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Abstrat In this paper we distinguish between two omputational paradigms forknowledge disovery that share the notion of heuristi searh, but di�erin the importane they plae on using sienti� formalisms to state dis-overed knowledge. We also report progress on omputational methodsfor disovering suh ommuniable knowledge in two domains, one in-volving the regulation of photosynthesis in phytoplankton and the otherinvolving arbon prodution by vegetation in the Earth eosystem. Ineah ase, we desribe a representation for models, methods for usingdata to revise existing models, and some initial results. In losing, wedisuss related work on the omputational disovery of ommuniablesienti� knowledge and outline diretions for future researh.1. IntrodutionSienti� disovery is generally viewed as one of the most omplexhuman reative ativities. As suh, it seems worth understanding forboth theoretial and pratial reasons. One powerful metaphor treatsthe disovery proess as a form of omputation, and in fat work thatadopts this metaphor has a long history that dates bak over two deades(e.g., Langley, 1979; Lenat, 1977; Lindsay et al., 1980). Researh withinthis framework has advaned steadily until, in reent years, it has led1



2 P. Langley, J. Shrager, and K. Saitoto new disoveries deemed worth publiation in the sienti� literature(e.g., see Langley, 2000). However, despite this progress, work on thetopi remains subjet to important limitations.In this paper, we desribe a new omputational approah to disov-ery of sienti� knowledge and illustrate its appliation to two domains.The �rst fouses on onstruting regulatory models for photosynthesis inphytoplankton using data from DNA miroarrays. The seond involves�nding a quantitative model of the Earth eosystem that �ts environ-mental data obtained from satellites and ground stations. In both ases,we report our formalism for representing models, a omputational teh-nique for produing them from observations, and initial results withatual data.Although these two appliations di�er on many dimensions, they alsoshare a reliane on three onerns: the disovered knowledge must beommuniable to domain sientists; the new model must be linked toprevious domain knowledge; and the model must move beyond a de-sriptive summary to explain the observations. We should also notethat our long-term goal is not to automate the disovery proess, butinstead to provide interative tools that sientists an diret and use toaid their model development.After desribing our approahes to disovery in mirobiology andEarth siene, we disuss related work on omputational disovery andoutline some likely diretions for future researh. However, before pre-senting our omputational framework and its appliation, we must �rstplae it in a broader historial ontext of work on knowledge disovery.2. Paradigms for omputational disoveryAs Kuhn [1962℄ has noted, the paradigm within whih sienti� re-searh ours has a major impat on both its ontent and its method, andomputational researh on knowledge disovery is no exeption. For thisreason, we should review the two major frameworks for studying the dis-overy proess in omputational terms. These two paradigms hold someimportant assumptions in ommon, but they diverge on a key issue.2.1 The data mining paradigmA number of developments have made possible the progress on om-putational approahes to knowledge disovery. The most reent break-through, whih we may all the data revolution, ame from the in-sight that one an bene�t by olleting and storing, automatially, vastamounts of data that desribe natural, engineering, and soial domainsof interest. These abilities have been made pratial by the availability of



Computational Disovery of Communiable Knowledge 3inexpensive omputer memory storage, the advent of new measurementtehniques that ease data aquisition, and the introdution of ommuni-ation infrastruture (e.g., the Internet) that supports rapid transfer ofdata. We an set the date for this revolution around 1995, when thesetehnologies beame ommon, but awareness of the oming situation waswidespread �ve years earlier. Naturally, the aess to eletroni data setsholds great potential to support knowledge disovery, and many sien-tists, engineers, and businessmen have foused their energies on ful�llingthat potential.A somewhat earlier development, whih we may all the searh rev-olution, resulted from the insight that omputers are general symbolmanipulators and that one an view many tasks whih require intelli-gene as involving searh through a spae of symboli strutures. Thisability beame pratial with the introdution of omputer programminglanguages that ould represent and manipulate symboli strutures, aswell as algorithms for arrying out heuristially-guided searh througha spae of suh strutures. We an date this revolution to the middle1950s, when Newell and Simon [1956℄ reated the �rst list-proessinglanguage and used it to automate searh for proofs of logial theorems.Notions of heuristi searh preeded this ahievement, but omputation-alists began to apply the idea in earnest only after this proof of onept.Simon [1966℄ was also one of the �rst authors to view the disoveryproess in terms of searh.In reent years, these two insights have been ombined by researhersand developers in a paradigm known as data mining or knowledge dis-overy in databases. Work in this arena emphasizes the availability andpotential of large, eletroni data sets, as well as omputational teh-niques that an represent and searh for knowledge impliit in thosedata. The data mining ommunity has inherited its key tehniques fromtwo parent disiplines { mahine learning and databases { that have fo-used historially on omputational proessing of data. This approahhas beome espeially popular in the ommerial setor, where it hasbeen applied suessfully to manufaturing, marketing, and �nane, butit has also been put to good e�et in a variety of sienti� �elds.However, despite its impressive trak reord, the data mining frame-work has an important drawbak related to its emphasis on the disov-ery of knowledge in understandable forms. In priniple, this onern isperfetly legitimate, sine we typially assume that knowledge an berepresented expliitly and ommuniated among humans. Yet the datamining ommunity's e�orts along these lines have foused on partiularformalisms it has inherited from its parent disiplines, notably deisiontrees, logial rules, and Bayesian networks. Researhers regularly take



4 P. Langley, J. Shrager, and K. Saitopositions about the understandability of suh representations, but theirstanes are based more on popular myths than on areful reasoning orempirial evidene.One suh myth onerns the laim that univariate deision trees, withtheir logial semantis, are inherently easier to understand than alterna-tive notations, like probabilisti lassi�ers, that involve numeri weightsand degrees of math. Yet Igor Kononenko [personal ommuniation,1993℄, who originally believed this intuition, found that medial dotorsfelt a naive Bayesian lassi�er, whih omputes probabilisti summaries,was easier to omprehend than deision trees indued from the samepatient data. Presumably, this was beause the physiians had more ex-posure to probability theory than to nonparametri shemes like deisiontrees. We an draw a tentative onlusion from this result: knowledge ismore understandable when ast in a formalism familiar to the reipient.A similar myth involves the laim that omputational methods likebakpropagation, whih learns weights in a multilayer neural network,produe results that are inherently opaque. Yet Saito and Nakano [1997℄have shown that, by arefully struturing the network arhiteture, onean use bakpropagation to disover numeri equations like those entralto physis and other sienes, and whih, presumably, are interpretableby experts in those domains. We an draw another plausible lesson fromthis result: whether the disovered knowledge is understandable dependsfar less on the searh algorithm than on the manner in whih one usesthat algorithm.2.2 Computational sienti� disoveryThese observations suggest the relevane of a third, muh older, his-torial development, the sienti� revolution, whih introdued not onlythe idea of evaluating laws and theories in terms of their ability to �tobservations, but also emphasized the asting of suh knowledge in someformal notation. We an date this insight to around 1700, when New-ton's theory of gravitation beame widely aepted, though it was pre-dated by similar formal statements like Kepler's laws. Over the past 300years, sientists and engineers have developed a variety of formalisms torepresent knowledge that bear little resemblane to the notations whihdominate the data mining ommunity. We hold that suh formalismsfrom siene and engineering are more appropriate targets for knowl-edge disovery, at least in suh domains, than data mining notations.In fat, there exists an alternative omputational paradigm, predatingthe data mining framework, that ombines the representational insightsof the sienti� revolution with the notion of heuristi searh. We will



Computational Disovery of Communiable Knowledge 5refer to this framework as omputational sienti� disovery, sine itsprimary fous has been �nding laws and theories in sienti� domains.This paradigm also assumes the presene of data or observations, butemphasizes their role less than the searh metaphor and sienti� no-tations. Researh in this area addressed originally the redisovery ofknowledge from the history of siene (e.g., Langley et al., 1987; Shragerand Langley, 1990), but the last deade has seen numerous examples ofnovel disoveries that have led to publiations in the relevant sienti�literature [Langley, 2000℄. We maintain that this approah is more ap-propriate for the disovery of ommuniable knowledge than the datamining framework preisely beause it utilizes formalisms already famil-iar to domain experts.Note that there has been onsiderable work within the KDD traditionon sienti� domains. Muh of this has foused on appliations to mole-ular biology, suh as learning preditors for protein folding, but Fayyadet al. [1996℄ review similar e�orts in astronomy, suh as distinguish-ing stars from galaxies, and planetology, suh as deteting volanoes onVenus. This work has proven valuable to the disiplines involved, but wehold that the knowledge disovered in these ases is not ommuniablein the same sense as desribed above. The learned preditors, whetherstated as deision trees, neural networks, or probabilisti lassi�ers, areunlikely to appear as knowledge themselves in sienti� papers, and thuswould not be ommuniated. Rather, they play the role of measuring in-struments, whih are essential to sienti� progress but whih onstitutetait knowledge [Polanyi, 1958℄ rather than the ommuniable variety.By this point, we hope to have onvined readers that the task ofommuniable knowledge disovery di�ers in important ways from theproblems typially pursued in the data mining ommunity, and that thistask deserves signi�antly inreased attention among knowledge disov-ery researhers. For despite the suess stories to date, there remainmany open problems that require additional e�ort. For instane, mostresearh on omputational sienti� disovery has foused on �ndingknowledge from srath, but sientists are typially onerned with re-vising and improving existing theories. Researhers in the �eld have alsoonentrated primarily on disovery of desriptive regularities, but si-entists often aim for models that explain observed phenomena in termsof unobserved variables and proesses. Finally, most work on omputa-tional disovery has emphasized automating this ativity, but sientistswould bene�t more from interative tools that assist them in their e�ortsrather than ones that aim to replae them.In the setions that follow, we report progress on these issues in theontext of two sienti� domains. In both ases, we review an existing



6 P. Langley, J. Shrager, and K. Saitoexplanatory model that aounts partially for some phenomena, desribea omputational system that revises this model to �t these data better,and present some initial results of suh improvement. Our researh oninterative tools has advaned less, but we have designed our revisiontehniques to support suh a apability. As in other work on omputa-tional sienti� disovery, the systems ast their disovered knowledgein a familiar sienti� notation to ensure ommuniability.3. Revising regulatory models in mirobiologyAlthough biologists understand the basi mehanisms through whihDNA produes biohemial behavior, they have not yet determined mostof the regulatory networks that ontrol the degree to whih eah gene isexpressed. However, for partiular organisms under ertain onditions,they have developed partial models of gene regulation. The measurementand analysis of gene expression levels, either through Northern blotsor DNA miroarrays, has played a entral role in the eluidation ofregulatory models, as both measures quantify gene ativity in terms ofRNA onentration.The most popular omputational approah to proessing suh expres-sion data { lustering genes into oregulated lasses { is a lear exampleof the data mining paradigm. This knowledge-lean method lets one re-due the high dimensionality of miroarray data to a manageable level,but the results take the form of desriptions rather than explanations.A seond paradigm, more ommonly used by pratiing biologists, usesdata about expression levels to test spei� pathway hypotheses. Thisknowledge-rih approah lets one evaluate proposed explanations, but itgenerally does not move beyond these hypotheses to suggest improvedregulatory models.In this setion, we desribe an approah that ombines knowledge withdata to revise an initial biologial model. We fous on the regulation ofphotosynthesis in Cyanobateria, an area for whih we have both a modelproposed by domain sientists and miroarray data olleted to evaluatethis model. As outlined above, our goal is to develop omputationalmethods that an utilize data to improve suh a model while retainingits ommuniability and its links to existing biologial knowledge.3.1 Representing models of gene regulationAny omputational method designed to improve regulatory modelsmust �rst have some representation for those models. As we have noted,most work in mahine learning and data mining draws on representa-tional formalisms that were designed by arti�ial intelligene researhers



Computational Disovery of Communiable Knowledge 7and that make little ontat with notations ommonly used by prati-ing sientists. In ontrast, we are ommitted to representing biologialmodels in terms that are familiar to biologists themselves.Figure 1 presents a regulatory model, obtained from a plankton biol-ogist, that aims to explain why Cyanobateria bleahes when exposedto high light onditions. Eah node orresponds to some variable, eitherobservable or theoretial, whereas eah link depits some biologial pro-ess through whih one variable inuenes another. Solid lines denoteinternal proesses, whereas dashes indiate proesses onneted to theenvironment.
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Figure 1. An initial model for regulation of photosynthesis in Cyanobateria.The model states that hanges in light level modulate the ativity ofdspA, a protein hypothesized to serve as a sensor. This in turn regu-lates NBLR and NBLA, whih then redue the number of phyobilisome(PBS) rods that absorb light, whih is measurable photometrially asthe organism's greenness. The redution in PBS protets the organ-ism's health beause it dereases the absorbtion of light, whih an bedamaging at high levels. The organism's health under high light on-ditions an be measured in terms of ulture density. The sensor dspAalso impats health through a seond pathway by inuening a hypoth-esized response regulator, RR, whih in turn down regulates expressionof the gene produts psbA1, psbA2, and pB. The �rst two inuenepositively the level of photosyntheti ativity (Photo) by altering thephotosystem's struture. If left unaltered, this seond pathway wouldalso damage the organism under high light onditions.Although this model inorporates quantitative variables, it spei�esonly the diretions of inuene and not their spei� form or their pa-rameters. AI researh in qualitative physis (e.g., Forbus, 1984) has usedsimilar notations to support ommon sense reasoning. We have fousedon suh qualitative models not beause quantitative ones are undesir-able, but beause biologists usually operate on the former, and we wantour omputational tools to support their typial reasoning styles.



8 P. Langley, J. Shrager, and K. SaitoThe example model is also partial and abstrat, in that the biolo-gist who proposed it learly viewed it as a working hypothesis. Someproesses are abstrat in that they denote entire hains of subproesses.For instane, the link from dspA to NBLR denotes a omplex signalingpathway for whih the details are unknown or irrelevant at this levelof analysis. The model also inludes abstrat variables like RR, whihrefers to an unspei�ed gene (or set of genes) that ats as an interme-diary ontroller. Thus, our formalism an express partial, abstrat, andqualitative models like those often used by biologists.For the sake of analytial tratability, we also assume that eah vari-able is a linear funtion of its diret auses plus an error term. Thismeans that we an represent the entire model as a system of linearequations, whih Glymour et al. [1987℄ refer to as a linear ausal model .This approah to modeling has been used widely in eonometris, wherethe data are purely observational. Most researh in this framework dealswith quantitative models that speify the parameters for eah equation,but, again, we fous here on the qualitative version.3.2 Utilizing, evaluating, and revising modelsSine our models are qualitative, they annot predit diretly the on-tinuous expression levels one an observe for genes, but they do implyertain relations among variables. In partiular, they predit whih vari-ables should be orrelated and the diretion of those relationships. If twovariables are onneted diretly, then we expet their orrelation to havethe same sign as that on their link. If they are onneted indiretly, wemultiply the signs on the path that onnets them. For instane, themodel in Figure 1 predits that NBLA and pB will be negatively orre-lated, even though neither has a diret ausal inuene on the other andthe path onneting them passes through RR, an unobservable variable.In some ases, there exist multiple paths between a pair of variables.When the predited sign for all paths between these nodes agree, thesystem simply makes that predition. However, when two or more pathsdisagree, we assume the model inludes an annotation that indiateseither the positive or negative paths are dominant, whih gives an un-ambiguous predition. This extended formalism lets a qualitative modelpredit a positive or negative orrelation for eah pair of observed vari-ables, even without information about the quantity of eah link's e�et.In addition, asting our regulatory strutures as linear ausal mod-els lets us make other important preditions about partial orrelations,whih desribe the relationship between two variables one the e�ets ofother terms have been fatored out. For instane, the partial orrelation



Computational Disovery of Communiable Knowledge 9�12:3 denotes the orrelation between X1 and X2 when ontrolling forX3. Simon [1954℄ has shown that a zero partial orrelation �12:3 im-plies that X1 and X2 are onneted through X3. In ontrast, a nonzeropartial orrelation implies that X1 and X2 are onneted through pathsthat do not involve X3. Thus, the model in Figure 1 predits that thepartial orrelation of dspA and PBS given NBLA will be zero, beausethe variable NBLA lies along the path between them. Glymour et al.have generalized these onditions for more ompliated models, but theintution remains the same.Our approah evaluates a andidate regulatory model by prediting,for eah set of three variables, whih partial orrelations should ourand whih ones should not. The system then alulates these partial or-relations from the data and determines, for eah one, whether it di�erssigni�antly from zero. Upon omparing the predited partial orrela-tions with those supported by the data, it obtains the number of truepositives (tp), true negatives (tn), false positives (fp), and false negatives(fn). The system ombines these ounts usingsore = fp+ fn� tp� tn ;whih provides an overall measure of the model's qualitative �t to theobservations. Beause most linear ausal models imply di�erent partialorrelations, this metri lets it disriminate among many alternativeregulatory strutures.To revise its model of gene regulation, the system arries out a two-stage heuristi searh through a spae of andidate models. The �rststage, whih fouses on the ausal struture, starts from the initial modelproposed by biologists with the signs on links removed. The operators forgenerating alternative models inlude adding a link between variables,removing an existing link, and reversing the diretion of a link.1 Thesystem invokes the sore metri desribed above to selet among models,and it arries out hill-limbing searh through the model spae, on eahstep seleting the revision that most improves the evaluation metri.The searh halts after a prespei�ed number of revision steps.Beause experiments that measure gene expression typially olletfew samples, this approah is unstable in that small hanges to the dataan produe very di�erent models. To o�set this, the system generates20 di�erent training sets by sampling with replaement from the orig-1These operators are onstrained by biologial knowledge. For instane, the system knowsthat stimulus variables like Light must serve as ausal inuenes to gene variables, and thatbehavioral variables like Photo must be aused by the latter.



10 P. Langley, J. Shrager, and K. Saitoinal data, then runs its revision algorithm to generate 20 new models.The program then ounts how many times eah revision ours in thesemodels and retains only those that appear in at least 75 perent of them.One the system has indued the model's ausal struture, the seondstage arries out another searh to determine the signs on links. In thisase, the evaluation funtion measures instead the number of orrela-tions for whih the predited and observed signs agree. If the modelinvolves only a few links, the system onsiders exhaustively all possibleassignments of pluses and minuses on the links, then selets the best-soring assignment. Otherwise, it resorts to hill limbing through thespae of assignments, starting from those in the initial model and haltingwhen no further improvement ours.
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Figure 2. A revised model for regulation of photosynthesis in wild Cyanobateria.3.3 Initial results on photosyntheti regulationWe applied our revision method to data for the wild type Cyanoba-teria and a mutant that does not bleah under high light onditions.We have data from DNA miroarrays about the expression levels forapproximately 300 genes believed to play a role in photosynthesis. Forthe initial analysis, we foused on genes in the initial model shown inFigure 1 and did not onsider links to other genes. The miroarray data,whih reets the onentration of mRNA for eah gene relative to thatin a ontrol ondition, were measured at 0, 30, 60, 120, and 360 minutesafter high light was introdued, with four repliated measurements ateah time point. We treated the data as independent samples, ignoringtheir temporal aspets and dependenies among the repliates.Figure 2 shows the revised model that the system produed from thesedata. There are �ve di�erenes from the initial regulatory aount. Twohanges, removal of the links to and from psbA2, involve the model stru-ture. The other three revisions onern hanges of signs, in partiular forthe links from RR to psbA1, from RR to pB, and from PBS to Health.



Computational Disovery of Communiable Knowledge 11Disussions with the biologist who proposed the original model indiatea strong belief that RR inuenes Photo, but unertainty about the ex-at pathways. This means that the hanges whih involve RR are notproblemati, sine the presene of one gene produt (psbA1) is enoughto regulate the photosyntheti enter (Photo). However, the reversedsign on the link from PBS to Health raises a problem, sine the beliefthat exessive light auses damage means this link should be positive.We hypothesize that, in this study, the light exposure was not enough tooverome bene�ts from the energy it provides, whih the model omits.We also tested the system on expression data for a mutant of Cyanoba-teria that does not bleah under high light onditions. Presumably, suha mutant di�ers genetially from the wild organism in only a few ways,so we started searh from the same model as in our �rst study. In thisase, the system removed the link from dspA to RR, but made no otherrevisions. This is a plausible hange, sine the mutation involved re-moval of the dspA gene from the organism. However, the new modeldoes not explain why the mutant fails to bleah when exposed to highlight. One possibility is that the 20 samples did not provide enoughstatistial power to let the system remove the link from dspA to NBLR,whih would produe the desired e�et. Although these initial resultsare enouraging, it seems lear that we an still improve our approah torevising qualitative models of gene regulation. Elsewhere [Shrager et al.,2002℄ we disuss some diretions for future researh along these lines.4. Revising quantitative models in Earth sieneEarth sientists have reahed a broad enough understanding of eosys-tem proesses to develop models for the entire biosphere. These di�erfrom the mirobiologial models we onsidered in the last setion in thatthey are primarily quantitative rather than qualitative. Eosystem mod-els an also be quite omplex, ontaining tens of equations, many the-oretial variables, and parameters for eah grid ell, whih an numberin the thousands. Suh models are onsistent with high-level eosystemphenomena, but the availability of new data from satellites and othersoures provides the opportunity to re�ne them further.One suh model, Potter and Klooster's [1997, 1998℄ CASA, predits,with reasonable auray, the global prodution and absorption of bio-geni trae gases in the Earth's atmosphere, as well as explaining hangesin the geographi vegetation patterns on the land. The model's pre-ditive variables inlude surfae temperature, moisture levels, and soilproperties, along with global satellite observations of the land surfae.CASA inorporates both instantaneous and di�erene equations that



12 P. Langley, J. Shrager, and K. Saitodesribe hanges over time due to the terrestrial arbon yle and pro-esses that mineralize nitrogen and ontrol vegetation type. The modeloperates on gridded input, with typial usage involving grid ells thatare eight kilometers square, sine this mathes the resolution for landsurfae observations obtained from satellites.Although CASA has been quite suessful at modeling Earth's eosys-tem, its preditions still di�er from observations in ertain ways, and inthis setion we desribe a omputational approah to improving its �tto the data available. As before, the result is a revised model, ast inthe same notation as the original one, that inorporates hanges thatare sienti�ally plausible and, we hope, interesting to Earth sientists.4.1 A portion of the CASA modelRather than attempting to re�ne the omplete CASA model, whihis quite omplex, we deided to fous on a submodel near the `top' thatleads diretly to the main dependent variable, NPP, whih denotesthe net prodution of arbon. Table 1 lists the variables that ourin this submodel and summarizes the quantities they represent, whereasTable 2 shows the equations that relate these variables, with indentationreeting the submodel's logial struture.The �rst equation in Table 2 states that NPP is the produt of twounobservable variables, the photosyntheti eÆieny at a site, E, and thesolar energy interepted at that site, IPAR. Photosyntheti eÆieny isin turn alulated as the produt of the maximum eÆieny (0.56) andthree stress fators that redue this eÆieny. The �rst stress term, T2,takes into aount the di�erene between the optimum temperature,Topt, and atual temperature, Temp, for a site. The seond fator, T1,involves the nearness of Topt to a global optimum for all sites, reetingthe intuition that plants whih are better adapted to harsh temperaturesare less eÆient overall.The third term that inuenes photosyntheti eÆieny, W, representsstress that results from lak of moisture as determined by EET, theestimated water loss due to evaporation and transpiration, and by PET,the water loss due to these proesses given an unlimited water supply.In turn, PET is inuened by AHI, the annual heat index for a site, andPET-TW-M, another omponent of potential evapotranspiration.The model predits IPAR, the energy interepted from the sun, as theprodut of FPAR-FAS, the fration of energy absorbed through photo-synthesis, MONTHLY-SOLAR, the average radiation that ours duringa given month, and SOL-CONVER, the number of days in that month.FPAR-FAS is in turn a funtion of MON-FAS-NDVI, whih indiates



Computational Disovery of Communiable Knowledge 13NPP is the net plant prodution of arbon at a site during the year.E is the photosyntheti eÆieny at a site after fatoring various soures of stress.T2 is a temperature stress fator (0 < T2 < 1), nearly Gaussian in form but fallingo� more quikly at higher temperatures.T1 is a temperature stress fator (0 < T1 < 1) for old weather.W is a water stress fator (0:5 < W < 1) for dry regions.Topt is the average temperature for the month at whih MON-FAS-NDVI takes onits maximum value at a site.Temp is the average temperature at a site for a given month.EET is the estimated evapotranspiration (water loss due to evaporation and tran-spiration) at a site.PET is the potential evapotranspiration (water loss due to evaporation and transpi-ration given an unlimited water supply) at a site.PET-TW-M is a omponent of potential evapotranspiration that takes into aountthe latitude, time of year, and days in the month.A is a polynomial funtion of the annual heat index at a site.AHI is the annual heat index for a given site.MON-FAS-NDVI is the relative vegetation greenness for a given month as measuredfrom spae.IPAR is the energy from the sun that is interepted by vegetation after fatoring intime of year and days in the month.FPAR-FAS is the fration of energy interepted from the sun that is absorbed pho-tosynthetially after fatoring in vegetation type.MONTHLY-SOLAR is the average solar irradiane for a given month at a site.SOL-CONVER is 0.0864 times the number of days in eah month.UMD-VEG is the type of ground over (vegetation) at a site.Table 1. Variables used in the NPP portion of the CASA eosystem model.relative greenness at a site as observed from spae, and SRDIFF, anintrinsi property that takes on di�erent numeri values for di�erentvegetation types as spei�ed by the disrete variable UMD-VEG.Making preditions from this submodel is a straightforward proess,in that one simply starts from the observable2 input variables { Temp,MONTHLY-SOLAR, SOL-CONVER, MON-FAS-NDVI, UMD-VEG,2Atually, the variables EET, PET-TW-M, and AHI are unobservable terms de�ned else-where in the model. To make the revision task more tratable, we assumed their de�nitionswere orret and treated them as observables, using the model to ompute their values.



14 P. Langley, J. Shrager, and K. SaitoNPP =Pmonthmax(E � IPAR; 0)E = 0:56 � T1 � T2 �WT1 = 0:8 + 0:02 � Topt� 0:0005 � Topt2T2 = 1:18=[(1 + e0:2�(Topt�Temp�10)) � (1 + e0:3�(Temp�Topt�10))℄W = 0:5 + 0:5 � EET=PETPET = 1:6 � (10 � Temp=AHI)A � PET-TW-M if Temp > 0PET = 0 if Temp � 0A = 0:000000675 �AHI3 � 0:0000771 � AHI2 + 0:01792 �AHI + 0:49239IPAR = 0:5 � FPAR-FAS �MONTHLY-SOLAR � SOL-CONVERFPAR-FAS = min((SR-FAS� 1:08)=SRDIFF(UMD-VEG); 0:95)SR-FAS = �(MON-FAS-NDVI+ 1000)=(MON-FAS-NDVI� 1000)Table 2. Equations used in the NPP portion of the CASA eosystem model.EET, PET-TW-M, and AHI { and alulates values for the variablesthat depend on them. The resulting quantities are then passed to otherequations that ompute values for other terms, with this ontinuing untila value for NPP is predited. One repeats this proess with eah gridell for whih observations are available.4.2 An approah to quantitative model revisionAs before, our approah to sienti� disovery involves re�ning amodel like that in Table 2 rather than onstruting one from srath.Thus, this initial model onstitutes the starting point for heuristi searhthrough a spae of models, with the searh proess direted by andi-dates' ability to �t the data. However, in this ase our models are quan-titative rather than qualitative and, as suh, require di�erent operatorsand a di�erent evaluation funtion to diret searh.To this end, we assume that the overall struture of the model isorret, but that the spei� equations and their parameters an beimproved. For example, after the revision proess, NPP would still bede�ned in terms of E and IPAR, but the funtional form of this de�nitionmay no longer be NPP = E � IPAR. Moreover, we an utilize parameterrevision to mimi revision of equation forms by enoding eah expressionin the initial model as a multivariate polynomial equation of the formy = w0 + JXj=1wj KYk=1Xwjkk ;



Computational Disovery of Communiable Knowledge 15where y is a ontinuous variable that depends on ontinuous variablesX1; : : : ;XK . For example, the equation W = 0:5 + 0:5 � EET/PET inthis sheme beomes W = 0:5 + 0:5 � EET1:0 � PET�1:0. Suh funtionalrelations subsume many of the numeri laws found by earlier quantitativedisovery systems like Baon [Langley, 1979℄ and Fahrenheit [ _Zytkowet al., 1990℄, as well as the expressions in Table 2.This enoding transforms our set of equations into the equivalent ofa multilayer neural network, with one subnetwork for eah relationshipin the model. More spei�ally, eah equation beomes a two-layer net-work with produt units in the �rst level, to enode multipliative terms,and additive units in the seond level, to enode their weighted summa-tion. This transformation maps the set of possible models into a weightspae. By adapting Saito and Nakano's [1997℄ BPQ algorithm for dis-overing numeri equations, we an implement a gradient desent searhthrough this spae. Briey, this method inorporates a seond-orderlearning tehnique that alulates both the desent diretion and thestep size automatially. The searh proess halts when it �nds a setof weights that minimize the squared error on the dependent variabley. The method then transforms the resulting network bak into a setof polynomial equations, with weights on produt units beoming expo-nents and weights on linear units beoming oeÆients.We an see readily how this approah an improve the parameters foran equation. Although the NPP submodel ontains some parameterizedequations that our Earth siene ollaborators believe are reliable, likethat for omputing the variable A from the annual heat index AHI,it also inludes equations with parameters about whih there is lessertainty, like the expression that predits the temperature stress fatorT2 from Temp and Topt. By �xing the weights that orrespond toreliable parameters, as well as the weights that enode exponents, theBPQ algorithm searhes through the weight spae assoiated with theother parameters to �nd settings that redue preditive error. We anuse the same mehanism to revise the form of an equation by speifyingthat the weights for exponents should not be �xed.We must extend the approah slightly to support revision of valuesfor an intrinsi property (e.g., SRDIFF) that the model assoiates withthe disrete values for some nominal variable (e.g., the vegetation typeUMD-VEG). In suh ases, we enode eah nominal term as a set ofdummy variables, one for eah disrete value, setting the dummy vari-able equal to one if the disrete value ours and zero otherwise. Weintrodue one hidden unit for the intrinsi property, with links from eahdummy variable and weights that orrespond to the intrinsi value asso-iated with eah disrete value. We then utilize Saito and Nakano's BPQ



16 P. Langley, J. Shrager, and K. Saitoalgorithm to searh the weight spae that orresponds to alternative setsof intrinsi values, using the original model to initialize weights.Although this approah to model re�nement an modify more thanone equation or intrinsi property at a time, the results we report inthe next setion assume that the user fouses the system's attention onone portion of the model. We envision an interative mode in whih thesientist identi�es a portion of the model that he thinks ould be better,runs the revision method to improve its �t to the data, and repeats thisproess until he is satis�ed.4.3 Initial results on eosystem model revisionIn order to evaluate our approah to quantitative model revision, weutilized data relevant to the NPP submodel that were available to theEarth siene members of our team. These data onsisted of observa-tions from 303 distint sites with known vegetation type and for whihmeasurements of Temp, MON-FAS-NDVI, MONTHLY-SOLAR, SOL-CONVER, and UMD-VEG had been reorded for eah month of theyear. In addition, other portions of CASA were able to ompute valuesfor the variables AHI, EET, and PET-TW-M. The resulting 303 train-ing ases seemed suÆient for initial tests of our revision methods, sowe used them to drive a variety of hanges to the handrafted model ofarbon prodution.Disussions with our Earth siene ollaborators suggested the expres-sion for T2, one of the temperature stress variables, as a likely andidatefor revision. As we saw in Table 2, the initial equation for this term wasT2 = 1:8=[(1 + e0:2(Topt�Temp�10))(1 + e�0:3(Temp�Topt�10))℄ ;whih generates a Gaussian-like urve, shown in Figure 3, that is slightlyassymetrial. This reets the intuition that the photosyntheti eÆ-ieny of vegetation will derease when the atual temperature (Temp)is either below or above the optimal temperature (Topt). When we askedour system to improve the parameters in this expression but to retainits original form, it produedT2 = 1:80=[(1 + e0:05(Topt�Temp�10:8))(1 + e�0:03(Temp�Topt�90:33))℄ ;whih has fairly similar values to the initial ones for some parametersbut quite di�erent values for others. The root mean squared error forthe revised model was 461:466, as measured by leave-one-out ross vali-dation, whih was only one perent better than the 467:910 error for theoriginal model.
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Figure 3. Behavior of handrafted and revised equations for the stress variable T2.Although this result seems disappointing at �rst glane, the urvesin Figure 3 reveal a more interesting piture. Plotting the temperaturestress fator T2 using the revised equations as a funtion of the di�ereneTopt � Temp still gives a Gaussian-like urve, but within the e�etiverange (from �30 to 30 Celsius) its values derease monotonially. Thisseems ounterintuitive but interesting from an Earth siene perspetive,as it suggests this stress fator has little inuene on NPP. Beausethe original equation for T2 was not well grounded in priniples of plantphysiology, suh observations are bene�ial to the modeling enterpriseeven when the empirial improvement is small.As another andidate for parameter revision, we seleted the equationfor PET, whih alulates potential water loss due to evaporation andtranspiration given an unlimited water supply. In this ase, the revisedparameter values were all very similar to those in the original model'sequation and led to no substantial improvement in auray. Sine thePET equation is based on a method that has been used ontinuouslyin Earth siene for over 50 years, we should not be overly surprisedat this negative result. Indeed, we are enouraged by the fat that ourapproah did not revise parameters that have stood the test of time.We also applied our approah to revise values for the intrinsi propertySRDIFF that are assoiated with di�erent vegetation types UMD-VEG.For eah site, the latter variable takes on one of 11 nominal values, suh



18 P. Langley, J. Shrager, and K. Saitoas grasslands, forest, and desert, eah with an assoiated numeri valuefor SRDIFF that plays a role in the FPAR-FAS equation. As outlinedearlier, to revise these intrinsi values, we introdued one dummy vari-able, UMD-VEGk, for eah vegetation type suh that UMD-VEGk = 1if UMD-VEG = k and 0 otherwise.In this ase, the improvement was more substantial, with the revisedmodel reduing error by over four perent, whih seems substantial. Wehave reported the revised intrinsi values elsewhere [Saito et al., 2001℄,but the most striking result was that the altered values were nearlyalways lower than the initial values. This result is ertainly interestingfrom an Earth siene viewpoint. Our domain experts suspet thatmeasurements of NPP and related variables from a wider range of siteswould produe intrinsi values loser to those in the original model, butsuh a test must await additional observations.Beause the original 11 intrinsi values were grouped into only fourdistint values, we also applied a lustering proedure over the trainedneural network to group the revised values in the same manner. Weexamined the e�et on error rate as we varied the number of lusters fromone to �ve. As expeted, the training error dereased monotonially,but the ross-validation error was minimized for three lusters. Theestimated error for this revised model was better than for the one with11 distint values, but only slightly. Again, the lustered values werenearly always lower than the initial ones.As we noted earlier, our system an also revise the funtional forms ina quantitative model. One andidate for suh revision was the equationfor photosyntheti eÆieny, E, whih is alulated as a produt of threestress terms in E = 0:56 � T1 � T2 �W :Multiplying the stress terms has the e�et of reduing photosynthetieÆieny below the maximum 0.56 possible [Potter and Klooster, 1998℄,sine eah fator takes on a value less than one.In this ase, a natural extension was to onsider the spae of equationsthat inluded exponents on the stress terms, whih we initialized to 1.0,as in the original model, and onstrained to be positive. This time, thesystem produed the revised equationE = 0:521 � T10:00 � T20:03 �W 0:00 ;whih redued error over the original model by almost �ve perent. Thenew equation has a similar oeÆient, but it also has a small exponent forT2 and zero exponents for T1 and W. These results were very interesting



Computational Disovery of Communiable Knowledge 19to our Earth siene ollaborators, as they suggest that the T1 andW stress terms are not needed for prediting NPP. One explanationis that the inuene of these fators is already being aptured by theNDVI measure available from spae, for whih the signal-to-noise ratiohas been steadily improving sine CASA was �rst developed. They arealso onsistent with our results with the T2 equation, whih revealedmonotonially hanging values for this variable over the relevant range.5. Related researh on omputational disoveryAs we noted earlier, there is a substantial literature on the ompu-tational disovery of ommuniable sienti� knowledge (e.g., Langleyet al., 1987; D�zeroski and Todorovski, 1993; Washio and Motoda, 1998),but most of this researh has foused on the onstrution of laws andmodels, rather than on their revision. There also exists a nearly disjointliterature on the omputational revision of knowledge bases ast in non-sienti� formalisms, most often using Horn lauses and related logialnotations (e.g., Ourston and Mooney, 1990). However, there has beensome work on the revision of sienti� theories, whih we should reviewhere briey.One body of related researh has involved revision of strutural mod-els from the history of hemistry and physis. For example, _Zytkow andSimon's [1986℄ Stahl deteted inonsistenies in hemial reations andrevised its omponential models by adding or removing onstituents.Rose and Langley's [1986℄ Stahlp improved on this approah and ap-plied it to additional historial episodes. Koabas' [1991℄ BR-3 sys-tem extended this framework to inlude detetion of inomplete theoriesand postulation of new properties to explain the absene of reations,then applied these strategies to the history of partile physis. Finally,O'Rorke et al. [1990℄ developed AbE, an abdutive system for modelrevision whih they used to model the shift from the phlogiston to theoxygen theory.Other work on the revision of qualitative sienti� theories, more akinto our own, has foused on proess models that explain ausal events.Rajamoney's [1990℄ Coast system inorporated ideas from qualitativephysis to represent and revise models about uid and heat ow, whereasKarp's [1990℄ HypGene used a qualitative biohemial notation to sup-port revision of models about attenuation in gene regulation. Kulkarniand Simon [1990℄ desribe Kekada, a system that reprodued manysteps in Krebs' disovery of the urea yle. All three systems augmentedthe revision proess with methods for experiment design that aimed todistinguish among ompeting hypotheses.



20 P. Langley, J. Shrager, and K. SaitoThere exists less researh on the revision of quantitative sienti�models. Chown and Dietterih [2000℄ report an approah that improvesan existing eosystem model's �t to ontinuous data, but their methodonly alters parameter values and does not revise equation struture.D�zeroski and Todorovski [2001℄ present Lagramge, a system that re-vises both the struture of a model's equations and their parameters,using a grammatial formalism to speify domain onstraints on aept-able models. They have applied this approah to the same portion ofthe CASA eosystem model as we have addressed and obtained similarimprovements. Early researh by Glymour et al. [1987℄ addressed re-vision of linear ausal models that took a quantitative form, but theirmethods are more losely related to those we have used for qualitativemodel revision.Our vision for an interative disovery environment diretly derivesfrom Mithell et al. [1997℄, who developed a similar environment to sup-port disovery in metallurgy. Their Daviand system let users seletpairs of numeri variables to relate, speify qualitative onditions thatfous attention on subsets of the data, and �nd numeri laws that relatevariables within a given region. The program also inluded mehanismsfor identifying outliers that violate these numeri laws and for using thelaws to infer the values of intrinsi properties. Daviand presented itsresults using graphial displays and funtional forms that were familiarto metallurgists.We should note that the notion of ommuniable knowledge disoveryis not limited to sienti� domains. Another example omes from Rogerset al. [1999℄, who developed methods for revising the ontents of digitalmaps based on traes from a global positioning system. Their systemimproved estimates of enter lines for road segments, inferred the numberof lanes assoiated with eah segment, and added ontent about the typeof traÆ signal at intersetions. The revised knowledge took the sameform as the initial digital map, letting it be displayed in a graphialformat familiar to mapmakers and drivers while inreasing the map'soverall auray and detail.6. Conluding remarksIn this paper, we distinguished between two broad omputational ap-proahes to disovery: the paradigm of data mining, whih emphasizesthe availability of large data sets to drive the searh proess, and om-putational sienti� disovery, whih takes advantage of established si-enti� formalisms to state the resulting knowledge in a ommuniablefashion. We argued that the latter is more appropriate for aiding disov-



Computational Disovery of Communiable Knowledge 21ery in sienti� disiplines, but we also noted the need for more researhin this promising framework.In response, we reported progress on the disovery of ommunia-ble sienti� knowledge in two domains, one involving gene regulationof photosynthsis in Cyanobateria, and the other involving arbon pro-dution by vegetation as a funtion of environmental fators. In bothases, we developed algorithms that disovered knowledge in the sameformalisms as utilized by domain sientists. Our methods also reetedtwo additional onerns that have reeived little attention in the disov-ery literature: the revision of initial models, rather than their generationfrom srath, and the development of explanatory models, with theoret-ial variables and proesses, rather than purely desriptive summaries.We showed that our disovery methods, one designed for qualitativemodels and the other for quantitative, led to improvements over exist-ing models in terms of their �t to available data.Although our results to date are enouraging, we must extend ouromputational disovery tehniques in a number of diretions beforethey beome useful tools for sientists. For example, both disoveryalgorithms we presented an alter an initial model's relations amongvariables, but they annot introdue new variables during the revisionproess. Another shared limitation is the methods' support for modelswith instantaneous relationships among variables but not ones that in-volve hange over time. We should augment both disovery algorithmsto onsider additional variables during the revision proess and to sup-port models that express temporal relations. For quantitative modelslike CASA, we envision using ordinary di�erential equations and draw-ing on methods like D�zeroski and Todorovski's [2001℄ Lagramge forrevision; for qualitative models, we will borrow formalisms developed inthe qualitative physis ommunity (e.g., Forbus, 1984).Clearly, suh additions will inrease the searh spae that our revi-sion methods must explore, whih in turn suggests the need for domainonstraints to diret the proess. To this end, we intend to introdue ataxonomy of variables and an analogous taxonomy of proesses, with thelatter making referene to the former. For instane, regarding biohem-ial models, one might know that metaboli proesses are inuened bya ertain lass of genes and that they involve instantaneous relations,whereas transription proesses are ontrolled by another lass and in-volve a time delay. Knowledge of this sort an onstrain signi�antlythe number of models that are inluded in the searh spae, and thusinrease the hanes of �nding a andidate that sientists �nd aept-able. Analogous knowledge about whih types of variables an our in



22 P. Langley, J. Shrager, and K. Saitowhih types of equations an plae similar onstraints on the searh forquantitative models.Another hallenge that we have enountered in our researh has beenthe need to translate existing models into a delarative form that ourdisovery methods an manipulate. In response, we have started to de-velop a modeling language in whih sientists an ast their initial mod-els and arry out simulations, but that an also serve as the delarativerepresentation for our disovery methods. The ability to automatiallyrevise models plaes novel onstraints on suh a language. We envisionthis software developing into an interative disovery aide that lets asientist speify initial models, fous the system's attention on partiu-lar data sets and on parts of the model it should attempt to improve,and generally ontrol high-level aspets of the disovery proess. Thus,future versions will need a graphial interfae for reating models, edit-ing them, and marking fragments that an be revised, as well as toolsfor displaying mathes to data, linking to other knowledge bases, andtraking hanges in models over time. Taken together, these extensionsshould produe a valuable aide for pratiing sientists.Naturally, we also hope to evaluate our approah to model revisionon other aspets of photosynthesis regulation and other portions of theCASA model as additional data beome available. A more serious test ofgenerality would be appliation of the same methods to other sienti�domains in whih there already exist formal models that an be revised.In the longer term, we should evaluate our interative system not onlyin its ability to inrease the preditive auray of an existing model,but in terms of the satisfation the system provides to sientists who useit for model development.AknowledgmentsThis work was supported by Grants NCC 2-1202, NCC 2-5471, andNCC 2-1335 from NASA Ames Researh Center, and by NTT Commu-niation Siene Laboratories, Nippon Telegraph and Telephone Corpo-ration. We thank Arthur Grossman and C. J. Tu for the initial model ofphotosynthesis regulation and assoiated miroarray data, Stephen Bayfor implementing the system that analyzed these data, and ChristopherPotter, Aliia Torregrosa, and Steven Klooster for aess to their CASAmodel and related eosystem data. Portions of this paper have appearedin Proeedings of the Fourth International Conferene on Disovery Si-ene and Proeedings of the Pai� Symposium on Bioomputing.
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