
Computational Dis
overy ofCommuni
able S
ienti�
 KnowledgePat Langley and Je� ShragerInstitute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306, USA{langley,shrager}�isle.orgKazumi SaitoNTT Communi
ation S
ien
e Laboratories2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japansaito�
slab.ke
l.ntt.
o.jp

In L. Magnani, N.J. Nersessian, and C. Pizzi (Eds.),Logi
al and Computational Aspe
ts of Model-Based Reasoning

 2002 Kluwer A
ademi
 Publishers. Printed in the Netherlands.

Abstra
t In this paper we distinguish between two 
omputational paradigms forknowledge dis
overy that share the notion of heuristi
 sear
h, but di�erin the importan
e they pla
e on using s
ienti�
 formalisms to state dis-
overed knowledge. We also report progress on 
omputational methodsfor dis
overing su
h 
ommuni
able knowledge in two domains, one in-volving the regulation of photosynthesis in phytoplankton and the otherinvolving 
arbon produ
tion by vegetation in the Earth e
osystem. Inea
h 
ase, we des
ribe a representation for models, methods for usingdata to revise existing models, and some initial results. In 
losing, wedis
uss related work on the 
omputational dis
overy of 
ommuni
ables
ienti�
 knowledge and outline dire
tions for future resear
h.1. Introdu
tionS
ienti�
 dis
overy is generally viewed as one of the most 
omplexhuman 
reative a
tivities. As su
h, it seems worth understanding forboth theoreti
al and pra
ti
al reasons. One powerful metaphor treatsthe dis
overy pro
ess as a form of 
omputation, and in fa
t work thatadopts this metaphor has a long history that dates ba
k over two de
ades(e.g., Langley, 1979; Lenat, 1977; Lindsay et al., 1980). Resear
h withinthis framework has advan
ed steadily until, in re
ent years, it has led1



2 P. Langley, J. Shrager, and K. Saitoto new dis
overies deemed worth publi
ation in the s
ienti�
 literature(e.g., see Langley, 2000). However, despite this progress, work on thetopi
 remains subje
t to important limitations.In this paper, we des
ribe a new 
omputational approa
h to dis
ov-ery of s
ienti�
 knowledge and illustrate its appli
ation to two domains.The �rst fo
uses on 
onstru
ting regulatory models for photosynthesis inphytoplankton using data from DNA mi
roarrays. The se
ond involves�nding a quantitative model of the Earth e
osystem that �ts environ-mental data obtained from satellites and ground stations. In both 
ases,we report our formalism for representing models, a 
omputational te
h-nique for produ
ing them from observations, and initial results witha
tual data.Although these two appli
ations di�er on many dimensions, they alsoshare a relian
e on three 
on
erns: the dis
overed knowledge must be
ommuni
able to domain s
ientists; the new model must be linked toprevious domain knowledge; and the model must move beyond a de-s
riptive summary to explain the observations. We should also notethat our long-term goal is not to automate the dis
overy pro
ess, butinstead to provide intera
tive tools that s
ientists 
an dire
t and use toaid their model development.After des
ribing our approa
hes to dis
overy in mi
robiology andEarth s
ien
e, we dis
uss related work on 
omputational dis
overy andoutline some likely dire
tions for future resear
h. However, before pre-senting our 
omputational framework and its appli
ation, we must �rstpla
e it in a broader histori
al 
ontext of work on knowledge dis
overy.2. Paradigms for 
omputational dis
overyAs Kuhn [1962℄ has noted, the paradigm within whi
h s
ienti�
 re-sear
h o

urs has a major impa
t on both its 
ontent and its method, and
omputational resear
h on knowledge dis
overy is no ex
eption. For thisreason, we should review the two major frameworks for studying the dis-
overy pro
ess in 
omputational terms. These two paradigms hold someimportant assumptions in 
ommon, but they diverge on a key issue.2.1 The data mining paradigmA number of developments have made possible the progress on 
om-putational approa
hes to knowledge dis
overy. The most re
ent break-through, whi
h we may 
all the data revolution, 
ame from the in-sight that one 
an bene�t by 
olle
ting and storing, automati
ally, vastamounts of data that des
ribe natural, engineering, and so
ial domainsof interest. These abilities have been made pra
ti
al by the availability of
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overy of Communi
able Knowledge 3inexpensive 
omputer memory storage, the advent of new measurementte
hniques that ease data a
quisition, and the introdu
tion of 
ommuni-
ation infrastru
ture (e.g., the Internet) that supports rapid transfer ofdata. We 
an set the date for this revolution around 1995, when thesete
hnologies be
ame 
ommon, but awareness of the 
oming situation waswidespread �ve years earlier. Naturally, the a

ess to ele
troni
 data setsholds great potential to support knowledge dis
overy, and many s
ien-tists, engineers, and businessmen have fo
used their energies on ful�llingthat potential.A somewhat earlier development, whi
h we may 
all the sear
h rev-olution, resulted from the insight that 
omputers are general symbolmanipulators and that one 
an view many tasks whi
h require intelli-gen
e as involving sear
h through a spa
e of symboli
 stru
tures. Thisability be
ame pra
ti
al with the introdu
tion of 
omputer programminglanguages that 
ould represent and manipulate symboli
 stru
tures, aswell as algorithms for 
arrying out heuristi
ally-guided sear
h througha spa
e of su
h stru
tures. We 
an date this revolution to the middle1950s, when Newell and Simon [1956℄ 
reated the �rst list-pro
essinglanguage and used it to automate sear
h for proofs of logi
al theorems.Notions of heuristi
 sear
h pre
eded this a
hievement, but 
omputation-alists began to apply the idea in earnest only after this proof of 
on
ept.Simon [1966℄ was also one of the �rst authors to view the dis
overypro
ess in terms of sear
h.In re
ent years, these two insights have been 
ombined by resear
hersand developers in a paradigm known as data mining or knowledge dis-
overy in databases. Work in this arena emphasizes the availability andpotential of large, ele
troni
 data sets, as well as 
omputational te
h-niques that 
an represent and sear
h for knowledge impli
it in thosedata. The data mining 
ommunity has inherited its key te
hniques fromtwo parent dis
iplines { ma
hine learning and databases { that have fo-
used histori
ally on 
omputational pro
essing of data. This approa
hhas be
ome espe
ially popular in the 
ommer
ial se
tor, where it hasbeen applied su

essfully to manufa
turing, marketing, and �nan
e, butit has also been put to good e�e
t in a variety of s
ienti�
 �elds.However, despite its impressive tra
k re
ord, the data mining frame-work has an important drawba
k related to its emphasis on the dis
ov-ery of knowledge in understandable forms. In prin
iple, this 
on
ern isperfe
tly legitimate, sin
e we typi
ally assume that knowledge 
an berepresented expli
itly and 
ommuni
ated among humans. Yet the datamining 
ommunity's e�orts along these lines have fo
used on parti
ularformalisms it has inherited from its parent dis
iplines, notably de
isiontrees, logi
al rules, and Bayesian networks. Resear
hers regularly take



4 P. Langley, J. Shrager, and K. Saitopositions about the understandability of su
h representations, but theirstan
es are based more on popular myths than on 
areful reasoning orempiri
al eviden
e.One su
h myth 
on
erns the 
laim that univariate de
ision trees, withtheir logi
al semanti
s, are inherently easier to understand than alterna-tive notations, like probabilisti
 
lassi�ers, that involve numeri
 weightsand degrees of mat
h. Yet Igor Kononenko [personal 
ommuni
ation,1993℄, who originally believed this intuition, found that medi
al do
torsfelt a naive Bayesian 
lassi�er, whi
h 
omputes probabilisti
 summaries,was easier to 
omprehend than de
ision trees indu
ed from the samepatient data. Presumably, this was be
ause the physi
ians had more ex-posure to probability theory than to nonparametri
 s
hemes like de
isiontrees. We 
an draw a tentative 
on
lusion from this result: knowledge ismore understandable when 
ast in a formalism familiar to the re
ipient.A similar myth involves the 
laim that 
omputational methods likeba
kpropagation, whi
h learns weights in a multilayer neural network,produ
e results that are inherently opaque. Yet Saito and Nakano [1997℄have shown that, by 
arefully stru
turing the network ar
hite
ture, one
an use ba
kpropagation to dis
over numeri
 equations like those 
entralto physi
s and other s
ien
es, and whi
h, presumably, are interpretableby experts in those domains. We 
an draw another plausible lesson fromthis result: whether the dis
overed knowledge is understandable dependsfar less on the sear
h algorithm than on the manner in whi
h one usesthat algorithm.2.2 Computational s
ienti�
 dis
overyThese observations suggest the relevan
e of a third, mu
h older, his-tori
al development, the s
ienti�
 revolution, whi
h introdu
ed not onlythe idea of evaluating laws and theories in terms of their ability to �tobservations, but also emphasized the 
asting of su
h knowledge in someformal notation. We 
an date this insight to around 1700, when New-ton's theory of gravitation be
ame widely a

epted, though it was pre-dated by similar formal statements like Kepler's laws. Over the past 300years, s
ientists and engineers have developed a variety of formalisms torepresent knowledge that bear little resemblan
e to the notations whi
hdominate the data mining 
ommunity. We hold that su
h formalismsfrom s
ien
e and engineering are more appropriate targets for knowl-edge dis
overy, at least in su
h domains, than data mining notations.In fa
t, there exists an alternative 
omputational paradigm, predatingthe data mining framework, that 
ombines the representational insightsof the s
ienti�
 revolution with the notion of heuristi
 sear
h. We will
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overy of Communi
able Knowledge 5refer to this framework as 
omputational s
ienti�
 dis
overy, sin
e itsprimary fo
us has been �nding laws and theories in s
ienti�
 domains.This paradigm also assumes the presen
e of data or observations, butemphasizes their role less than the sear
h metaphor and s
ienti�
 no-tations. Resear
h in this area addressed originally the redis
overy ofknowledge from the history of s
ien
e (e.g., Langley et al., 1987; Shragerand Langley, 1990), but the last de
ade has seen numerous examples ofnovel dis
overies that have led to publi
ations in the relevant s
ienti�
literature [Langley, 2000℄. We maintain that this approa
h is more ap-propriate for the dis
overy of 
ommuni
able knowledge than the datamining framework pre
isely be
ause it utilizes formalisms already famil-iar to domain experts.Note that there has been 
onsiderable work within the KDD traditionon s
ienti�
 domains. Mu
h of this has fo
used on appli
ations to mole
-ular biology, su
h as learning predi
tors for protein folding, but Fayyadet al. [1996℄ review similar e�orts in astronomy, su
h as distinguish-ing stars from galaxies, and planetology, su
h as dete
ting vol
anoes onVenus. This work has proven valuable to the dis
iplines involved, but wehold that the knowledge dis
overed in these 
ases is not 
ommuni
ablein the same sense as des
ribed above. The learned predi
tors, whetherstated as de
ision trees, neural networks, or probabilisti
 
lassi�ers, areunlikely to appear as knowledge themselves in s
ienti�
 papers, and thuswould not be 
ommuni
ated. Rather, they play the role of measuring in-struments, whi
h are essential to s
ienti�
 progress but whi
h 
onstituteta
it knowledge [Polanyi, 1958℄ rather than the 
ommuni
able variety.By this point, we hope to have 
onvin
ed readers that the task of
ommuni
able knowledge dis
overy di�ers in important ways from theproblems typi
ally pursued in the data mining 
ommunity, and that thistask deserves signi�
antly in
reased attention among knowledge dis
ov-ery resear
hers. For despite the su

ess stories to date, there remainmany open problems that require additional e�ort. For instan
e, mostresear
h on 
omputational s
ienti�
 dis
overy has fo
used on �ndingknowledge from s
rat
h, but s
ientists are typi
ally 
on
erned with re-vising and improving existing theories. Resear
hers in the �eld have also
on
entrated primarily on dis
overy of des
riptive regularities, but s
i-entists often aim for models that explain observed phenomena in termsof unobserved variables and pro
esses. Finally, most work on 
omputa-tional dis
overy has emphasized automating this a
tivity, but s
ientistswould bene�t more from intera
tive tools that assist them in their e�ortsrather than ones that aim to repla
e them.In the se
tions that follow, we report progress on these issues in the
ontext of two s
ienti�
 domains. In both 
ases, we review an existing



6 P. Langley, J. Shrager, and K. Saitoexplanatory model that a

ounts partially for some phenomena, des
ribea 
omputational system that revises this model to �t these data better,and present some initial results of su
h improvement. Our resear
h onintera
tive tools has advan
ed less, but we have designed our revisionte
hniques to support su
h a 
apability. As in other work on 
omputa-tional s
ienti�
 dis
overy, the systems 
ast their dis
overed knowledgein a familiar s
ienti�
 notation to ensure 
ommuni
ability.3. Revising regulatory models in mi
robiologyAlthough biologists understand the basi
 me
hanisms through whi
hDNA produ
es bio
hemi
al behavior, they have not yet determined mostof the regulatory networks that 
ontrol the degree to whi
h ea
h gene isexpressed. However, for parti
ular organisms under 
ertain 
onditions,they have developed partial models of gene regulation. The measurementand analysis of gene expression levels, either through Northern blotsor 
DNA mi
roarrays, has played a 
entral role in the elu
idation ofregulatory models, as both measures quantify gene a
tivity in terms ofRNA 
on
entration.The most popular 
omputational approa
h to pro
essing su
h expres-sion data { 
lustering genes into 
oregulated 
lasses { is a 
lear exampleof the data mining paradigm. This knowledge-lean method lets one re-du
e the high dimensionality of mi
roarray data to a manageable level,but the results take the form of des
riptions rather than explanations.A se
ond paradigm, more 
ommonly used by pra
ti
ing biologists, usesdata about expression levels to test spe
i�
 pathway hypotheses. Thisknowledge-ri
h approa
h lets one evaluate proposed explanations, but itgenerally does not move beyond these hypotheses to suggest improvedregulatory models.In this se
tion, we des
ribe an approa
h that 
ombines knowledge withdata to revise an initial biologi
al model. We fo
us on the regulation ofphotosynthesis in Cyanoba
teria, an area for whi
h we have both a modelproposed by domain s
ientists and mi
roarray data 
olle
ted to evaluatethis model. As outlined above, our goal is to develop 
omputationalmethods that 
an utilize data to improve su
h a model while retainingits 
ommuni
ability and its links to existing biologi
al knowledge.3.1 Representing models of gene regulationAny 
omputational method designed to improve regulatory modelsmust �rst have some representation for those models. As we have noted,most work in ma
hine learning and data mining draws on representa-tional formalisms that were designed by arti�
ial intelligen
e resear
hers



Computational Dis
overy of Communi
able Knowledge 7and that make little 
onta
t with notations 
ommonly used by pra
ti
-ing s
ientists. In 
ontrast, we are 
ommitted to representing biologi
almodels in terms that are familiar to biologists themselves.Figure 1 presents a regulatory model, obtained from a plankton biol-ogist, that aims to explain why Cyanoba
teria blea
hes when exposedto high light 
onditions. Ea
h node 
orresponds to some variable, eitherobservable or theoreti
al, whereas ea
h link depi
ts some biologi
al pro-
ess through whi
h one variable in
uen
es another. Solid lines denoteinternal pro
esses, whereas dashes indi
ate pro
esses 
onne
ted to theenvironment.
Light

NBLR

RR
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psbA2

psbA1
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NBLA PBS
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+
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+ −
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Figure 1. An initial model for regulation of photosynthesis in Cyanoba
teria.The model states that 
hanges in light level modulate the a
tivity ofdspA, a protein hypothesized to serve as a sensor. This in turn regu-lates NBLR and NBLA, whi
h then redu
e the number of phy
obilisome(PBS) rods that absorb light, whi
h is measurable photometri
ally asthe organism's greenness. The redu
tion in PBS prote
ts the organ-ism's health be
ause it de
reases the absorbtion of light, whi
h 
an bedamaging at high levels. The organism's health under high light 
on-ditions 
an be measured in terms of 
ulture density. The sensor dspAalso impa
ts health through a se
ond pathway by in
uen
ing a hypoth-esized response regulator, RR, whi
h in turn down regulates expressionof the gene produ
ts psbA1, psbA2, and 
p
B. The �rst two in
uen
epositively the level of photosyntheti
 a
tivity (Photo) by altering thephotosystem's stru
ture. If left unaltered, this se
ond pathway wouldalso damage the organism under high light 
onditions.Although this model in
orporates quantitative variables, it spe
i�esonly the dire
tions of in
uen
e and not their spe
i�
 form or their pa-rameters. AI resear
h in qualitative physi
s (e.g., Forbus, 1984) has usedsimilar notations to support 
ommon sense reasoning. We have fo
usedon su
h qualitative models not be
ause quantitative ones are undesir-able, but be
ause biologists usually operate on the former, and we wantour 
omputational tools to support their typi
al reasoning styles.



8 P. Langley, J. Shrager, and K. SaitoThe example model is also partial and abstra
t, in that the biolo-gist who proposed it 
learly viewed it as a working hypothesis. Somepro
esses are abstra
t in that they denote entire 
hains of subpro
esses.For instan
e, the link from dspA to NBLR denotes a 
omplex signalingpathway for whi
h the details are unknown or irrelevant at this levelof analysis. The model also in
ludes abstra
t variables like RR, whi
hrefers to an unspe
i�ed gene (or set of genes) that a
ts as an interme-diary 
ontroller. Thus, our formalism 
an express partial, abstra
t, andqualitative models like those often used by biologists.For the sake of analyti
al tra
tability, we also assume that ea
h vari-able is a linear fun
tion of its dire
t 
auses plus an error term. Thismeans that we 
an represent the entire model as a system of linearequations, whi
h Glymour et al. [1987℄ refer to as a linear 
ausal model .This approa
h to modeling has been used widely in e
onometri
s, wherethe data are purely observational. Most resear
h in this framework dealswith quantitative models that spe
ify the parameters for ea
h equation,but, again, we fo
us here on the qualitative version.3.2 Utilizing, evaluating, and revising modelsSin
e our models are qualitative, they 
annot predi
t dire
tly the 
on-tinuous expression levels one 
an observe for genes, but they do imply
ertain relations among variables. In parti
ular, they predi
t whi
h vari-ables should be 
orrelated and the dire
tion of those relationships. If twovariables are 
onne
ted dire
tly, then we expe
t their 
orrelation to havethe same sign as that on their link. If they are 
onne
ted indire
tly, wemultiply the signs on the path that 
onne
ts them. For instan
e, themodel in Figure 1 predi
ts that NBLA and 
p
B will be negatively 
orre-lated, even though neither has a dire
t 
ausal in
uen
e on the other andthe path 
onne
ting them passes through RR, an unobservable variable.In some 
ases, there exist multiple paths between a pair of variables.When the predi
ted sign for all paths between these nodes agree, thesystem simply makes that predi
tion. However, when two or more pathsdisagree, we assume the model in
ludes an annotation that indi
ateseither the positive or negative paths are dominant, whi
h gives an un-ambiguous predi
tion. This extended formalism lets a qualitative modelpredi
t a positive or negative 
orrelation for ea
h pair of observed vari-ables, even without information about the quantity of ea
h link's e�e
t.In addition, 
asting our regulatory stru
tures as linear 
ausal mod-els lets us make other important predi
tions about partial 
orrelations,whi
h des
ribe the relationship between two variables on
e the e�e
ts ofother terms have been fa
tored out. For instan
e, the partial 
orrelation
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overy of Communi
able Knowledge 9�12:3 denotes the 
orrelation between X1 and X2 when 
ontrolling forX3. Simon [1954℄ has shown that a zero partial 
orrelation �12:3 im-plies that X1 and X2 are 
onne
ted through X3. In 
ontrast, a nonzeropartial 
orrelation implies that X1 and X2 are 
onne
ted through pathsthat do not involve X3. Thus, the model in Figure 1 predi
ts that thepartial 
orrelation of dspA and PBS given NBLA will be zero, be
ausethe variable NBLA lies along the path between them. Glymour et al.have generalized these 
onditions for more 
ompli
ated models, but theintution remains the same.Our approa
h evaluates a 
andidate regulatory model by predi
ting,for ea
h set of three variables, whi
h partial 
orrelations should o

urand whi
h ones should not. The system then 
al
ulates these partial 
or-relations from the data and determines, for ea
h one, whether it di�erssigni�
antly from zero. Upon 
omparing the predi
ted partial 
orrela-tions with those supported by the data, it obtains the number of truepositives (tp), true negatives (tn), false positives (fp), and false negatives(fn). The system 
ombines these 
ounts usings
ore = fp+ fn� tp� tn ;whi
h provides an overall measure of the model's qualitative �t to theobservations. Be
ause most linear 
ausal models imply di�erent partial
orrelations, this metri
 lets it dis
riminate among many alternativeregulatory stru
tures.To revise its model of gene regulation, the system 
arries out a two-stage heuristi
 sear
h through a spa
e of 
andidate models. The �rststage, whi
h fo
uses on the 
ausal stru
ture, starts from the initial modelproposed by biologists with the signs on links removed. The operators forgenerating alternative models in
lude adding a link between variables,removing an existing link, and reversing the dire
tion of a link.1 Thesystem invokes the s
ore metri
 des
ribed above to sele
t among models,and it 
arries out hill-
limbing sear
h through the model spa
e, on ea
hstep sele
ting the revision that most improves the evaluation metri
.The sear
h halts after a prespe
i�ed number of revision steps.Be
ause experiments that measure gene expression typi
ally 
olle
tfew samples, this approa
h is unstable in that small 
hanges to the data
an produ
e very di�erent models. To o�set this, the system generates20 di�erent training sets by sampling with repla
ement from the orig-1These operators are 
onstrained by biologi
al knowledge. For instan
e, the system knowsthat stimulus variables like Light must serve as 
ausal in
uen
es to gene variables, and thatbehavioral variables like Photo must be 
aused by the latter.



10 P. Langley, J. Shrager, and K. Saitoinal data, then runs its revision algorithm to generate 20 new models.The program then 
ounts how many times ea
h revision o

urs in thesemodels and retains only those that appear in at least 75 per
ent of them.On
e the system has indu
ed the model's 
ausal stru
ture, the se
ondstage 
arries out another sear
h to determine the signs on links. In this
ase, the evaluation fun
tion measures instead the number of 
orrela-tions for whi
h the predi
ted and observed signs agree. If the modelinvolves only a few links, the system 
onsiders exhaustively all possibleassignments of pluses and minuses on the links, then sele
ts the best-s
oring assignment. Otherwise, it resorts to hill 
limbing through thespa
e of assignments, starting from those in the initial model and haltingwhen no further improvement o

urs.
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Figure 2. A revised model for regulation of photosynthesis in wild Cyanoba
teria.3.3 Initial results on photosyntheti
 regulationWe applied our revision method to data for the wild type Cyanoba
-teria and a mutant that does not blea
h under high light 
onditions.We have data from 
DNA mi
roarrays about the expression levels forapproximately 300 genes believed to play a role in photosynthesis. Forthe initial analysis, we fo
used on genes in the initial model shown inFigure 1 and did not 
onsider links to other genes. The mi
roarray data,whi
h re
e
ts the 
on
entration of mRNA for ea
h gene relative to thatin a 
ontrol 
ondition, were measured at 0, 30, 60, 120, and 360 minutesafter high light was introdu
ed, with four repli
ated measurements atea
h time point. We treated the data as independent samples, ignoringtheir temporal aspe
ts and dependen
ies among the repli
ates.Figure 2 shows the revised model that the system produ
ed from thesedata. There are �ve di�eren
es from the initial regulatory a

ount. Two
hanges, removal of the links to and from psbA2, involve the model stru
-ture. The other three revisions 
on
ern 
hanges of signs, in parti
ular forthe links from RR to psbA1, from RR to 
p
B, and from PBS to Health.



Computational Dis
overy of Communi
able Knowledge 11Dis
ussions with the biologist who proposed the original model indi
atea strong belief that RR in
uen
es Photo, but un
ertainty about the ex-a
t pathways. This means that the 
hanges whi
h involve RR are notproblemati
, sin
e the presen
e of one gene produ
t (psbA1) is enoughto regulate the photosyntheti
 
enter (Photo). However, the reversedsign on the link from PBS to Health raises a problem, sin
e the beliefthat ex
essive light 
auses damage means this link should be positive.We hypothesize that, in this study, the light exposure was not enough toover
ome bene�ts from the energy it provides, whi
h the model omits.We also tested the system on expression data for a mutant of Cyanoba
-teria that does not blea
h under high light 
onditions. Presumably, su
ha mutant di�ers geneti
ally from the wild organism in only a few ways,so we started sear
h from the same model as in our �rst study. In this
ase, the system removed the link from dspA to RR, but made no otherrevisions. This is a plausible 
hange, sin
e the mutation involved re-moval of the dspA gene from the organism. However, the new modeldoes not explain why the mutant fails to blea
h when exposed to highlight. One possibility is that the 20 samples did not provide enoughstatisti
al power to let the system remove the link from dspA to NBLR,whi
h would produ
e the desired e�e
t. Although these initial resultsare en
ouraging, it seems 
lear that we 
an still improve our approa
h torevising qualitative models of gene regulation. Elsewhere [Shrager et al.,2002℄ we dis
uss some dire
tions for future resear
h along these lines.4. Revising quantitative models in Earth s
ien
eEarth s
ientists have rea
hed a broad enough understanding of e
osys-tem pro
esses to develop models for the entire biosphere. These di�erfrom the mi
robiologi
al models we 
onsidered in the last se
tion in thatthey are primarily quantitative rather than qualitative. E
osystem mod-els 
an also be quite 
omplex, 
ontaining tens of equations, many the-oreti
al variables, and parameters for ea
h grid 
ell, whi
h 
an numberin the thousands. Su
h models are 
onsistent with high-level e
osystemphenomena, but the availability of new data from satellites and othersour
es provides the opportunity to re�ne them further.One su
h model, Potter and Klooster's [1997, 1998℄ CASA, predi
ts,with reasonable a

ura
y, the global produ
tion and absorption of bio-geni
 tra
e gases in the Earth's atmosphere, as well as explaining 
hangesin the geographi
 vegetation patterns on the land. The model's pre-di
tive variables in
lude surfa
e temperature, moisture levels, and soilproperties, along with global satellite observations of the land surfa
e.CASA in
orporates both instantaneous and di�eren
e equations that
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ribe 
hanges over time due to the terrestrial 
arbon 
y
le and pro-
esses that mineralize nitrogen and 
ontrol vegetation type. The modeloperates on gridded input, with typi
al usage involving grid 
ells thatare eight kilometers square, sin
e this mat
hes the resolution for landsurfa
e observations obtained from satellites.Although CASA has been quite su

essful at modeling Earth's e
osys-tem, its predi
tions still di�er from observations in 
ertain ways, and inthis se
tion we des
ribe a 
omputational approa
h to improving its �tto the data available. As before, the result is a revised model, 
ast inthe same notation as the original one, that in
orporates 
hanges thatare s
ienti�
ally plausible and, we hope, interesting to Earth s
ientists.4.1 A portion of the CASA modelRather than attempting to re�ne the 
omplete CASA model, whi
his quite 
omplex, we de
ided to fo
us on a submodel near the `top' thatleads dire
tly to the main dependent variable, NPP
, whi
h denotesthe net produ
tion of 
arbon. Table 1 lists the variables that o

urin this submodel and summarizes the quantities they represent, whereasTable 2 shows the equations that relate these variables, with indentationre
e
ting the submodel's logi
al stru
ture.The �rst equation in Table 2 states that NPP
 is the produ
t of twounobservable variables, the photosyntheti
 eÆ
ien
y at a site, E, and thesolar energy inter
epted at that site, IPAR. Photosyntheti
 eÆ
ien
y isin turn 
al
ulated as the produ
t of the maximum eÆ
ien
y (0.56) andthree stress fa
tors that redu
e this eÆ
ien
y. The �rst stress term, T2,takes into a

ount the di�eren
e between the optimum temperature,Topt, and a
tual temperature, Temp
, for a site. The se
ond fa
tor, T1,involves the nearness of Topt to a global optimum for all sites, re
e
tingthe intuition that plants whi
h are better adapted to harsh temperaturesare less eÆ
ient overall.The third term that in
uen
es photosyntheti
 eÆ
ien
y, W, representsstress that results from la
k of moisture as determined by EET, theestimated water loss due to evaporation and transpiration, and by PET,the water loss due to these pro
esses given an unlimited water supply.In turn, PET is in
uen
ed by AHI, the annual heat index for a site, andPET-TW-M, another 
omponent of potential evapotranspiration.The model predi
ts IPAR, the energy inter
epted from the sun, as theprodu
t of FPAR-FAS, the fra
tion of energy absorbed through photo-synthesis, MONTHLY-SOLAR, the average radiation that o

urs duringa given month, and SOL-CONVER, the number of days in that month.FPAR-FAS is in turn a fun
tion of MON-FAS-NDVI, whi
h indi
ates
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overy of Communi
able Knowledge 13NPP
 is the net plant produ
tion of 
arbon at a site during the year.E is the photosyntheti
 eÆ
ien
y at a site after fa
toring various sour
es of stress.T2 is a temperature stress fa
tor (0 < T2 < 1), nearly Gaussian in form but fallingo� more qui
kly at higher temperatures.T1 is a temperature stress fa
tor (0 < T1 < 1) for 
old weather.W is a water stress fa
tor (0:5 < W < 1) for dry regions.Topt is the average temperature for the month at whi
h MON-FAS-NDVI takes onits maximum value at a site.Temp
 is the average temperature at a site for a given month.EET is the estimated evapotranspiration (water loss due to evaporation and tran-spiration) at a site.PET is the potential evapotranspiration (water loss due to evaporation and transpi-ration given an unlimited water supply) at a site.PET-TW-M is a 
omponent of potential evapotranspiration that takes into a

ountthe latitude, time of year, and days in the month.A is a polynomial fun
tion of the annual heat index at a site.AHI is the annual heat index for a given site.MON-FAS-NDVI is the relative vegetation greenness for a given month as measuredfrom spa
e.IPAR is the energy from the sun that is inter
epted by vegetation after fa
toring intime of year and days in the month.FPAR-FAS is the fra
tion of energy inter
epted from the sun that is absorbed pho-tosyntheti
ally after fa
toring in vegetation type.MONTHLY-SOLAR is the average solar irradian
e for a given month at a site.SOL-CONVER is 0.0864 times the number of days in ea
h month.UMD-VEG is the type of ground 
over (vegetation) at a site.Table 1. Variables used in the NPP
 portion of the CASA e
osystem model.relative greenness at a site as observed from spa
e, and SRDIFF, anintrinsi
 property that takes on di�erent numeri
 values for di�erentvegetation types as spe
i�ed by the dis
rete variable UMD-VEG.Making predi
tions from this submodel is a straightforward pro
ess,in that one simply starts from the observable2 input variables { Temp
,MONTHLY-SOLAR, SOL-CONVER, MON-FAS-NDVI, UMD-VEG,2A
tually, the variables EET, PET-TW-M, and AHI are unobservable terms de�ned else-where in the model. To make the revision task more tra
table, we assumed their de�nitionswere 
orre
t and treated them as observables, using the model to 
ompute their values.
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 =Pmonthmax(E � IPAR; 0)E = 0:56 � T1 � T2 �WT1 = 0:8 + 0:02 � Topt� 0:0005 � Topt2T2 = 1:18=[(1 + e0:2�(Topt�Temp
�10)) � (1 + e0:3�(Temp
�Topt�10))℄W = 0:5 + 0:5 � EET=PETPET = 1:6 � (10 � Temp
=AHI)A � PET-TW-M if Temp
 > 0PET = 0 if Temp
 � 0A = 0:000000675 �AHI3 � 0:0000771 � AHI2 + 0:01792 �AHI + 0:49239IPAR = 0:5 � FPAR-FAS �MONTHLY-SOLAR � SOL-CONVERFPAR-FAS = min((SR-FAS� 1:08)=SRDIFF(UMD-VEG); 0:95)SR-FAS = �(MON-FAS-NDVI+ 1000)=(MON-FAS-NDVI� 1000)Table 2. Equations used in the NPP
 portion of the CASA e
osystem model.EET, PET-TW-M, and AHI { and 
al
ulates values for the variablesthat depend on them. The resulting quantities are then passed to otherequations that 
ompute values for other terms, with this 
ontinuing untila value for NPP
 is predi
ted. One repeats this pro
ess with ea
h grid
ell for whi
h observations are available.4.2 An approa
h to quantitative model revisionAs before, our approa
h to s
ienti�
 dis
overy involves re�ning amodel like that in Table 2 rather than 
onstru
ting one from s
rat
h.Thus, this initial model 
onstitutes the starting point for heuristi
 sear
hthrough a spa
e of models, with the sear
h pro
ess dire
ted by 
andi-dates' ability to �t the data. However, in this 
ase our models are quan-titative rather than qualitative and, as su
h, require di�erent operatorsand a di�erent evaluation fun
tion to dire
t sear
h.To this end, we assume that the overall stru
ture of the model is
orre
t, but that the spe
i�
 equations and their parameters 
an beimproved. For example, after the revision pro
ess, NPP
 would still bede�ned in terms of E and IPAR, but the fun
tional form of this de�nitionmay no longer be NPP
 = E � IPAR. Moreover, we 
an utilize parameterrevision to mimi
 revision of equation forms by en
oding ea
h expressionin the initial model as a multivariate polynomial equation of the formy = w0 + JXj=1wj KYk=1Xwjkk ;
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overy of Communi
able Knowledge 15where y is a 
ontinuous variable that depends on 
ontinuous variablesX1; : : : ;XK . For example, the equation W = 0:5 + 0:5 � EET/PET inthis s
heme be
omes W = 0:5 + 0:5 � EET1:0 � PET�1:0. Su
h fun
tionalrelations subsume many of the numeri
 laws found by earlier quantitativedis
overy systems like Ba
on [Langley, 1979℄ and Fahrenheit [ _Zytkowet al., 1990℄, as well as the expressions in Table 2.This en
oding transforms our set of equations into the equivalent ofa multilayer neural network, with one subnetwork for ea
h relationshipin the model. More spe
i�
ally, ea
h equation be
omes a two-layer net-work with produ
t units in the �rst level, to en
ode multipli
ative terms,and additive units in the se
ond level, to en
ode their weighted summa-tion. This transformation maps the set of possible models into a weightspa
e. By adapting Saito and Nakano's [1997℄ BPQ algorithm for dis-
overing numeri
 equations, we 
an implement a gradient des
ent sear
hthrough this spa
e. Brie
y, this method in
orporates a se
ond-orderlearning te
hnique that 
al
ulates both the des
ent dire
tion and thestep size automati
ally. The sear
h pro
ess halts when it �nds a setof weights that minimize the squared error on the dependent variabley. The method then transforms the resulting network ba
k into a setof polynomial equations, with weights on produ
t units be
oming expo-nents and weights on linear units be
oming 
oeÆ
ients.We 
an see readily how this approa
h 
an improve the parameters foran equation. Although the NPP
 submodel 
ontains some parameterizedequations that our Earth s
ien
e 
ollaborators believe are reliable, likethat for 
omputing the variable A from the annual heat index AHI,it also in
ludes equations with parameters about whi
h there is less
ertainty, like the expression that predi
ts the temperature stress fa
torT2 from Temp
 and Topt. By �xing the weights that 
orrespond toreliable parameters, as well as the weights that en
ode exponents, theBPQ algorithm sear
hes through the weight spa
e asso
iated with theother parameters to �nd settings that redu
e predi
tive error. We 
anuse the same me
hanism to revise the form of an equation by spe
ifyingthat the weights for exponents should not be �xed.We must extend the approa
h slightly to support revision of valuesfor an intrinsi
 property (e.g., SRDIFF) that the model asso
iates withthe dis
rete values for some nominal variable (e.g., the vegetation typeUMD-VEG). In su
h 
ases, we en
ode ea
h nominal term as a set ofdummy variables, one for ea
h dis
rete value, setting the dummy vari-able equal to one if the dis
rete value o

urs and zero otherwise. Weintrodu
e one hidden unit for the intrinsi
 property, with links from ea
hdummy variable and weights that 
orrespond to the intrinsi
 value asso-
iated with ea
h dis
rete value. We then utilize Saito and Nakano's BPQ
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h the weight spa
e that 
orresponds to alternative setsof intrinsi
 values, using the original model to initialize weights.Although this approa
h to model re�nement 
an modify more thanone equation or intrinsi
 property at a time, the results we report inthe next se
tion assume that the user fo
uses the system's attention onone portion of the model. We envision an intera
tive mode in whi
h thes
ientist identi�es a portion of the model that he thinks 
ould be better,runs the revision method to improve its �t to the data, and repeats thispro
ess until he is satis�ed.4.3 Initial results on e
osystem model revisionIn order to evaluate our approa
h to quantitative model revision, weutilized data relevant to the NPP
 submodel that were available to theEarth s
ien
e members of our team. These data 
onsisted of observa-tions from 303 distin
t sites with known vegetation type and for whi
hmeasurements of Temp
, MON-FAS-NDVI, MONTHLY-SOLAR, SOL-CONVER, and UMD-VEG had been re
orded for ea
h month of theyear. In addition, other portions of CASA were able to 
ompute valuesfor the variables AHI, EET, and PET-TW-M. The resulting 303 train-ing 
ases seemed suÆ
ient for initial tests of our revision methods, sowe used them to drive a variety of 
hanges to the hand
rafted model of
arbon produ
tion.Dis
ussions with our Earth s
ien
e 
ollaborators suggested the expres-sion for T2, one of the temperature stress variables, as a likely 
andidatefor revision. As we saw in Table 2, the initial equation for this term wasT2 = 1:8=[(1 + e0:2(Topt�Temp
�10))(1 + e�0:3(Temp
�Topt�10))℄ ;whi
h generates a Gaussian-like 
urve, shown in Figure 3, that is slightlyassymetri
al. This re
e
ts the intuition that the photosyntheti
 eÆ-
ien
y of vegetation will de
rease when the a
tual temperature (Temp
)is either below or above the optimal temperature (Topt). When we askedour system to improve the parameters in this expression but to retainits original form, it produ
edT2 = 1:80=[(1 + e0:05(Topt�Temp
�10:8))(1 + e�0:03(Temp
�Topt�90:33))℄ ;whi
h has fairly similar values to the initial ones for some parametersbut quite di�erent values for others. The root mean squared error forthe revised model was 461:466, as measured by leave-one-out 
ross vali-dation, whi
h was only one per
ent better than the 467:910 error for theoriginal model.
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Figure 3. Behavior of hand
rafted and revised equations for the stress variable T2.Although this result seems disappointing at �rst glan
e, the 
urvesin Figure 3 reveal a more interesting pi
ture. Plotting the temperaturestress fa
tor T2 using the revised equations as a fun
tion of the di�eren
eTopt � Temp
 still gives a Gaussian-like 
urve, but within the e�e
tiverange (from �30 to 30 Celsius) its values de
rease monotoni
ally. Thisseems 
ounterintuitive but interesting from an Earth s
ien
e perspe
tive,as it suggests this stress fa
tor has little in
uen
e on NPP
. Be
ausethe original equation for T2 was not well grounded in prin
iples of plantphysiology, su
h observations are bene�
ial to the modeling enterpriseeven when the empiri
al improvement is small.As another 
andidate for parameter revision, we sele
ted the equationfor PET, whi
h 
al
ulates potential water loss due to evaporation andtranspiration given an unlimited water supply. In this 
ase, the revisedparameter values were all very similar to those in the original model'sequation and led to no substantial improvement in a

ura
y. Sin
e thePET equation is based on a method that has been used 
ontinuouslyin Earth s
ien
e for over 50 years, we should not be overly surprisedat this negative result. Indeed, we are en
ouraged by the fa
t that ourapproa
h did not revise parameters that have stood the test of time.We also applied our approa
h to revise values for the intrinsi
 propertySRDIFF that are asso
iated with di�erent vegetation types UMD-VEG.For ea
h site, the latter variable takes on one of 11 nominal values, su
h
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h with an asso
iated numeri
 valuefor SRDIFF that plays a role in the FPAR-FAS equation. As outlinedearlier, to revise these intrinsi
 values, we introdu
ed one dummy vari-able, UMD-VEGk, for ea
h vegetation type su
h that UMD-VEGk = 1if UMD-VEG = k and 0 otherwise.In this 
ase, the improvement was more substantial, with the revisedmodel redu
ing error by over four per
ent, whi
h seems substantial. Wehave reported the revised intrinsi
 values elsewhere [Saito et al., 2001℄,but the most striking result was that the altered values were nearlyalways lower than the initial values. This result is 
ertainly interestingfrom an Earth s
ien
e viewpoint. Our domain experts suspe
t thatmeasurements of NPP
 and related variables from a wider range of siteswould produ
e intrinsi
 values 
loser to those in the original model, butsu
h a test must await additional observations.Be
ause the original 11 intrinsi
 values were grouped into only fourdistin
t values, we also applied a 
lustering pro
edure over the trainedneural network to group the revised values in the same manner. Weexamined the e�e
t on error rate as we varied the number of 
lusters fromone to �ve. As expe
ted, the training error de
reased monotoni
ally,but the 
ross-validation error was minimized for three 
lusters. Theestimated error for this revised model was better than for the one with11 distin
t values, but only slightly. Again, the 
lustered values werenearly always lower than the initial ones.As we noted earlier, our system 
an also revise the fun
tional forms ina quantitative model. One 
andidate for su
h revision was the equationfor photosyntheti
 eÆ
ien
y, E, whi
h is 
al
ulated as a produ
t of threestress terms in E = 0:56 � T1 � T2 �W :Multiplying the stress terms has the e�e
t of redu
ing photosyntheti
eÆ
ien
y below the maximum 0.56 possible [Potter and Klooster, 1998℄,sin
e ea
h fa
tor takes on a value less than one.In this 
ase, a natural extension was to 
onsider the spa
e of equationsthat in
luded exponents on the stress terms, whi
h we initialized to 1.0,as in the original model, and 
onstrained to be positive. This time, thesystem produ
ed the revised equationE = 0:521 � T10:00 � T20:03 �W 0:00 ;whi
h redu
ed error over the original model by almost �ve per
ent. Thenew equation has a similar 
oeÆ
ient, but it also has a small exponent forT2 and zero exponents for T1 and W. These results were very interesting
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overy of Communi
able Knowledge 19to our Earth s
ien
e 
ollaborators, as they suggest that the T1 andW stress terms are not needed for predi
ting NPP
. One explanationis that the in
uen
e of these fa
tors is already being 
aptured by theNDVI measure available from spa
e, for whi
h the signal-to-noise ratiohas been steadily improving sin
e CASA was �rst developed. They arealso 
onsistent with our results with the T2 equation, whi
h revealedmonotoni
ally 
hanging values for this variable over the relevant range.5. Related resear
h on 
omputational dis
overyAs we noted earlier, there is a substantial literature on the 
ompu-tational dis
overy of 
ommuni
able s
ienti�
 knowledge (e.g., Langleyet al., 1987; D�zeroski and Todorovski, 1993; Washio and Motoda, 1998),but most of this resear
h has fo
used on the 
onstru
tion of laws andmodels, rather than on their revision. There also exists a nearly disjointliterature on the 
omputational revision of knowledge bases 
ast in non-s
ienti�
 formalisms, most often using Horn 
lauses and related logi
alnotations (e.g., Ourston and Mooney, 1990). However, there has beensome work on the revision of s
ienti�
 theories, whi
h we should reviewhere brie
y.One body of related resear
h has involved revision of stru
tural mod-els from the history of 
hemistry and physi
s. For example, _Zytkow andSimon's [1986℄ Stahl dete
ted in
onsisten
ies in 
hemi
al rea
tions andrevised its 
omponential models by adding or removing 
onstituents.Rose and Langley's [1986℄ Stahlp improved on this approa
h and ap-plied it to additional histori
al episodes. Ko
abas' [1991℄ BR-3 sys-tem extended this framework to in
lude dete
tion of in
omplete theoriesand postulation of new properties to explain the absen
e of rea
tions,then applied these strategies to the history of parti
le physi
s. Finally,O'Rorke et al. [1990℄ developed AbE, an abdu
tive system for modelrevision whi
h they used to model the shift from the phlogiston to theoxygen theory.Other work on the revision of qualitative s
ienti�
 theories, more akinto our own, has fo
used on pro
ess models that explain 
ausal events.Rajamoney's [1990℄ Coast system in
orporated ideas from qualitativephysi
s to represent and revise models about 
uid and heat 
ow, whereasKarp's [1990℄ HypGene used a qualitative bio
hemi
al notation to sup-port revision of models about attenuation in gene regulation. Kulkarniand Simon [1990℄ des
ribe Kekada, a system that reprodu
ed manysteps in Krebs' dis
overy of the urea 
y
le. All three systems augmentedthe revision pro
ess with methods for experiment design that aimed todistinguish among 
ompeting hypotheses.
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h on the revision of quantitative s
ienti�
models. Chown and Dietteri
h [2000℄ report an approa
h that improvesan existing e
osystem model's �t to 
ontinuous data, but their methodonly alters parameter values and does not revise equation stru
ture.D�zeroski and Todorovski [2001℄ present Lagramge, a system that re-vises both the stru
ture of a model's equations and their parameters,using a grammati
al formalism to spe
ify domain 
onstraints on a

ept-able models. They have applied this approa
h to the same portion ofthe CASA e
osystem model as we have addressed and obtained similarimprovements. Early resear
h by Glymour et al. [1987℄ addressed re-vision of linear 
ausal models that took a quantitative form, but theirmethods are more 
losely related to those we have used for qualitativemodel revision.Our vision for an intera
tive dis
overy environment dire
tly derivesfrom Mit
hell et al. [1997℄, who developed a similar environment to sup-port dis
overy in metallurgy. Their Davi

and system let users sele
tpairs of numeri
 variables to relate, spe
ify qualitative 
onditions thatfo
us attention on subsets of the data, and �nd numeri
 laws that relatevariables within a given region. The program also in
luded me
hanismsfor identifying outliers that violate these numeri
 laws and for using thelaws to infer the values of intrinsi
 properties. Davi

and presented itsresults using graphi
al displays and fun
tional forms that were familiarto metallurgists.We should note that the notion of 
ommuni
able knowledge dis
overyis not limited to s
ienti�
 domains. Another example 
omes from Rogerset al. [1999℄, who developed methods for revising the 
ontents of digitalmaps based on tra
es from a global positioning system. Their systemimproved estimates of 
enter lines for road segments, inferred the numberof lanes asso
iated with ea
h segment, and added 
ontent about the typeof traÆ
 signal at interse
tions. The revised knowledge took the sameform as the initial digital map, letting it be displayed in a graphi
alformat familiar to mapmakers and drivers while in
reasing the map'soverall a

ura
y and detail.6. Con
luding remarksIn this paper, we distinguished between two broad 
omputational ap-proa
hes to dis
overy: the paradigm of data mining, whi
h emphasizesthe availability of large data sets to drive the sear
h pro
ess, and 
om-putational s
ienti�
 dis
overy, whi
h takes advantage of established s
i-enti�
 formalisms to state the resulting knowledge in a 
ommuni
ablefashion. We argued that the latter is more appropriate for aiding dis
ov-
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overy of Communi
able Knowledge 21ery in s
ienti�
 dis
iplines, but we also noted the need for more resear
hin this promising framework.In response, we reported progress on the dis
overy of 
ommuni
a-ble s
ienti�
 knowledge in two domains, one involving gene regulationof photosynthsis in Cyanoba
teria, and the other involving 
arbon pro-du
tion by vegetation as a fun
tion of environmental fa
tors. In both
ases, we developed algorithms that dis
overed knowledge in the sameformalisms as utilized by domain s
ientists. Our methods also re
e
tedtwo additional 
on
erns that have re
eived little attention in the dis
ov-ery literature: the revision of initial models, rather than their generationfrom s
rat
h, and the development of explanatory models, with theoret-i
al variables and pro
esses, rather than purely des
riptive summaries.We showed that our dis
overy methods, one designed for qualitativemodels and the other for quantitative, led to improvements over exist-ing models in terms of their �t to available data.Although our results to date are en
ouraging, we must extend our
omputational dis
overy te
hniques in a number of dire
tions beforethey be
ome useful tools for s
ientists. For example, both dis
overyalgorithms we presented 
an alter an initial model's relations amongvariables, but they 
annot introdu
e new variables during the revisionpro
ess. Another shared limitation is the methods' support for modelswith instantaneous relationships among variables but not ones that in-volve 
hange over time. We should augment both dis
overy algorithmsto 
onsider additional variables during the revision pro
ess and to sup-port models that express temporal relations. For quantitative modelslike CASA, we envision using ordinary di�erential equations and draw-ing on methods like D�zeroski and Todorovski's [2001℄ Lagramge forrevision; for qualitative models, we will borrow formalisms developed inthe qualitative physi
s 
ommunity (e.g., Forbus, 1984).Clearly, su
h additions will in
rease the sear
h spa
e that our revi-sion methods must explore, whi
h in turn suggests the need for domain
onstraints to dire
t the pro
ess. To this end, we intend to introdu
e ataxonomy of variables and an analogous taxonomy of pro
esses, with thelatter making referen
e to the former. For instan
e, regarding bio
hem-i
al models, one might know that metaboli
 pro
esses are in
uen
ed bya 
ertain 
lass of genes and that they involve instantaneous relations,whereas trans
ription pro
esses are 
ontrolled by another 
lass and in-volve a time delay. Knowledge of this sort 
an 
onstrain signi�
antlythe number of models that are in
luded in the sear
h spa
e, and thusin
rease the 
han
es of �nding a 
andidate that s
ientists �nd a

ept-able. Analogous knowledge about whi
h types of variables 
an o

ur in
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h types of equations 
an pla
e similar 
onstraints on the sear
h forquantitative models.Another 
hallenge that we have en
ountered in our resear
h has beenthe need to translate existing models into a de
larative form that ourdis
overy methods 
an manipulate. In response, we have started to de-velop a modeling language in whi
h s
ientists 
an 
ast their initial mod-els and 
arry out simulations, but that 
an also serve as the de
larativerepresentation for our dis
overy methods. The ability to automati
allyrevise models pla
es novel 
onstraints on su
h a language. We envisionthis software developing into an intera
tive dis
overy aide that lets as
ientist spe
ify initial models, fo
us the system's attention on parti
u-lar data sets and on parts of the model it should attempt to improve,and generally 
ontrol high-level aspe
ts of the dis
overy pro
ess. Thus,future versions will need a graphi
al interfa
e for 
reating models, edit-ing them, and marking fragments that 
an be revised, as well as toolsfor displaying mat
hes to data, linking to other knowledge bases, andtra
king 
hanges in models over time. Taken together, these extensionsshould produ
e a valuable aide for pra
ti
ing s
ientists.Naturally, we also hope to evaluate our approa
h to model revisionon other aspe
ts of photosynthesis regulation and other portions of theCASA model as additional data be
ome available. A more serious test ofgenerality would be appli
ation of the same methods to other s
ienti�
domains in whi
h there already exist formal models that 
an be revised.In the longer term, we should evaluate our intera
tive system not onlyin its ability to in
rease the predi
tive a

ura
y of an existing model,but in terms of the satisfa
tion the system provides to s
ientists who useit for model development.A
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