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In this paper, we review AI research on computational discovery and its recent applica-
tion to the discovery of new scienti"c knowledge. We characterize "ve historical stages of
the scienti"c discovery process, which we use as an organizational framework in describ-
ing applications. We also identify "ve distinct steps during which developers or users can
in#uence the behavior of a computational discovery system. Rather than criticizing such
intervention, as done in the past, we recommend it as the preferred approach to using
discovery software. As evidence for the advantages of such human}computer coopera-
tion, we report seven examples of novel, computer-aided discoveries that have appeared
in the scienti"c literature. We consider brie#y the role that humans played in each case,
then examine one such interaction in more detail. We close by recommending that future
systems provide more explicit support for human intervention in the discovery process.
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1. Introduction

The process of scienti"c discovery has long been viewed as the pinnacle of creative
thought. Thus, to many people, including some scientists themselves, it seems an unlikely
candidate for automation by computer. However, over the past two decades, researchers
in arti"cial intelligence have repeatedly questioned this attitude and attempted to
develop intelligent artifacts that replicate the act of discovery. The computational study
of scienti"c discovery has made important strides in its short history, some of which we
review in this paper.

Arti"cial intelligence often gets its initial ideas from observing human behavior and
attempting to model these activities. Computational scienti"c discovery is no exception,
as early research focused on replicating discoveries from the history of disciplines as
diverse as mathematics (Lenat, 1997), physics (Langley, 1981), chemistry (Z0 ytkow & Sim-
on, 1986), and biology (Kulkarni & Simon, 1990). As the collection by Shrager and
Langley (1990) reveals, these e!orts also had considerable breadth in the range of
scienti"c activities they attempted to model, though most work aimed to replicate the
historical record only at the most abstract level. Despite the explicit goals of this early
-Also a$liated with the Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto,
CA 94306, USA.
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research, some critics (e.g., Gillies, 1996) have questioned progress in the area because it
dealt with scienti"c laws and theories already known to the developers.

Although many researchers have continued their attempts to reproduce historical
discoveries, others have turned their energies toward the computational discovery of new
scienti"c knowledge. As with the historical research, this applied work covers a broad
range of disciplines, including mathematics, astronomy, metallurgy, physical chemistry,
biochemistry, medicine, and ecology. Many of these e!orts have led to refereed publica-
tions in the relevant scienti"c literature, which seems a convincing measure of their
accomplishment.

Our aim here is to examine some recent applications of computational scienti"c
discovery and to analyse the reasons for their success. We set the background by
reviewing the major forms that discovery takes in scienti"c domains, giving a framework
to organize the later discussion. After this, we consider steps in the larger discovery
process at which humans can in#uence the behavior of a computational discovery
system. We then turn to seven examples of computer-aided discoveries that have
produced scienti"c publications. In each case, we examine brie#y the role played by the
developer or user, then discuss the interactions with one such system at greater length. In
closing, we consider directions for future work, emphasizing the need for discovery aids
that explicitly encourage interaction with humans.

2. Stages of the discovery process

The history of science reveals a variety of distinct types of discovery activity, ranging
from the detection of empirical regularities to the formation of deeper theoretical
accounts. Generally speaking, these activities tend to occur in a given order within a "eld,
in that the products of one process in#uence or constrain the behavior of successors. Of
course, science is not a strictly linear process, so that earlier stages may be revisited in the
light of results from a later stage, but the logical relation provides a convenient
framework for discussion.

Perhaps the earliest discovery activity involves the formation of taxonomies. Before
one can formulate laws or theories, one must "rst establish the basic concepts or
categories one hopes to relate. An example comes from the early history of chemistry,
when scientists agreed to classify some chemicals as acids, some as alkalis and still others
as salts based on observable properties like taste. Similar groupings have emerged in
other "elds like astronomy and physics, but the best-known taxonomies come from
biology, which groups living entities into categories and subcategories in a hierarchical
manner.

Once they have identi"ed a set of entities, scientists can begin to discover qualitative
laws that characterize their behavior or that relate them to each other. For example, early
chemists found that acids tended to react with alkalis to form salts, along with similar
connections among other classes of chemicals. Some qualitative laws describe static
relations, whereas others summarize events like reactions that happen over time. Again,
this process can occur only after a "eld has settled on the basic classes of entities under
consideration.

A third scienti"c activity aims to discover quantitative laws that state mathematical
relations among numeric variables. For instance, early chemists identi"ed the relative
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masses of hydrochloric acid and sodium hydrochloride that combine to form a unit mass
of sodium chloride. This process can also involve postulating the existence of an intrinsic
property like density or speci"c heat, as well as estimating the property's value for speci"c
entities. Such numeric laws are typically stated in the context of some qualitative
relationship that places constraints on their operation.

Scientists in most "elds are not content with empirical summaries and so try to explain
such regularities, with the most typical "rst step involving the creation of structural
models that incorporate unobserved entities. Thus, nineteenth century chemists like
Dalton and Avogadro postulated atomic and molecular models of chemicals to account
for the numeric proportions observed in reactions. Initial models of this sort are typically
qualitative in nature, stating only the components and their generic relations, but later
models often incorporate numeric descriptions that provide further constraints. Both
types of models are closely tied to the empirical phenomena they are designed to explain.

Eventually, most scienti"c disciplines move beyond structural models to process
models, which explain phenomena in terms of hypothesized mechanisms that involve
change over time. One well-known process account is the kinetic theory of gases, which
explains the empirical relations among gas volume, pressure and temperature in terms of
interactions among molecules. Again, some process models (like those in geology) are
mainly qualitative, while others (like the kinetic theory) include numeric components,
but both types make contact with empirical laws that one can derive from them.

In the past two decades, research in automated scienti"c discovery has addressed each
of these "ve stages. Clustering systems like CLUSTER/2 (Michalski & Stepp, 1983),
AUTOCLASS (Cheeseman, Freeman, Kelly, Self, Stutz & Taylor, 1988) and RETAX
(Alberdi & Sleeman, 1997) deal with the task of taxonomy formation, whereas systems
like NGLAUBER (Jones, 1986) search for qualitative relations. Starting with BACON

(Langley, 1981; Langley, Simon, Bradshaw, & Z0 ytkow, 1987), researchers have developed
a great variety of systems that discover numeric laws. Systems like DALTON (Langley
et al., 1987), STAHLP (Rose & Langley, 1987) and GELL-MANN (Z0 ytkow, 1996) formulate
structural models, whereas a smaller group, like MECHEM (ValdeH s-PeH rez, 1995) and
ASTRA (Kocabas & Langley, 1998), instead construct process models.

A few systems, such as Lenat's (1977) AM, Nordhausen and Langley's IDS (1993) and
Kulkarni and Simon's (1990) KEKADA, deal with more than one of these facets, but most
contributions have focused on one stage to the exclusion of others. Although the work to
date has emphasized rediscovering laws and models from the history of science, we will
see that a similar bias holds for e!orts at "nding new scienti"c knowledge. We suspect
that integrated discovery applications will be developed, but only once the focused e!orts
that already exist have become more widely known.

This framework is not the only way to categorize scienti"c activity, but it appears to
have general applicability across di!erent "elds, so we will use it to organize our
presentation of applied discovery work. The scheme does favor methods that generate
the types of formalisms reported in the scienti"c literature, and thus downplays the role
of mainstream techniques from machine learning. For example, decision-tree induction,
neural networks and nearest neighbor have produced quite accurate predictors in
scienti"c domains like molecular biology (Hunter, 1993), but they employ quite di!erent
notations from those used normally to characterize scienti"c laws and models. For this
reason, we will not focus on their application to scienti"c problems here.
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3. The developer’s role in computational discovery

Although the term computational discovery suggests an automated process, close inspec-
tion of the literature reveals that the human developer or user plays an important role in
any successful project. Early computational research on scienti"c discovery downplayed
this fact and emphasized the automation aspect, in general keeping with the goals of
arti"cial intelligence at the time. However, the new climate in AI favors systems that
advise humans rather than replace them, and recent analyses of machine learning
applications (e.g., Langley & Simon, 1995) suggest an important role for the developer.
Such analysis carry over directly to discovery in scienti"c domains, and here we review
the major ways in which developers can in#uence the behavior of discovery systems.

As Figure 1 depicts, the "rst step in using computational discovery methods is to
formulate the discovery problem in terms that can be solved using existing techniques.
The developer must "rst cast the task as one that involves forming taxonomies, "nding
qualitative laws, detecting numeric relations, forming structural models, or constructing
process accounts. For most methods, he must also specify the dependent variables that
laws should predict or indicate the phenomena that models should explain. Informed
and careful problem formulation can greatly increase the chances of a successful discovery.

The second step in applying discovery techniques is to settle on an e!ective representa-
tion.- The developer must state the variables or predicates used to describe the data or
phenomena to be explained, along with the output representation used for taxonomies,
laws, or models. The latter must include the operations allowed when combining
variables into laws and the component structures or processes used in explanatory
models. The developer may also need to encode background knowledge about the
domain in terms of an initial theory or results from earlier stages of the discovery process.
Such representational engineering plays an essential role in successful applications of
computational scienti"c discovery.

Another important activity of the developer concerns preparing the data or
phenomena on which the discovery system will operate. Data collected by scientists may
be quite sparse, lack certain values, be very noisy or include outliers, and the system user
can improve the quality of these data manually or using techniques for interpolation,
inference, or smoothing. Similarly, scientists' statements of empirical phenomena may
omit hidden assumptions that the user can make explicit or include irrelevant statements
that he can remove. Such data manipulation can also improve the results obtained
through computational discovery.

Research papers on machine discovery typically give the algorithm center stage, but
they pay little attention to the developer's e!orts to modulate the algorithm's behavior
for given inputs. This can involve activities like the manual setting of system parameters
(e.g., for evidence thresholds, noise tolerance, and halting criteria) and the interactive
control of heuristic search by rejecting bad candidates or attending to good ones. Some
systems are designed with this interaction in mind, whereas others support the process
more surreptitiously. But in either case, such algorithm manipulation is another important
way that developers and users can improve their chances for successful discoveries.
-We are not referring here to the representational formalism, such as decision trees or neural networks, but
rather to the domain features encoded in a formalism.



FIGURE 1. Steps in the discovery process at which the developer or user can in#uence system behavior.
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A "nal step in the application process involves transforming the discovery system's
output into results that are meaningful to the scienti"c community. This stage can
include manual "ltering of interesting results from the overall output, recasting these
results in comprehensible terms or notations, and interpreting the relevance of these
results for the scienti"c "eld. Thus, such postprocessing subsumes both the human user's
evaluation of scienti"c results and their communication to scientists who will "nd them
interesting. Since evaluation and communication are central activities in science, they
play a crucial role in computational discovery as well.

The literature on computational scienti"c discovery reveals, though often between the
lines, that developers' intervention plays an important role even in historical models of
discovery. Indeed, early critiques of machine discovery research frowned on these
activities, since both developers and critics assumed the aim was to completely automate
the discovery process. However, this view has changed in recent years and the more
common perspective is that discovery systems should aid scientists rather than replace
them. In this light, human intervention is perfectly acceptable, especially if the goal is to
discover new scienti"c knowledge and not to assign credit.

4. Some computer-aided scientific discoveries

Now that we have set the stage, we are ready to report some successful applications of
AI methods to the discovery of new scienti"c knowledge. We organize the presentation
in terms of the basic scienti"c activities described earlier, starting with examples of
taxonomy formation, then moving on to law discovery and "nally to model construction.
In each case, we review the basic scienti"c problem, describe the discovery system and
present the novel discovery that it has produced. We also examine the role that the
developer played in each application, drawing on the "ve steps outlined in the previous
section.

Although we have not attempted to be exhaustive, we did select examples that meet
certain criteria. ValdeH s}PeH rez (1999) suggests that scienti"c discovery involves the
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&&generation of novel, interesting, plausible, and intelligible knowledge about objects of
scienti"c study'', and reviews four computer-aided discoveries that he argues meet this
de"nition. Rather than repeating his analysis, we have chosen instead to use publication
of the result in the relevant scienti"c literature as our main criterion for success, though
we suspect that publication is highly correlated with his factors.

4.1. STELLAR TAXONOMIES FROM INFRARED SPECTRA

Existing taxonomies of stars are based primarily on characteristics from the visible
spectrum. However, arti"cial satellites provide an opportunity to make measurements of
types that are not possible from the Earth's surface, and the resulting data could suggest
new groupings of known stellar objects. One such source of new data is the Infrared
Astronomical Satellite, which has produced a database that describes the intensity of
some 5425 stars at 94 wavelengths throughout the infrared spectrum.

Cheeseman et al. (1988) applied their AUTOCLASS system to these infrared data. They
designed this program to form one-level taxonomies, that is, to group objects into
meaningful classes or clusters based on similar attribute values. For this domain, they
chose to represent each cluster in terms of a mean and variance for each attribute, thus
specifying a Gaussian distribution. The system carries out a gradient descent search
through the space of such descriptions, starting with random initial descriptions for
a speci"ed number of clusters. On each step, the search process uses the current
descriptions to probabilistically assign each training object to each class and then uses
the observed values for each object to update class descriptions, repeating this process
until only minor changes occur. At a higher level, AUTOCLASS iterates through di!erent
numbers of clusters to determine the best taxonomy, starting with a user-speci"ed
number of classes and increasing this count until it produces classes with negligible
probabilities.

Application of AUTOCLASS to the infrared data on stars produced 77 stellar classes,
which the developers organized into nine higher-level clusters by running the system on
the cluster descriptions themselves. The resulting taxonomy di!ered signi"cantly from
the one then used in astronomy, and the collaborating astronomers felt that it re#ected
some important results (Cheeseman et al., 1989). These included a new class of blackbody
stars with signi"cant infrared excess, presumably due to surrounding dust and a very
weak spectral &&bump'' at 13 microns in some classes that was undetectable in individual
spectra. Geobel et al. (1989) recount these and other discoveries, along with their physical
interpretation; thus, results were deemed important enough to justify their publication in
an referred astrophysical journal.

Although AUTOCLASS clearly contributed greatly to these discoveries, the developers
acknowledge that they also played an important role (Cheeseman & Stutz, 1996). Casting
the basic problem in terms of clustering was straightforward, but the team quickly
encountered problems with the basic infrared spectra, which had been normalized to
ensure that all had the same peak height. To obtain reasonable results, they renormalized
the data so that all curves had the same area. They also had to correct for some negative
spectral intensities, which earlier software used by the astronomers had caused by
subtracting out a background value. The developer's decision to run AUTOCLASS on its
own output to produce a two-level taxonomy constituted another intervention. Finally,
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the collaborating astronomers did considerable interpretation of the system outputs
before presenting them to the scienti"c community.

4.2. QUALITATIVE FACTORS IN CARCINOGENESIS

Over 80,000 chemicals are available commercially, yet the long-term health e!ects are
known for only about 15% of them. Even fewer de"nitive results are available about
whether chemicals cause cancer, since the standard tests for carcinogens involve two-
year animal bioassays that cost $2 million per chemical. As a result, there is great
demand for predictive laws that would let one predict carcinogenicity from more rapid
and less expensive measurements.

Lee, Buchanan, and Aronis (1998) have applied the rule-induction system RL to the
problem of discovering such qualitative laws. The program constructs a set of conjunc-
tive rules, each of which states the conditions under which some result occurs. Like many
other rule-induction methods, RL invokes a general-to-speci"c search to generate each
rule, selecting conditions to add that increase the rule's ability to discriminate among
classes and halting when there is no improvement in accuracy. The system also lets the
user bias this search by specifying desirable properties of the learned rules.

The developers ran RL on three databases for which carcinogenicity results are
available. including 301, 108, and 1300 chemical compounds, respectively. Chemicals
were described in terms of physical properties, structural features, short-term e!ects, and
values on potency measures produced by another system. Experiments revealed that the
induced rules were substantially more accurate than existing prediction schemes, which
justi"ed publication in the scienti"c literature (Lee, Buchanan, & Rosenkranz 1996).
They also tested the rules' ability to classify 24 new chemicals for which the status was
unknown at development time; these results were also positive and led to another
scienti"c publication (Lee, Buchanan, Mattison, Klopman & Rosenkranz, 1995).

The authors recount a number of ways in which they intervened in the discovery
process to obtain these results. For example, they reduced the 496 attributes for one
database to only 75 features by grouping values about lesions on various organs. The
developers also constrained the induction process by specifying that RL should favor
some attributes over others when constructing rules and telling it to consider only certain
values of a symbolic attribute for a given class, as well as certain types of tests on numeric
attributes. These constraints, which they developed through interaction with domain
scientists, took precedence over accuracy-oriented measures in deciding what conditions
to select, and it seems likely that they helped account for the e!ort's success.

4.3. CHEMICALS PREDICTORS OF MUTAGENS

Another area of biochemistry with important social implications aims to understand the
factors that determine whether a chemical will cause mutations in genetic material. One
data set that contains results of this sort involves 230 aromatic and heteroaromatic nitro
compounds, which can be divided into 138 chemicals that have high mutagenicity and 92
chemicals that are low on this dimension. Qualitative relations that characterize these
two classes could prove useful in predicting whether new compounds pose a danger of
causing mutation.
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King Muggleton, Srinivasan, and Sternberg (1996) report an application of their
PROGOL system to this problem. The problem operates along lines similar to other
rule-induction methods, in that it carries out a general-to-speci"c search for a conjunc-
tive rule that covers some of the data, then repeats this process to "nd additional rules
that cover the rest. The system also lets the user specify background knowledge, stated in
the same form, which it takes into account in measuring the quality of induced rules.
Unlike most rule-induction techniques, PROGOL assumes a predicate logic formalism
that can represent relations among objects, rather than just attribute values.

This support for relational descriptions led to revealing structural descriptions of
mutation factors. For example, for the data set mentioned above, the system found one
rule predicting that a compound is mutagenic if it has &&a highly aliphatic carbon atom
attached by a single bond to a carbon atom that is in a six-membered aromatic ring''.
Combined with four similar rules, this characterization gave 81% correct predictions,
which is comparable to the accuracy of other computational methods. However, alterna-
tive techniques do not produce a structural description that one can use to visualize
spatial relations and thus to posit the deeper causes of mutation, so that the results
justi"ed publication in the chemistry literature (King et al., 1996).

As in other applications, the developers aided the discovery process in a number of
ways. They chose to formulate the task in terms of "nding a classi"er that labels
chemicals as causing mutation or not, rather than predicting levels of mutagenicity. King
et al. also presented their system with background knowledge about methyl and nitro
groups, the length and connectivity of rings, and other concepts. In addition, they
manipulated the data by dividing it into two groups with di!erent characteristics, as
done earlier by others working in the area. Although the induced rules were understand-
able in that they made clear contact with chemical concepts, the authors aided their
interpretation by presenting graphical depictions of their structural claims. Similar
interventions have been used by the developers on related scienti"c problems, including
prediction of carcinogenicity (King & Srinivasan, 1996) and pharmacophore discovery
(Finn, Muggleton, Page, & Srinivasan, 1998).

4.4. QUANTITATIVE LAWS OF METALLIC BEHAVIOR

A central process in the manufacture of iron and steel involves the removal of impurities
from molten slag. Qualitatively, the chemical reactions that are responsible for this
removal process increase in e!ectiveness when the slag contains more free oxide (O2~)
ions. However, metallurgists have only imperfect quantitative laws that relate the oxide
amount, known as the basicity of the slag, to dependent variables of interest, such as the
slag's sulfur capacity. Moreover, basicity cannot always be measured accurately, so there
is a need for improved ways to estimate this intrinsic property.

Mitchell, Sleeman, Du!y, Ingram, and Young (1997) applied computational discovery
techniques to these scienti"c problems. Their DAVICCAND system includes operations for
selecting pairs of numeric variables to relate, specifying qualitative conditions that focus
attention on some of the data, and "nding numeric laws that relate variables within
a given region. The program also includes mechanisms for identifying outliers that
violate these numeric laws and for using the laws to infer the values of intrinsic properties
when one cannot measure them more directly.
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The developers report two new discoveries in which DAVICCAND played a central role.
The "rst involves the quantitative relation between basicity and sulfur capacity. Previous
accounts modeled this relation using a single polynomial that held across all temperature
ranges. The new results involve three simpler, linear laws that relate these two variables
under di!erent temperature ranges. The second contribution concerns improved esti-
mates for the basicity of slags that contain TiO

2
and FeO, which DAVICCAND inferred

using the numeric laws it induced from data, and the conclusion that FeO has
quite di!erent basicity values for sulfur and phosphorus slags. These results were
deemed important enough to appear in a respected metallurgical journal (Mitchell et al.,
1997).

Unlike most discovery systems, DAVICCAND encourages users to take part in the
search process and provides explicit control points where they can in#uence choices.
Thus, they formulate the problem by specifying what dependent variable the laws should
predict and what region of the space to consider. Users also a!ect representational
choices by selecting what independent variables to use when looking for numeric laws,
and they can manipulate the data by selecting what points to treat as outliers. DAVIC-

CAND presents its results in terms of graphical displays and functional forms that are
familiar to metallurgists and, given the user's role in the discovery process, there remains
little need for postprocessing to "lter results.

4.5. QUANTITATIVE CONJECTURES IN GRAPH THEORY

A recurring theme in graph theory involves proving theorems about relations among
quantitative properties to graphs. However, before a mathematician can prove that such
a relation always holds, someone must "rst formulate it as a conjecture. Although
mathematical publications tend to emphasize proofs of theorems, the process of "nding
interesting conjectures is equally important and has much in common with discovery in
the natural sciences.

Fajtlowicz (1988) and colleagues have developed GRAFFITI, a system that generates
conjectures in graph theory and other areas of discrete mathematics. The system carries
out search through a space of quantitative relations like +x

i
*+y

i
, where each x

i
and

y
i
is some numerical feature of a graph (e.g., its diameter or its largest eigenvalue), the

product of such elementary features, or their ratio. GRAFFITI ensures that its conjectures
are novel by maintaining a record of previous hypotheses and "lters many uninteresting
conjectures by noting that they seem to be implied by earlier, more general, candidates.

GRAFFITI has generated hundreds of novel conjectures in graph theory, many of which
have spurred mathematicians to attempt their proof or refutation, which in turn has
produced numerous publications. One example involves a conjecture that the &&average
distance'' of a graph is no greater than its &&independence number'', which resulted in
a proof that appeared in the refereed mathematical literature (Chung, 1988). Although
GRAFFITI was designed as an automated discovery system, its developers have clearly
constrained its behavior by specifying the primitive graph features and the types of
relations it should consider. Data manipulation occurs through a "le that contains
qualitatively di!erent graphs, against which the system tests its conjectures empirically,
and postprocessing occurs when mathematicians "lter the system output for interesting
results.
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4.6. TEMPORAL LAWS OF ECOLOGICAL BEHAVIOR

One major concern in ecology is the e!ect of pollution on plant and animal populations.
Ecologists regularly develop quantitative models that are stated as sets of
di!erential equations. Each such equation describes changes in one variable (its deriva-
tive) as a function of other variables, typically ones that can be directly observed. For
example, Lake Glumsoe is a shallow lake in Denmark with high concentrations of
nitrogen and phosphorus from waste water, and ecologists would like to model the e!ect
of these variables on the concentration of phytoplankton and zooplankton in the
lake.

Todorovski, Dz\ eroski, and Kompare (1998) have applied techniques for numeric
discovery to this problem. Their LAGRAMGE system carries out search through a space of
di!erential equations, looking for the equation set that gives the smallest error on the
observed data. The system uses two constraints to make this search process tractable.
First, LAGRAMGE incorporates background knowledge about the domain in the form of
a context-free grammar that it uses to generate plausible equations. Second, it places
a limit on the allowed depth of the derivations used to produce equations. For each
candidate set of equations, the system uses numerical integration to estimate the error
and thus the quality of the proposed model.

The developers report a new set of equations, discovered by LAGRAMGE, that model
accurately the relation between the pollution and plankton concentrations in Lake
Glumsoe. This revealed that phosphorus and temperature are the limiting factors on the
growth of phytoplankton in the lake. We can infer the Todorovski et al. role in the
discovery process from their paper. They formulated the problem in terms of the
variables to be predicted, and they engineered the representation both by specifying the
predictive variables and by providing the grammar used to generate candidate equations.
Because the data were sparse (from only 14 time points over two months), they convinced
three experts to draw curves that "lled in the gaps, used splines to smooth these curves
and sampled from these 10 times per day. They also manipulated LAGRAMGE by telling it
to consider derivations that were no more than four levels deep. However, little post-
processing or interpretation was needed, since the system produces output in a form
familiar to ecologists.

4.7. STRUCTURAL MODELS OF ORGANIC MOLECULES

A central task in organic chemistry involves determining the molecular
structure of a new substance. The chemist typically knows the substance's chemical
formula, such as C

18
H

24
O

2
, and frequently knows its mass spectrum, which

maps the masses of fragments (obtained by fracturing the chemical in a mass
spectrometer) against their frequency of occurrence. The goal is to infer the structure
of the compound in terms of the molecular connections among its elementary
constituents. For reasonably complex compounds, there can be hundreds of millions of
possible structures, suggesting the need for computational aids to search this space
e!ectively.

In perhaps the earliest e!ort to use AI techniques for scienti"c reasoning, Feigenbaum,
Buchanan, and Lederberg (1971) developed DENDRAL to address this task. The system
operates in three stages, "rst using the mass spectrum to infer likely substructures of the
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molecule that could explain major peaks in the data.? Next, DENDRAL considers
di!erent combinations of these substructures, plus the residual atoms, that produce the
known chemical formula, using knowledge of chemical stability to generate all (and only)
chemical structure graphs consistent with these constraints. Finally, the system ranks
these candidate structural models in terms of their abilities to predict the observed
spectrum, using knowledge of mass spectrometry for this purpose.

The DENDRAL e!ort led to a variety of chemical structures that were published in
organic chemistry journals. For instance, Cheer, Smith, Djerassi, Tursch, Braekman, and
Daloze (1976) report new structural models for terpenoids, that is, C

15
and C

20
com-

pounds isolated from plants, as well as for sterol compounds that could be metabolic
precursors of known sterols in marine organisms. Similarly, Varkony, Carhart, and
Smith (1977) report system-generated models for compounds that result from chemical
and photochemical rearrangements of cyclic hydrocarbons, whereas Fitch, Anderson,
Smith, and Djerassi (1979) describe models for chemicals found in the body #uids of
patients suspected of inherited metabolic disorders. Lindsay, Buchanan, Feigenbaum
and Lederberg (1980) give a fuller list of scienti"c publications that resulted from the
project, including results on gaseous ions, compounds that display pharmacological
activity, and secretions used by insects for defense.

Although the early DENDRAL work emphasized atomating the structural-modeling
process, the system's developers in#uenced its behavior by encoding considerable know-
ledge about chemical stability into its search constraints. They presented spectrograms
to DENDRAL without any special preprocessing, but they did select the structural-
modeling tasks and thus the spectrograms that it encountered. Later versions of the
system were more interactive, letting chemists impose additional constraints based on
their own knowledge and data sources. Also, it seems likely that users "ltered the
structural inferences included in their publications, although the output itself required
little interpretation, being cast in a formalism familiar to organic chemists.

4.8. REACTION PATHWAYS IN CATALYTIC CHEMISTRY

For a century, chemists have known that many reactions involve, not a single step, but
rather a sequence of primitive interactions. Thus, a recurring problem has been to
formulate the sequence of steps, known as the reaction pathway, for a given chemical
reaction. In addition to the reactants and products of the reaction, this inference may
also be constrained by information about intermediate products, concentrations over
time, relative quantities, and many other factors. Even so, the great number of possible
pathways makes it possible that scientists will overlook some viable alternatives, so there
exists a need for computational assistance on this task.

ValdeH s-PeH rez (1995) developed MECHEM with this end in mind. The system accepts as
input the reactants and products for a chemical reaction, along with other experimental
evidence and considerable background knowledge about the domain of catalytic chem-
istry. MECHEM lets the user specify interactively which of these constraints to incorpor-
ate when generating pathways, giving him control over its global behavior. The system
carries out a search through the space of reaction pathways, generating the elementary
?At this step, the system can also accept input from chemists about likely or unlikely substructures.
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steps from scratch using special graph algorithms. Search always proceeds from simpler
pathways (fewer substances and steps) to more complex ones. MECHEM uses its con-
straints to eliminate pathways that are not viable and also to identify any intermediate
products it hypothesizes in the process. The "nal output is a comprehensive set of the
simplest pathways that explain the evidence and that are consistent with the system's
background knowledge.

This approach has produced a number of novel reaction pathways that have appeared
in the chemical literature. For example, ValdeH s-PeH rez (1994) reports a new explanation
for the catalytic reaction ethane#H

2
P2 methane, which chemists had viewed as

largely solved, whereas Zeigarnik, ValdeH s-PeH rez, Temkin, Bruk, and Shalgunov (1997)
present another novel result on acrylic acid. Bruk, Gorodskii, Zeigarnik, ValdeH s-PeH rez,
and Temkin (1998) describe a third application of MECHEM that produced 41 novel
pathways, which prompted experimental studies that reduced this to a small set consis-
tent with the new data. The human's role in this process is explicit, with users formulating
the problem through stating the reaction of interest and manipulating the algorithm's
behavior by invoking domain constraints. Because MECHEM produces pathways in
a notation familiar to chemists, its outputs require little interpretation.

4.9. OTHER COMPUTATIONAL AIDS FOR SCIENTIFIC RESEARCH

We have focused on the examples above because they cover a broad range of scienti"c
problems and illustrate the importance of human interaction with the discovery system,
but they do not exhaust the list of successful applications. For example, Pericliev and
ValdeH s-PeH rez (1998) have used their KINSHIP program to generate minimal sets of
features that distinguish kinship terms, like son and uncle, given genealogical and
matrimonial relations that hold for each. They have applied their system to characterize
kinship terms in both English and Bulgarian, and the results have found acceptance in
anthropological linguistics because they are stated in that "eld's conventional notation.

Another instance comes from Swanson and Smalheiser (1997), who have used their
ARROWSMITH program to discover unsuspected relations in the medical literature. The
system searches through online papers, looking for an entry in which some relation
BNC occurs along with some other relation ANB. ARROWSMITH constrains its search
by requiring that C be a physiological state (like a disease) and that A be a possible
intervention (like a drug or dietary factor). For example, the system noted that magne-
sium can inhibit spreading depression, and that spreading depression has been im-
plicated in migraine attacks. The resulting hypothesis, that magnesium could alleviate
migraines, appeared in the medical literature (Swanson, 1988) and has since been
supported repeatedly in clinical tests.

We should also consider the relationship between computational scienti"c discovery
and the kindred topic of data mining, which also aims to uncover novel, interesting,
plausible, and intelligible knowledge. One di!erence is that data mining typically
focusses on commercial applications, though Fayyad, Haussler, and Stolorz (1996)
review some impressive examples of mining scienti"c data from astronomy (for classify-
ing stars and galaxies in sky photographs) and planetology (for recognizing volcanoes on
Venus). However, these e!orts and related ones invoke induction algorithms primarily to
automate tedious recognition tasks in support of cataloguing and statistical analysis,
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rather than to discover publishable scienti"c knowledge in its own right.A Moreover,
such work seldom produces knowledge in any standard scienti"c notation, since they
typically rely on representations from supervised machine learning like decision trees or
probabilistic summaries.

A similar relation holds between computational scienti"c discovery and computa-
tional approaches to molecular biology. One major goal here, which Fayyad et al. also
review, is to predict the qualitative structure of proteins from their nucleotide sequence.
This paradigm has led to many publications in the biology and biochemistry literature,
but most studies emphasize predictive accuracy, with low priority given to expressing the
predictors in some common scienti"c notation. A similar trend has occurred in work on
learning structure}activity relations in biochemistry, though the work by King et al.
(1996) constitutes an exception, in that they focus on presenting discovered relations in
chemical notation. Within computational molecular biology, the main exceptions deal
with the discovery of structural motifs, which are simple taxonomies that describe
con"gurations of nucleotides or other components that tend to recur in biological
sequences. However, most research in the area has been less concerned with discovering
new knowledge than with showing that their predictors give slight improvements in
accuracy over other methods, which has led us to discuss them here only in passing.

5. An Illustration of interactive discovery

Since we have emphasized the interaction between humans and computational discovery
methods, we should illustrate the nature of such interactions in more detail. Table 1
presents a sample trace of DAVICCAND, a system that provides explicit support for such
interaction. Recall that DAVICCAND deals with the discovery of quantitative relations
among variables that describe the behavior of the irons slags central to steelmaking. In
this case, the metallurgist communicated verbally with one of the program's developers,
who in turn entered commands to the system.

The "rst step involves the user selecting a data set from those available in the on-line
library, in this case one known as the &&Strathclyde data set''. The user can also focus the
system's attention on certain groups of data points, in this case those that contain less
than 10% silicon dioxide. This process can rely on prede"ned groups or, as in this trace,
the de"nition of entirely new groups based on ranges of values. DAVICCAND also lets the
user de"ne groups in terms of conjunctions of ranges, ratios of quantities, and distance
from a speci"ed line, though here the de"nition is univariate.

In this trace, having speci"ed a group, the scientist asks the system to display a straight
line through the data contained in that group. Since this appears to give a close "t, he
redirects attention to another group of cases that contain more than 10% silicon dioxide,
then changes his mind and displays instead those with more than 20% silicon. Because
neither group seems easy to characterize, the user asks DAVICCAND to search for group
de"nitions in terms of silicon dioxide percentages, specifying the region within which to
search. The system displays the resulting groups and transition between them, which the
user deems interesting. He focuses especially on one cluster, de"ned as having less than
AThe classi"ers obtained by such methods, when applied to images, can &&discover'' new stars or volcanoes,
but we would be unlikely to use that term if a human carried out the same task.



TABLE 1
A trace interaction between a metallurgist (M) and system developer (S) jointly using

DA<ICCAND to analyze data about the behavior of iron slags

M : Okay, can you bring up the Strathclyde data set?-
S : [Loads and displays the data set.]
M : Can you highlight all those points that contain less than 10% silicon [actually SiO

2
]?

S : [Creates and displays the new group.]
M : Can you draw a line through those points?
S : Straight line or curve?
M : A straight line.
S : [Invokes module that "ts and displays a line.]
M : What about those points with more than 10% silicon?
S : [Creates and displays the new group.]
M : That does not look quite right. Can you change the value to 20%?
S : [Removes old groups from display, then creates and displays the new groups and lines.]
M : Still not quite right.
S : Do you want to try a curve? Or we could try searching for the two lines.
M : Let us try searching.
S : Where abouts in the data set do you want to search for the lines?
M : From 10% to 70% silicon?
S : We're currently looking at log sulphur vs. optical basicity. To do that I need to change the

visualization or, if you can say roughly where on the screen you want to search from, I can do
that without changing the visualization.

M : [Points at screen, showing start and stop points.] From here to here.
S : [Invokes the search process.]
M : That looks interesting. Can you show me what the groups look like?
S : [Displays the group de"nitions.]
M : It looks like the bottom group [silicon less than 44%] is not a straight line. Can you draw

a curve through that?
S : What degree of polynomial?
M : Two or three.
S : [Invokes curve-"tting module.]

-This data set has two slightly di!erent groups that more or less fall on a line, but the "ts are better if each
group is treated separately.
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44% silicon, that he thinks requires more analysis. The scientist notes that a straight line
does not describe these data and so asks the system to "t and display a higher-order
curve for his inspection.

Later interactions with the same scientist led DAVICCAND to de"ne new groups based
on temperature ranges and percentage of titanium dioxide. These in turn led him to focus
on regions in which values for optical basicity were uncertain, and "nally to invoke
a module that estimated new values from experimental data. Interactions with this user
ignored some of DAVICCAND's features, such as the ability to label some observations as
outliers. However, this fact supports our view that both humans and machines have an
important role to play in computational scienti"c discovery.

6. Progress and prospects
As the above examples show, work in computational scienti"c discovery no longer
focuses solely on historical models, but also contributes novel knowledge to a range of
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scienti"c disciplines. To date, such applications remain the exception rather than the
rule, but the breadth of successful computer-aided discoveries provides convincing
evidence that these methods have great potential for aiding the scienti"c process. The
clear in#uence of humans in each of these applications does not diminish the equally
important contribution of the discovery system; each has a role to play in a complex and
challenging endeavor.

One recurring theme in applied discovery work has been the di$culty in "nding
collaborators from the relevant scienti"c "eld. Presumably, scientists in many disciplines
are satis"ed with their existing methods and see little advantage to moving beyond the
statistical aids they currently use. This attitude seems less common in "elds like molecu-
lar biology, which have taken the computational metaphor to heart, but often there are
social obstacles to overcome. The obvious response is to emphasize that we do not intend
our computational tools to replace scientists but rather to aid them, just as simpler
software already aids them in carrying out statistical analyses.

However, making this argument convincing will require some changes in our systems
to better re#ect the position. As noted, existing discovery software already supports
intervention by humans in a variety of ways, from initial problem formulation to "nal
interpretation. But in most cases this activity happens in spite of the software design
rather than because the developer intended it. If we want to encourage synergy between
human and arti"cial scientists, then we must modify our discovery systems to support
their interaction more directly. This means we must install interfaces with explicit hooks
that let users state or revise their problem formulation and representational choices,
manipulate the data and system parameters, and recast outputs in understandable terms.
The MECHEM and DAVICCAND systems already include such facilities and thus consti-
tute good role models, but we need more e!orts along these lines.

Naturally, explicit inclusion of users in the computational discovery process raises
a host of issues that are absent from the autonomous approach. These include questions
about which decisions should be automated and which placed under human control, the
granularity at which interaction should occur, and the type of interface that is best suited
to a particular scienti"c domain. The discipline of human}computer interaction regular-
ly addresses such matters, and though its lessons and design criteria have not yet been
applied to computer-aided discovery, many of them should carry over directly from
other domains. Interactive discovery systems also pose challenges in evaluation, since
human variability makes experimentation more di$cult than for autonomous systems.
Yet experimental studies are not essential if one's main goal is to develop computational
tools that aid users in discovering new scienti"c knowledge.

Clearly, we are only beginning to develop e!ective ways to combine the strengths of
human cognition with those of computational discovery systems. But even our initial
e!orts have produced some convincing examples of computer-aided discovery that have
led to publications in the scienti"c literature. We predict that, as more developers realize
the need to provide explicit support for human intervention, we will see even more
productive systems and even more impressive discoveries that advance the state of
scienti"c knowledge.
Thanks to Bruce Buchanan, Saso Dz\ eroski, Fraser Mitchell, Steve Muggleton, Derek Sleeman,
John Stutz, and Raul ValdeH s-PeH rez for providing information about both their discovery systems
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and their use. An earlier version of this paper appeared in the Proceedings of the First International
Conference on Discovery Science, Springer.
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