymour et al. [1987] refer to as a linear causal model.
This approach to modeling has been used widely in econometrics, where
the data are purely observational. Most research in this framework deals
with quantitative models that specify the parameters for each equation,
but, again, we focus here on the qualitative version.

3.2 Utilizing, evaluating, and revising models

Since our models are qualitative, they cannot predict directly the con-
tinuous expression levels one can observe for genes, but they do imply
certain relations among variables. In particular, they predict which vari-
ables should be correlated and the direction of those relationships. If two
variables are connected directly, then we expect their correlation to have
the same sign as that on their link. If they are connected indirectly, we
multiply the signs on the path that connects them. For instance, the
model in Figure 1 predicts that NBLA and c¢pcB will be negatively corre-
lated, even though neither has a direct causal influence on the other and
the path connecting them passes through RR, an unobservable variable.

In some cases, there exist multiple paths between a pair of variables.
When the predicted sign for all paths between these nodes agree, the
system simply makes that prediction. However, when two or more paths
disagree, we assume the model includes an annotation that indicates
either the positive or negative paths are dominant, which gives an un-
ambiguous prediction. This extended formalism lets a qualitative model
predict a positive or negative correlation for each pair of observed vari-
ables, even without information about the quantity of each link’s effect.

In addition, casting our regulatory structures as linear causal mod-
els lets us make other important predictions about partial correlations,
which describe the relationship between two variables once the effects of
other terms have been factored out. For instance, the partial correlation
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p12.3 denotes the correlation between X; and X9 when controlling for
X3. Simon [1954] has shown that a zero partial correlation pig3 im-
plies that X; and X, are connected through X3. In contrast, a nonzero
partial correlation implies that X; and X5 are connected through paths
that do not involve X3. Thus, the model in Figure 1 predicts that the
partial correlation of dspA and PBS given NBLA will be zero, because
the variable NBLA lies along the path between them. Glymour et al.
have generalized these conditions for more complicated models, but the
intution remains the same.

Our approach evaluates a candidate regulatory model by predicting,
for each set of three variables, which partial correlations should occur
and which ones should not. The system then calculates these partial cor-
relations from the data and determines, for each one, whether it differs
significantly from zero. Upon comparing the predicted partial correla-
tions with those supported by the data, it obtains the number of true
positives (¢p), true negatives (¢n), false positives (fp), and false negatives
(fn). The system combines these counts using

score = fp+ fn—tp—in,

which provides an overall measure of the model’s qualitative fit to the
observations. Because most linear causal models imply different partial
correlations, this metric lets it discriminate among many alternative
regulatory structures.

To revise its model of gene regulation, the system carries out a two-
stage heuristic search through a space of candidate models. The first
stage, which focuses on the causal structure, starts from the initial model
proposed by biologists with the signs on links removed. The operators for
generating alternative models include adding a link between variables,
removing an existing link, and reversing the direction of a link.! The
system invokes the score metric described above to select among models,
and it carries out hill-climbing search through the model space, on each
step selecting the revision that most improves the evaluation metric.
The search halts after a prespecified number of revision steps.

Because experiments that measure gene expression typically collect
few samples, this approach is unstable in that small changes to the data
can produce very different models. To offset this, the system generates
20 different training sets by sampling with replacement from the orig-

IThese operators are constrained by biological knowledge. For instance, the system knows
that stimulus variables like Light must serve as causal influences to gene variables, and that
behavioral variables like Photo must be caused by the latter.
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inal data, then runs its revision algorithm to generate 20 new models.
The program then counts how many times each revision occurs in these
models and retains only those that appear in at least 75 percent of them.

Once the system has induced the model’s causal structure, the second
stage carries out another search to determine the signs on links. In this
case, the evaluation function measures instead the number of correla-
tions for which the predicted and observed signs agree. If the model
involves only a few links, the system considers exhaustively all possible
assignments of pluses and minuses on the links, then selects the best-
scoring assignment. Otherwise, it resorts to hill climbing through the
space of assignments, starting from those in the initial model and halting
when no further improvement occurs.

. _
| ANBR ——{nBLAF—={ PBS }Jr
|
\ .
RR

Photo % -

Figure 2. A revised model for regulation of photosynthesis in wild Cyanobacteria.

3.3 Initial results on photosynthetic regulation

We applied our revision method to data for the wild type Cyanobac-
teria and a mutant that does not bleach under high light conditions.
We have data from ¢cDNA microarrays about the expression levels for
approximately 300 genes believed to play a role in photosynthesis. For
the initial analysis, we focused on genes in the initial model shown in
Figure 1 and did not consider links to other genes. The microarray data,
which reflects the concentration of mRNA for each gene relative to that
in a control condition, were measured at 0, 30, 60, 120, and 360 minutes
after high light was introduced, with four replicated measurements at
each time point. We treated the data as independent samples, ignoring
their temporal aspects and dependencies among the replicates.

Figure 2 shows the revised model that the system produced from these
data. There are five differences from the initial regulatory account. Two
changes, removal of the links to and from psbA2, involve the model struc-
ture. The other three revisions concern changes of signs, in particular for
the links from RR to psbAl, from RR to cpcB, and from PBS to Health.
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Discussions with the biologist who proposed the original model indicate
a strong belief that RR influences Photo, but uncertainty about the ex-
act pathways. This means that the changes which involve RR are not
problematic, since the presence of one gene product (psbAl) is enough
to regulate the photosynthetic center (Photo). However, the reversed
sign on the link from PBS to Health raises a problem, since the belief
that excessive light causes damage means this link should be positive.
We hypothesize that, in this study, the light exposure was not enough to
overcome benefits from the energy it provides, which the model omits.
We also tested the system on expression data for a mutant of Cyanobac-
teria that does not bleach under high light conditions. Presumably, such
a mutant differs genetically from the wild organism in only a few ways,
so we started search from the same model as in our first study. In this
case, the system removed the link from dspA to RR, but made no other
revisions. This is a plausible change, since the mutation involved re-
moval of the dspA gene from the organism. However, the new model
does not explain why the mutant fails to bleach when exposed to high
light. One possibility is that the 20 samples did not provide enough
statistical power to let the system remove the link from dspA to NBLR,
which would produce the desired effect. Although these initial results
are encouraging, it seems clear that we can still improve our approach to
revising qualitative models of gene regulation. Elsewhere [Shrager et al.,
2002] we discuss some directions for future research along these lines.

4. Revising quantitative models in Earth science

Earth scientists have reached a broad enough understanding of ecosys-
tem processes to develop models for the entire biosphere. These differ
from the microbiological models we considered in the last section in that
they are primarily quantitative rather than qualitative. Ecosystem mod-
els can also be quite complex, containing tens of equations, many the-
oretical variables, and parameters for each grid cell, which can number
in the thousands. Such models are consistent with high-level ecosystem
phenomena, but the availability of new data from satellites and other
sources provides the opportunity to refine them further.

One such model, Potter and Klooster’s [1997, 1998] CASA, predicts,
with reasonable accuracy, the global production and absorption of bio-
genic trace gases in the Earth’s atmosphere, as well as explaining changes
in the geographic vegetation patterns on the land. The model’s pre-
dictive variables include surface temperature, moisture levels, and soil
properties, along with global satellite observations of the land surface.
CASA incorporates both instantaneous and difference equations that
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describe changes over time due to the terrestrial carbon cycle and pro-
cesses that mineralize nitrogen and control vegetation type. The model
operates on gridded input, with typical usage involving grid cells that
are eight kilometers square, since this matches the resolution for land
surface observations obtained from satellites.

Although CASA has been quite successful at modeling Earth’s ecosys-
tem, its predictions still differ from observations in certain ways, and in
this section we describe a computational approach to improving its fit
to the data available. As before, the result is a revised model, cast in
the same notation as the original one, that incorporates changes that
are scientifically plausible and, we hope, interesting to Earth scientists.

4.1 A portion of the CASA model

Rather than attempting to refine the complete CASA model, which
is quite complex, we decided to focus on a submodel near the ‘top’ that
leads directly to the main dependent variable, NPPc, which denotes
the net production of carbon. Table 1 lists the variables that occur
in this submodel and summarizes the quantities they represent, whereas
Table 2 shows the equations that relate these variables, with indentation
reflecting the submodel’s logical structure.

The first equation in Table 2 states that NPPc is the product of two
unobservable variables, the photosynthetic efficiency at a site, E, and the
solar energy intercepted at that site, IPAR. Photosynthetic efficiency is
in turn calculated as the product of the maximum efficiency (0.56) and
three stress factors that reduce this efficiency. The first stress term, T2,
takes into account the difference between the optimum temperature,
Topt, and actual temperature, Tempc, for a site. The second factor, T1,
involves the nearness of Topt to a global optimum for all sites, reflecting
the intuition that plants which are better adapted to harsh temperatures
are less efficient overall.

The third term that influences photosynthetic efficiency, W, represents
stress that results from lack of moisture as determined by EET, the
estimated water loss due to evaporation and transpiration, and by PET,
the water loss due to these processes given an unlimited water supply.
In turn, PET is influenced by AHI, the annual heat index for a site, and
PET-TW-M, another component of potential evapotranspiration.

The model predicts IPAR, the energy intercepted from the sun, as the
product of FPAR-FAS, the fraction of energy absorbed through photo-
synthesis, MONTHLY-SOLAR, the average radiation that occurs during
a given month, and SOL-CONVER, the number of days in that month.
FPAR-FAS is in turn a function of MON-FAS-NDVI, which indicates
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NPPec is the net plant production of carbon at a site during the year.
E is the photosynthetic efficiency at a site after factoring various sources of stress.

T2 is a temperature stress factor (0 < T2 < 1), nearly Gaussian in form but falling
off more quickly at higher temperatures.

T1 is a temperature stress factor (0 < T'1 < 1) for cold weather.
W is a water stress factor (0.5 < W < 1) for dry regions.

Topt is the average temperature for the month at which MON-FAS-NDVT takes on
its maximum value at a site.

Tempc is the average temperature at a site for a given month.

EET is the estimated evapotranspiration (water loss due to evaporation and tran-
spiration) at a site.

PET is the potential evapotranspiration (water loss due to evaporation and transpi-
ration given an unlimited water supply) at a site.

PET-TW-M is a component of potential evapotranspiration that takes into account
the latitude, time of year, and days in the month.

A is a polynomial function of the annual heat index at a site.
AHI is the annual heat index for a given site.

MON-FAS-NDVT is the relative vegetation greenness for a given month as measured
from space.

IPAR is the energy from the sun that is intercepted by vegetation after factoring in
time of year and days in the month.

FPAR-FAS is the fraction of energy intercepted from the sun that is absorbed pho-
tosynthetically after factoring in vegetation type.

MONTHLY-SOLAR is the average solar irradiance for a given month at a site.
SOL-CONVER is 0.0864 times the number of days in each month.
UMD-VEG is the type of ground cover (vegetation) at a site.

Table 1. Variables used in the NPPc portion of the CASA ecosystem model.

relative greenness at a site as observed from space, and SRDIFF, an
intrinsic property that takes on different numeric values for different
vegetation types as specified by the discrete variable UMD-VEG.
Making predictions from this submodel is a straightforward process,
in that one simply starts from the observable? input variables Tempc,

MONTHLY-SOLAR, SOL-CONVER, MON-FAS-NDVI, UMD-VEG,

2 Actually, the variables EET, PET-TW-M, and AHI are unobservable terms defined else-
where in the model. To make the revision task more tractable, we assumed their definitions
were correct and treated them as observables, using the model to compute their values.
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NPPc =3 .. max(E-IPAR,0)
E=056-T1-T2-W
T1 = 0.8 + 0.02 - Topt — 0.0005 - Topt?
T2 = 1.18/[(1 + eO.Q-(TOpt—Tempc—lO)) 1+ 60.3-(Tempch0pt710))]
W =05+ 0.5 - EET/PET
PET = 1.6 - (10 - Tempc/AHI)# - PET-TW-M if Tempc > 0
PET = 0 if Tempc <0
A = 0.000000675 - AHI® — 0.0000771 - AHI* + 0.01792 - AHI + 0.49239
IPAR = 0.5 - FPAR-FAS - MONTHLY-SOLAR - SOL-CONVER
FPAR-FAS = min((SR-FAS — 1.08)/SRDIFF(UMD-VEG), 0.95)
SR-FAS = —(MON-FAS-NDVI + 1000)/(MON-FAS-NDVI — 1000)

Table 2. Equations used in the NPPc portion of the CASA ecosystem model.

EET, PET-TW-M, and AHI - and calculates values for the variables
that depend on them. The resulting quantities are then passed to other
equations that compute values for other terms, with this continuing until
a value for NPPc is predicted. One repeats this process with each grid
cell for which observations are available.

4.2 An approach to quantitative model revision

As before, our approach to scientific discovery involves refining a
model like that in Table 2 rather than constructing one from scratch.
Thus, this initial model constitutes the starting point for heuristic search
through a space of models, with the search process directed by candi-
dates’ ability to fit the data. However, in this case our models are quan-
titative rather than qualitative and, as such, require different operators
and a different evaluation function to direct search.

To this end, we assume that the overall structure of the model is
correct, but that the specific equations and their parameters can be
improved. For example, after the revision process, NPPc would still be
defined in terms of E and IPAR, but the functional form of this definition
may no longer be NPPc = E - IPAR. Moreover, we can utilize parameter
revision to mimic revision of equation forms by encoding each expression
in the initial model as a multivariate polynomial equation of the form

J K

} : W;k

y = UJO+ U}]]:[Xk] 5
7=1 k=1
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where y is a continuous variable that depends on continuous variables
X1,...,Xk. For example, the equation W = 0.5 + 0.5 - EET/PET in
this scheme becomes W = 0.5 + 0.5 - EET!?. PET 0. Such functional
relations subsume many of the numeric laws found by earlier quantitative
discovery systems like BACON [Langley, 1979] and FAHRENHEIT [Zytkow
et al., 1990], as well as the expressions in Table 2.

This encoding transforms our set of equations into the equivalent of
a multilayer neural network, with one subnetwork for each relationship
in the model. More specifically, each equation becomes a two-layer net-
work with product units in the first level, to encode multiplicative terms,
and additive units in the second level, to encode their weighted summa-
tion. This transformation maps the set of possible models into a weight
space. By adapting Saito and Nakano’s [1997] BPQ algorithm for dis-
covering numeric equations, we can implement a gradient descent search
through this space. Briefly, this method incorporates a second-order
learning technique that calculates both the descent direction and the
step size automatically. The search process halts when it finds a set
of weights that minimize the squared error on the dependent variable
y. The method then transforms the resulting network back into a set
of polynomial equations, with weights on product units becoming expo-
nents and weights on linear units becoming coefficients.

We can see readily how this approach can improve the parameters for
an equation. Although the NPPc submodel contains some parameterized
equations that our Earth science collaborators believe are reliable, like
that for computing the variable A from the annual heat index AHI,
it also includes equations with parameters about which there is less
certainty, like the expression that predicts the temperature stress factor
T2 from Tempc and Topt. By fixing the weights that correspond to
reliable parameters, as well as the weights that encode exponents, the
BPQ algorithm searches through the weight space associated with the
other parameters to find settings that reduce predictive error. We can
use the same mechanism to revise the form of an equation by specifying
that the weights for exponents should not be fixed.

We must extend the approach slightly to support revision of values
for an intrinsic property (e.g., SRDIFF) that the model associates with
the discrete values for some nominal variable (e.g., the vegetation type
UMD-VEG). In such cases, we encode each nominal term as a set of
dummy variables, one for each discrete value, setting the dummy vari-
able equal to one if the discrete value occurs and zero otherwise. We
introduce one hidden unit for the intrinsic property, with links from each
dummy variable and weights that correspond to the intrinsic value asso-
ciated with each discrete value. We then utilize Saito and Nakano’s BPQ
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algorithm to search the weight space that corresponds to alternative sets
of intrinsic values, using the original model to initialize weights.

Although this approach to model refinement can modify more than
one equation or intrinsic property at a time, the results we report in
the next section assume that the user focuses the system’s attention on
one portion of the model. We envision an interactive mode in which the
scientist identifies a portion of the model that he thinks could be better,
runs the revision method to improve its fit to the data, and repeats this
process until he is satisfied.

4.3 Initial results on ecosystem model revision

In order to evaluate our approach to quantitative model revision, we
utilized data relevant to the NPPc¢ submodel that were available to the
Earth science members of our team. These data consisted of observa-
tions from 303 distinct sites with known vegetation type and for which
measurements of Tempc, MON-FAS-NDVI, MONTHLY-SOLAR, SOL-
CONVER, and UMD-VEG had been recorded for each month of the
year. In addition, other portions of CASA were able to compute values
for the variables AHI, EET, and PET-TW-M. The resulting 303 train-
ing cases seemed sufficient for initial tests of our revision methods, so
we used them to drive a variety of changes to the handcrafted model of
carbon production.

Discussions with our Earth science collaborators suggested the expres-
sion for T2, one of the temperature stress variables, as a likely candidate
for revision. As we saw in Table 2, the initial equation for this term was

T2 — 1.8/[(1+eU.2(Topt7Temp0710))(1+670.3(Tempc7Topt710))]

3

which generates a Gaussian-like curve, shown in Figure 3, that is slightly
assymetrical. This reflects the intuition that the photosynthetic effi-
ciency of vegetation will decrease when the actual temperature (Tempc)
is either below or above the optimal temperature (Topt). When we asked
our system to improve the parameters in this expression but to retain
its original form, it produced

T — 180/[(1 +eU.OS(Topthempcfl(].S))(1 +670.03(Tempc7Topt790.33))] ’
which has fairly similar values to the initial ones for some parameters
but quite different values for others. The root mean squared error for
the revised model was 461.466, as measured by leave-one-out cross vali-
dation, which was only one percent better than the 467.910 error for the
original model.
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Figure 3. Behavior of handcrafted and revised equations for the stress variable T2.

Although this result seems disappointing at first glance, the curves
in Figure 3 reveal a more interesting picture. Plotting the temperature
stress factor T2 using the revised equations as a function of the difference
Topt — Tempec still gives a Gaussian-like curve, but within the effective
range (from —30 to 30 Celsius) its values decrease monotonically. This
seems counterintuitive but interesting from an Earth science perspective,
as it suggests this stress factor has little influence on NPPc¢. Because
the original equation for T2 was not well grounded in principles of plant
physiology, such observations are beneficial to the modeling enterprise
even when the empirical improvement is small.

As another candidate for parameter revision, we selected the equation
for PET, which calculates potential water loss due to evaporation and
transpiration given an unlimited water supply. In this case, the revised
parameter values were all very similar to those in the original model’s
equation and led to no substantial improvement in accuracy. Since the
PET equation is based on a method that has been used continuously
in Earth science for over 50 years, we should not be overly surprised
at this negative result. Indeed, we are encouraged by the fact that our
approach did not revise parameters that have stood the test of time.

We also applied our approach to revise values for the intrinsic property
SRDIFF that are associated with different vegetation types UMD-VEG.
For each site, the latter variable takes on one of 11 nominal values, such
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as grasslands, forest, and desert, each with an associated numeric value
for SRDIFF that plays a role in the FPAR-FAS equation. As outlined
earlier, to revise these intrinsic values, we introduced one dummy vari-
able, UMD-VEGy, for each vegetation type such that UMD-VEG; =1
if UMD-VEG = k and 0 otherwise.

In this case, the improvement was more substantial, with the revised
model reducing error by over four percent, which seems substantial. We
have reported the revised intrinsic values elsewhere [Saito et al., 2001],
but the most striking result was that the altered values were nearly
always lower than the initial values. This result is certainly interesting
from an Earth science viewpoint. Our domain experts suspect that
measurements of NPPc and related variables from a wider range of sites
would produce intrinsic values closer to those in the original model, but
such a test must await additional observations.

Because the original 11 intrinsic values were grouped into only four
distinct values, we also applied a clustering procedure over the trained
neural network to group the revised values in the same manner. We
examined the effect on error rate as we varied the number of clusters from
one to five. As expected, the training error decreased monotonically,
but the cross-validation error was minimized for three clusters. The
estimated error for this revised model was better than for the one with
11 distinct values, but only slightly. Again, the clustered values were
nearly always lower than the initial ones.

As we noted earlier, our system can also revise the functional forms in
a quantitative model. One candidate for such revision was the equation
for photosynthetic efficiency, E, which is calculated as a product of three
stress terms in

E = 056-T1-7T2- W .

Multiplying the stress terms has the effect of reducing photosynthetic
efficiency below the maximum 0.56 possible [Potter and Klooster, 1998],
since each factor takes on a value less than one.

In this case, a natural extension was to consider the space of equations
that included exponents on the stress terms, which we initialized to 1.0,
as in the original model, and constrained to be positive. This time, the
system produced the revised equation

E = 0.521-T1°00.72%% . 000

which reduced error over the original model by almost five percent. The
new equation has a similar coefficient, but it also has a small exponent for
T2 and zero exponents for T1 and W. These results were very interesting
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to our Earth science collaborators, as they suggest that the T1 and
W stress terms are not needed for predicting NPPc. One explanation
is that the influence of these factors is already being captured by the
NDVI measure available from space, for which the signal-to-noise ratio
has been steadily improving since CASA was first developed. They are
also consistent with our results with the T2 equation, which revealed
monotonically changing values for this variable over the relevant range.

5. Related research on computational discovery

As we noted earlier, there is a substantial literature on the compu-
tational discovery of communicable scientific knowledge (e.g., Langley
et al., 1987; Dzeroski and Todorovski, 1993; Washio and Motoda, 1998),
but most of this research has focused on the construction of laws and
models, rather than on their revision. There also exists a nearly disjoint
literature on the computational revision of knowledge bases cast in non-
scientific formalisms, most often using Horn clauses and related logical
notations (e.g., Ourston and Mooney, 1990). However, there has been
some work on the revision of scientific theories, which we should review
here briefly.

One body of related research has involved revision of structural mod-
els from the history of chemistry and physics. For example, Zytkow and
Simon’s [1986] STAHL detected inconsistencies in chemical reactions and
revised its componential models by adding or removing constituents.
Rose and Langley’s [1986] STAHLp improved on this approach and ap-
plied it to additional historical episodes. Kocabas’ [1991] BR-3 sys-
tem extended this framework to include detection of incomplete theories
and postulation of new properties to explain the absence of reactions,
then applied these strategies to the history of particle physics. Finally,
O’Rorke et al. [1990] developed AbE, an abductive system for model
revision which they used to model the shift from the phlogiston to the
oxygen theory.

Other work on the revision of qualitative scientific theories, more akin
to our own, has focused on process models that explain causal events.
Rajamoney’s [1990] COAST system incorporated ideas from qualitative
physics to represent and revise models about fluid and heat flow, whereas
Karp’s [1990] HYPGENE used a qualitative biochemical notation to sup-
port revision of models about attenuation in gene regulation. Kulkarni
and Simon [1990] describe KEKADA, a system that reproduced many
steps in Krebs’ discovery of the urea cycle. All three systems augmented
the revision process with methods for experiment design that aimed to
distinguish among competing hypotheses.
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There exists less research on the revision of quantitative scientific
models. Chown and Dietterich [2000] report an approach that improves
an existing ecosystem model’s fit to continuous data, but their method
only alters parameter values and does not revise equation structure.
Dzeroski and Todorovski [2001] present LAGRAMGE, a system that re-
vises both the structure of a model’s equations and their parameters,
using a grammatical formalism to specify domain constraints on accept-
able models. They have applied this approach to the same portion of
the CASA ecosystem model as we have addressed and obtained similar
improvements. Early research by Glymour et al. [1987] addressed re-
vision of linear causal models that took a quantitative form, but their
methods are more closely related to those we have used for qualitative
model revision.

Our vision for an interactive discovery environment directly derives
from Mitchell et al. [1997], who developed a similar environment to sup-
port discovery in metallurgy. Their DAVICCAND system let users select
pairs of numeric variables to relate, specify qualitative conditions that
focus attention on subsets of the data, and find numeric laws that relate
variables within a given region. The program also included mechanisms
for identifying outliers that violate these numeric laws and for using the
laws to infer the values of intrinsic properties. DAVICCAND presented its
results using graphical displays and functional forms that were familiar
to metallurgists.

We should note that the notion of communicable knowledge discovery
is not limited to scientific domains. Another example comes from Rogers
et al. [1999], who developed methods for revising the contents of digital
maps based on traces from a global positioning system. Their system
improved estimates of center lines for road segments, inferred the number
of lanes associated with each segment, and added content about the type
of traffic signal at intersections. The revised knowledge took the same
form as the initial digital map, letting it be displayed in a graphical
format familiar to mapmakers and drivers while increasing the map’s
overall accuracy and detail.

6. Concluding remarks

In this paper, we distinguished between two broad computational ap-
proaches to discovery: the paradigm of data mining, which emphasizes
the availability of large data sets to drive the search process, and com-
putational scientific discovery, which takes advantage of established sci-
entific formalisms to state the resulting knowledge in a communicable
fashion. We argued that the latter is more appropriate for aiding discov-
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ery in scientific disciplines, but we also noted the need for more research
in this promising framework.

In response, we reported progress on the discovery of communica-
ble scientific knowledge in two domains, one involving gene regulation
of photosynthsis in Cyanobacteria, and the other involving carbon pro-
duction by vegetation as a function of environmental factors. In both
cases, we developed algorithms that discovered knowledge in the same
formalisms as utilized by domain scientists. Our methods also reflected
two additional concerns that have received little attention in the discov-
ery literature: the revision of initial models, rather than their generation
from scratch, and the development of explanatory models, with theoret-
ical variables and processes, rather than purely descriptive summaries.
We showed that our discovery methods, one designed for qualitative
models and the other for quantitative, led to improvements over exist-
ing models in terms of their fit to available data.

Although our results to date are encouraging, we must extend our
computational discovery techniques in a number of directions before
they become useful tools for scientists. For example, both discovery
algorithms we presented can alter an initial model’s relations among
variables, but they cannot introduce new variables during the revision
process. Another shared limitation is the methods’ support for models
with instantaneous relationships among variables but not ones that in-
volve change over time. We should augment both discovery algorithms
to consider additional variables during the revision process and to sup-
port models that express temporal relations. For quantitative models
like CASA, we envision using ordinary differential equations and draw-
ing on methods like Dzeroski and Todorovski’s [2001] LAGRAMGE for
revision; for qualitative models, we will borrow formalisms developed in
the qualitative physics community (e.g., Forbus, 1984).

Clearly, such additions will increase the search space that our revi-
sion methods must explore, which in turn suggests the need for domain
constraints to direct the process. To this end, we intend to introduce a
taxonomy of variables and an analogous taxonomy of processes, with the
latter making reference to the former. For instance, regarding biochem-
ical models, one might know that metabolic processes are influenced by
a certain class of genes and that they involve instantaneous relations,
whereas transcription processes are controlled by another class and in-
volve a time delay. Knowledge of this sort can constrain significantly
the number of models that are included in the search space, and thus
increase the chances of finding a candidate that scientists find accept-
able. Analogous knowledge about which types of variables can occur in
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which types of equations can place similar constraints on the search for
quantitative models.

Another challenge that we have encountered in our research has been
the need to translate existing models into a declarative form that our
discovery methods can manipulate. In response, we have started to de-
velop a modeling language in which scientists can cast their initial mod-
els and carry out simulations, but that can also serve as the declarative
representation for our discovery methods. The ability to automatically
revise models places novel constraints on such a language. We envision
this software developing into an interactive discovery aide that lets a
scientist specify initial models, focus the system’s attention on particu-
lar data sets and on parts of the model it should attempt to improve,
and generally control high-level aspects of the discovery process. Thus,
future versions will need a graphical interface for creating models, edit-
ing them, and marking fragments that can be revised, as well as tools
for displaying matches to data, linking to other knowledge bases, and
tracking changes in models over time. Taken together, these extensions
should produce a valuable aide for practicing scientists.

Naturally, we also hope to evaluate our approach to model revision
on other aspects of photosynthesis regulation and other portions of the
CASA model as additional data become available. A more serious test of
generality would be application of the same methods to other scientific
domains in which there already exist formal models that can be revised.
In the longer term, we should evaluate our interactive system not only
in its ability to increase the predictive accuracy of an existing model,
but in terms of the satisfaction the system provides to scientists who use
it for model development.
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