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The Computer-Aided Discoveryof Scienti�c KnowledgePat LangleyAdaptive Systems GroupDaimler-Benz Research and Technology Center1510 Page Mill Road, Palo Alto, CA 94304 USAlangley@rtna.daimlerbenz.comAbstract. In this paper, we review AI research on computational dis-covery and its recent application to the discovery of new scienti�c knowl-edge. We characterize �ve historical stages of the scienti�c discovery pro-cess, which we use as an organizational framework in describing applica-tions. We also identify �ve distinct steps during which developers or userscan inuence the behavior of a computational discovery system. Ratherthan criticizing such intervention, as done in the past, we recommend itas the preferred approach to using discovery software. As evidence forthe advantages of such human-computer cooperation, we report sevenexamples of novel, computer-aided discoveries that have appeared in thescienti�c literature, along with the role that humans played in each case.We close by recommending that future systems provide more explicitsupport for human intervention in the discovery process.1 IntroductionThe process of scienti�c discovery has long been viewed as the pinnacle of creativethought. Thus, to many people, including some scientists themselves, it seemsan unlikely candidate for automation by computer. However, over the past twodecades, researchers in arti�cial intelligence have repeatedly questioned this at-titude and attempted to develop intelligent artifacts that replicate the act ofdiscovery. The computational study of scienti�c discovery has made importantstrides in its short history, some of which we review in this paper.Arti�cial intelligence often gets its initial ideas from observing human behav-ior and attempting to model these activities. Computational scienti�c discoveryis no exception, as early research focused on replicating discoveries from thehistory of disciplines as diverse as mathematics (Lenat, 1977), physics (Lang-ley, 1981), chemistry ( _Zytkow & Simon, 1986), and biology (Kulkarni & Simon,1990). As the collection by Shrager and Langley (1990) reveals, these e�orts alsohad considerable breadth in the range of scienti�c activities they attempted tomodel, though most work aimed to replicate the historical record only at themost abstract level. Despite the explicit goals of this early research, some critics(e.g., Gillies, 1996) have questioned progress in the area because it dealt withscienti�c laws and theories already known to the developers.



2 Computer-Aided Scientific Discovery
Although many researchers have continued their attempts to reproduce his-torical discoveries, others have turned their energies toward the computationaldiscovery of new scienti�c knowledge. As with the historical research, this appliedwork covers a broad range of disciplines, including mathematics, astronomy, met-allurgy, physical chemistry, biochemistry, medicine, and ecology. Many of thesee�orts have led to refereed publications in the relevant scienti�c literature, whichseems a convincing measure of their accomplishment.Our aim here is to examine some recent applications of computational scien-ti�c discovery and to analyze the reasons for their success. We set the backgroundby reviewing the major forms that discovery takes in scienti�c domains, givinga framework to organize the later discussion. After this, we consider steps in thelarger discovery process at which humans can inuence the behavior of a compu-tational discovery system. We then turn to seven examples of computer-aideddiscoveries that have produced scienti�c publications, in each case consideringthe role played by the developer or user. In closing, we consider directions forfuture work, emphasizing the need for discovery aids that explicitly encourageinteraction with humans.2 Stages of the Discovery ProcessThe history of science reveals a variety of distinct types of discovery activity,ranging from the detection of empirical regularities to the formation of deepertheoretical accounts. Generally speaking, these activities tend to occur in a givenorder within a �eld, in that the products of one process inuence or constrainthe behavior of successors. Of course, science is not a strictly linear process, sothat earlier stages may be revisited in the light of results from a later stage, butthe logical relation provides a convenient framework for discussion.Perhaps the earliest discovery activity involves the formation of taxonomies .Before one can formulate laws or theories, one must �rst establish the basicconcepts or categories one hopes to relate. An example comes from the earlyhistory of chemistry, when scientists agreed to classify some chemicals as acids,some as alkalis, and still others as salts based on observable properties like taste.Similar groupings have emerged in other �elds like astronomy and physics, butthe best known taxonomies come from biology, which groups living entities intocategories and subcategories in a hierarchical manner.Once they have identi�ed a set of entities, scientists can begin to discoverqualitative laws that characterize their behavior or that relate them to eachother. For example, early chemists found that acids tended to react with alkalisto form salts, along with similar connections among other classes of chemicals.Some qualitative laws describe static relations, whereas others summarize eventslike reactions that happen over time. Again, this process can occur only after a�eld has settled on the basic classes of entities under consideration.A third scienti�c activity aims to discover quantitative laws that state mathe-matical relations among numeric variables. For instance, early chemists identi�edthe relative masses of hydrochloric acid and sodium hydrochloride that combine
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to form a unit mass of sodium chloride. This process can also involve postulatingthe existence of an intrinsic property like density or speci�c heat, as well as esti-mating the property's value for speci�c entities. Such numeric laws are typicallystated in the context of some qualitative relationship that places constraints ontheir operation.Scientists in most �elds are not content with empirical summaries and so tryto explain such regularities, with the most typical �rst step involving the creationof structural models that incorporate unobserved entities. Thus, nineteenth cen-tury chemists like Dalton and Avogadro postulated atomic and molecular modelsof chemicals to account for the numeric proportions observed in reactions. Initialmodels of this sort are typically qualitative in nature, stating only the compo-nents and their generic relations, but later models often incorporate numericdescriptions that provide further constraints. Both types of models are closelytied to the empirical phenomena they are designed to explain.Eventually, most scienti�c disciplines move beyond structural models to pro-cess models , which explain phenomena in terms of hypothesized mechanismsthat involve change over time. One well-known process account is the kinetictheory of gases, which explains the empirical relations among gas volume, pres-sure, and temperature in terms of interactions among molecules. Again, someprocess models (like those in geology) are mainly qualitative, while others (likethe kinetic theory) include numeric components, but both types make contactwith empirical laws that one can derive from them.In the past two decades, research in automated scienti�c discovery has ad-dressed each of these �ve stages. Clustering systems like Cluster/2 (Michalski& Stepp, 1983), AutoClass (Cheeseman et al., 1988), and others deal withthe task of taxonomy formation, whereas systems like NGlauber (Jones, 1986)search for qualitative relations. Starting with Bacon (Langley, 1981; Langley,Simon, Bradshaw, & _Zytkow, 1987), researchers have developed a great varietyof systems that discover numeric laws. Systems like Dalton (Langley et al.,1987), Stahlp (Rose & Langley, 1987), and Gell-Mann ( _Zytkow, 1996) for-mulate structural models, whereas a smaller group, likeMechem (Vald�es-P�erez,1995) and Astra (Kocabas & Langley, 1998), instead construct process models.A few systems, such as Lenat's (1977) AM, Nordhausen and Langley's IDS(1993), and Kulkarni and Simon's (1990) Kekada, deal with more than one ofthese facets, but most contributions have focused on one stage to the exclusion ofothers. Although the work to date has emphasized rediscovering laws and mod-els from the history of science, we will see that a similar bias holds for e�ortsat �nding new scienti�c knowledge. We suspect that integrated discovery appli-cations will be developed, but only once the more focused e�orts that alreadyexist have become more widely known.This framework is not the only way to categorize scienti�c activity, but itappears to have general applicability across di�erent �elds, so we will use itto organize our presentation of applied discovery work. The scheme does favormethods that generate the types of formalisms reported in the scienti�c litera-ture, and thus downplays the role of mainstream techniques from machine learn-
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ing. For example, decision-tree induction, neural networks, and nearest neighborhave produced quite accurate predictors in scienti�c domains like molecular bi-ology (Hunter, 1993), but they employ quite di�erent notations from those usednormally to characterize scienti�c laws and models. For this reason, we will notfocus on their application to scienti�c problems here.3 The Developer's Role in Computational DiscoveryAlthough the term computational discovery suggests an automated process, closeinspection of the literature reveals that the human developer or user plays animportant role in any successful project. Early computational research on scien-ti�c discovery downplayed this fact and emphasized the automation aspect, ingeneral keeping with the goals of arti�cial intelligence at the time. However, thenew climate in AI favors systems that advise humans rather than replace them,and recent analyses of machine learning applications (e.g., Langley & Simon,1995) suggest an important role for the developer. Such analyses carry over di-rectly to discovery in scienti�c domains, and here we review the major ways inwhich developers can inuence the behavior of discovery systems.The �rst step in using computational discovery methods is to formulate thediscovery problem in terms that can be solved using existing techniques. Thedeveloper must �rst cast the task as one that involves forming taxonomies, �nd-ing qualitative laws, detecting numeric relations, forming structural models, orconstructing process accounts. For most methods, he must also specify the depen-dent variables that laws should predict or indicate the phenomena that modelsshould explain. Informed and careful problem formulation can greatly increasethe chances of a successful discovery application.The second step in applying discovery techniques is to settle on an e�ectiverepresentation.1 The developer must state the variables or predicates used todescribe the data or phenomena to be explained, along with the output repre-sentation used for taxonomies, laws, or models. The latter must include the oper-ations allowed when combining variables into laws and the component structuresor processes used in explanatory models. The developer may also need to encodebackground knowledge about the domain in terms of an initial theory or resultsfrom earlier stages of the discovery process. Such representational engineeringplays an essential role in successful applications of computational discovery.Another important developer activity concerns preparing the data or phe-nomena on which the discovery system will operate. Data collected by scientistsmay be quite sparse, lack certain values, be very noisy, or include outliers, andthe system user can improve the quality of these data manually or using tech-niques for interpolation, inference, or smoothing. Similarly, scientists' statementsof empirical phenomena may omit hidden assumptions that the user can makeexplicit or include irrelevant statements that he can remove. Such data manip-ulation can also improve the results obtained through computational discovery.1 We are not referring here to the representational formalism, such as decision treesor neural networks, but rather to the domain features encoded in a formalism.
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Research papers on machine discovery typically give the algorithm centerstage, but they pay little attention to the developer's e�orts to modulate thealgorithm's behavior for given inputs. This can involve activities like the man-ual setting of system parameters (e.g., for evidence thresholds, noise tolerance,and halting criteria) and the interactive control of heuristic search by rejectingbad candidates or attending to good ones. Some systems are designed with thisinteraction in mind, whereas others support the process more surreptitiously.But in either case, such algorithm manipulation is another important way thatdevelopers and users can improve their chances for successful discoveries.A �nal step in the application process involves transforming the discoverysystem's output into results that are meaningful to the scienti�c community. Thisstage can include manual �ltering of interesting results from the overall output,recasting these results in comprehensible terms or notations, and interpretingthe relevance of these results for the scienti�c �eld. Thus, such postprocessingsubsumes both the human user's evaluation of scienti�c results and their com-munication to scientists who will �nd them interesting. Since evaluation andcommunication are central activities in science, they play a crucial role in com-putational discovery as well.The literature on computational scienti�c discovery reveals, though oftenbetween the lines, that developers' intervention plays an important role even inhistorical models of discovery. Indeed, early critiques of machine discovery re-search frowned on these activities, since both developers and critics assumed theaim was to completely automate the discovery process. However, this view haschanged in recent years, and the more common perspective, at least in appliedcircles, is that discovery systems should aid scientists rather than replace them.In this light, human intervention is perfectly acceptable, especially if the goal isto discover new scienti�c knowledge and not to assign credit.4 Some Computer-Aided Scienti�c DiscoveriesNow that we have set the stage, we are ready to report some successful applica-tions of AI methods to the discovery of new scienti�c knowledge. We organize thepresentation in terms of the basic scienti�c activities described earlier, startingwith examples of taxonomy formation, then moving on to law discovery and �-nally to model construction. In each case, we review the basic scienti�c problem,describe the discovery system, and present the novel discovery that it has pro-duced. We also examine the role that the developer played in each application,drawing on the �ve steps outlined in the previous section.Although we have not attempted to be exhaustive, we did select examplesthat meet certain criteria. Vald�es-P�erez (1998) suggests that scienti�c discoveryinvolves the \generation of novel, interesting, plausible, and intelligible knowl-edge about objects of scienti�c study", and reviews four computer-aided dis-coveries that he argues meet this de�nition. Rather than repeating his analysis,we have chosen instead to use publication of the result in the relevant scien-ti�c literature as our main criterion for success, though we suspect that refereedpublication is highly correlated with his factors.
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4.1 Stellar Taxonomies from Infrared SpectraExisting taxonomies of stars are based primarily on characteristics from thevisible spectrum. However, arti�cial satellites provide an opportunity to makemeasurements of types that are not possible from the Earth's surface, and theresulting data could suggest new groupings of known stellar objects. One suchsource of new data is the Infrared Astronomical Satellite, which has produceda database describing the intensity of some 5425 stars at 94 wavelengths in theinfrared spectrum.Cheeseman et al. (1988) applied their AutoClass system to these infrareddata. They designed this program to form one-level taxonomies, that is, to groupobjects into meaningful classes or clusters based on similar attribute values. Forthis domain, they chose to represent each cluster in terms of a mean and variancefor each attribute, thus specifying a Gaussian distribution. The system carriesout a gradient descent search through the space of such descriptions, startingwith random initial descriptions for a speci�ed number of clusters. On each step,the search process uses the current descriptions to probabilistically assign eachtraining object to each class, and then uses the observed values for each object toupdate class descriptions, repeating this process until only minor changes occur.At a higher level, AutoClass iterates through di�erent numbers of clusters todetermine the best taxonomy, starting with a user-speci�ed number of classesand increasing this count until it produces classes with negligible probabilities.Application of AutoClass to the infrared data on stars produced 77 stellarclasses, which the developers organized into nine higher-level clusters by run-ning the system on the cluster descriptions themselves. The resulting taxonomydi�ered signi�cantly from the one then used in astronomy, and the collaborat-ing astronomers felt that it reected some important results. These included anew class of blackbody stars with signi�cant infrared excess, presumably dueto surrounding dust, and a very weak spectral `bump' at 13 microns in someclasses that was undetectable in individual spectra. Goebel et al. (1989) recountthese and other discoveries, along with their physical interpretation; thus, theresults were deemed important enough to justify their publication in an refereedastrophysical journal.Although AutoClass clearly contributed greatly to these discoveries, thedevelopers acknowledge that they also played an important role (Cheeseman &Stutz, 1996). Casting the basic problem in terms of clustering was straightfor-ward, but the team quickly encountered problems with the basic infrared spectra,which had been normalized to ensure that all had the same peak height. To ob-tain reasonable results, they renormalized the data so that all curves had thesame area. They also had to correct for some negative spectral intensities, whichearlier software used by the astronomers had caused by subtracting out a back-ground value. The developers' decision to run AutoClass on its own outputto produce a two-level taxonomy constituted another intervention. Finally, thecollaborating astronomers did considerable interpretation of the system outputsbefore presenting them to the scienti�c community.
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4.2 Qualitative Factors in CarcinogenesisOver 80,000 chemicals are available commercially, yet the long-term health e�ectsare known for only about 15 percent of them. Even fewer de�nitive results areavailable about whether chemicals cause cancer, since the standard tests forcarcinogens involve two-year animal bioassays that cost $2 million per chemical.As a result, there is great demand for predictive laws that would let one predictcarcinogenicity from more rapid and less expensive measurements.Lee, Buchanan, and Aronis (1998) have applied the rule-induction system RLto the problem of discovering such qualitative laws. The program constructs a setof conjunctive rules, each of which states the conditions under which some resultoccurs. Like many other rule-induction methods, RL invokes a general-to-speci�csearch to generate each rule, selecting conditions to add that increase the rule'sability to discriminate among classes and halting when there is no improvementin accuracy. The system also lets the user bias this search by specifying desirableproperties of the learned rules.The developers ran RL on three databases for which carcinogenicity resultswere available, including 301, 108, and 1300 chemical compounds, respectively.Chemicals were described in terms of physical properties, structural features,short-term e�ects, and values on potency measures produced by another system.Experiments revealed that the induced rules were substantially more accuratethan existing prediction schemes, which justi�ed publication in the scienti�cliterature (Lee et al., 1996). They also tested the rules' ability to classify 24 newchemicals for which the status was unknown at development time; these resultswere also positive and led to another scienti�c publication (Lee et al., 1995).The authors recount a number of ways in which they intervened in the discov-ery process to obtain these results. For example, they reduced the 496 attributesfor one database to only 75 features by grouping values about lesions on vari-ous organs. The developers also constrained the induction process by specifyingthat RL should favor some attributes over others when constructing rules andtelling it to consider only certain values of a symbolic attribute for a given class,as well as certain types of tests on numeric attributes. These constraints, whichthey developed through interaction with domain scientists, took precedence overaccuracy-oriented measures in deciding what conditions to select, and it seemslikely that they helped account for the e�ort's success.4.3 Quantitative Laws of Metallic BehaviorA central process in the manufacture of iron and steel involves the removal ofimpurities from molten slag. Qualitatively, the chemical reactions that are re-sponsible this removal process increase in e�ectiveness when the slag containsmore free oxide (O2�) ions. However, metallurgists have only imperfect quan-titative laws that relate the oxide amount, known as the basicity of the slag,to dependent variables of interest, such as the slag's sulfur capacity. Moreover,basicity cannot always be measured accurately, so there remains a need for im-proved ways to estimate this intrinsic property.
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Mitchell, Sleeman, Du�y, Ingram, and Young (1997) applied computationaldiscovery techniques to these scienti�c problems. Their Daviccand system in-cludes operations for selecting pairs of numeric variables to relate, specifyingqualitative conditions that focus attention on some of the data, and �nding nu-meric laws that relate variables within a given region. The program also includesmechanisms for identifying outliers that violate these numeric laws and for usingthe laws to infer the values of intrinsic properties when one cannot measure themmore directly.The developers report two new discoveries in which Daviccand played acentral role. The �rst involves the quantitative relation between basicity andsulfur capacity. Previous accounts modeled this relation using a single polynomialthat held across all temperature ranges. The new results involve three simpler,linear laws that relate these two variables under di�erent temperature ranges.The second contribution concerns improved estimates for the basicity of slagsthat contain T iO2 and FeO, which Daviccand inferred using the numeric lawsit induced from data, and the conclusion that FeO has quite di�erent basicityvalues for sulphur and phosphorus slags. These results were deemed importantenough to appear in a respected metallurgical journal (Mitchell et al., 1997).Unlike most discovery systems, Daviccand encourages users to take part inthe search process and provides explicit control points where they can inuencechoices. Thus, they formulate the problem by specifying what dependent variablethe laws should predict and what region of the space to consider. Users also a�ectrepresentational choices by selecting what independent variables to use whenlooking for numeric laws, and they can manipulate the data by selecting whatpoints to treat as outliers. Daviccand presents its results in terms of graphicaldisplays and functional forms that are familiar to metallurgists, and, given theuser's role in the discovery process, there remains little need for postprocessingto �lter results.4.4 Quantitative Conjectures in Graph TheoryA recurring theme in graph theory involves proving theorems about relationsamong quantitative properties of graphs. However, before a mathematician canprove that such a relation always holds, someone must �rst formulate it as aconjecture. Although mathematical publications tend to emphasize proofs oftheorems, the process of �nding interesting conjectures is equally important andhas much in common with discovery in the natural sciences.Fajtlowicz (1988) and colleagues have developed Graffiti, a system thatgenerates conjectures in graph theory and other areas of discrete mathematics.The system carries out search through a space of quantitative relations likePxi � P yi, where each xi and yi is some numerical feature of a graph (e.g.,its diameter or its largest eigenvalue), the product of such elementary features,or their ratio. Graffiti ensures that its conjectures are novel by maintaininga record of previous hypotheses, and �lters many uninteresting conjectures bynoting that they seem to be implied by earlier, more general, candidates.
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Graffiti has generated hundreds of novel conjectures in graph theory, manyof which have spurred mathematicians in the area to attempt their proof or refu-tation. In one case, the conjecture that the `average distance' of a graph is nogreater than its `independence number' resulted in a proof that appeared inthe refereed mathematical literature (Chung, 1988). Although Graffiti wasdesigned as an automated discovery system, its developers have clearly con-strained its behavior by specifying the primitive graph features and the typesof relations it should consider. Data manipulation occurs through a �le thatcontains qualitatively di�erent graphs, against which the system tests its con-jectures empirically, and postprocessing occurs when mathematicians �lter thesystem output for interesting results.4.5 Temporal Laws of Ecological BehaviorOne major concern in ecology is the e�ect of pollution on the plant and animalpopulations. Ecologists regularly develop quantitative models that are statedas sets of di�erential equations. Each such equation describes changes in onevariable (its derivative) as a function of other variables, typically ones that canbe directly observed. For example, Lake Glumsoe is a shallow lake in Denmarkwith high concentrations of nitrogen and phosphorus from waste water, andecologists would like to model the e�ect of these variables on the concentrationof phytoplankton and zooplankton in the lake.Todorovski, D�zeroski, and Kompare (in press) applied techniques for numericdiscovery to this problem. Their Lagramge system carries out search through aspace of di�erential equations, looking for the equation set that gives the small-est error on the observed data. The system uses two constraints to make thissearch process tractable. First, Lagramge incorporates background knowledgeabout the domain in the form of a context-free grammar that it uses to gen-erate plausible equations. Second, it places a limit on the allowed depth of thederivations used to produce equations. For each candidate set of equations, thesystem uses numerical integration to estimate the error and thus the quality ofthe proposed model.The developers report a new set of equations, discovered by Lagramge,that model accurately the relation between the pollution and plankton concen-trations in Lake Glumsoe. This revealed that phosphorus and temperature arethe limiting factors on the growth of phytoplankton in the lake. We can inferTodorovski et al.'s role in the discovery process from their paper. They formu-lated the problem in terms of the variables to be predicted, and they engineeredthe representation both by specifying the predictive variables and by provid-ing the grammar used to generate candidate equations. Because the data weresparse (from only 14 time points over two months), they convinced three ex-perts to draw curves that �lled in the gaps, used splines to smooth these curves,and sampled from these ten times per day. They also manipulated Lagramgeby telling it to consider derivations that were no more than four levels deep.However, little postprocessing or interpretation was needed, since the systemproduces output in a form familiar to ecologists.
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4.6 Chemical Structures of MutagensAnother area of biochemistry with important social implications aims to un-derstand the factors that determine whether a chemical will cause mutationsin genetic material. One data set that contains results of this sort involves 230aromatic and heteroaromatic nitro compounds, which can be divided into 138chemicals that have high mutagenicity and 92 chemicals that are low on thisdimension. Structural models that characterize these two classes could proveuseful in predicting whether new compounds pose a danger of causing mutation.King, Muggleton, Srinivasan, and Sternberg (1996) report an application oftheir Progol system to this problem. The program operates along lines similarto other rule-induction methods, in that it carries out a general-to-speci�c searchfor a conjunctive rule that covers some of the data, then repeats this process to�nd additional rules that cover the rest. The system also lets the user specifybackground knowledge, stated in the same form, which it takes into account inmeasuring the quality of induced rules. Unlike most rule-induction techniques,Progol assumes a predicate logic formalism that can represent relations amongobjects, rather than just attribute values.This support for relational descriptions led to revealing structural descrip-tions of mutation factors. For example, for the data set mentioned above, thesystem found one rule predicting that a compound is mutagenic if it has \ahighly aliphatic carbon atom attached by a single bond to a carbon atom that isin a six-membered aromatic ring". Combined with four similar rules, this charac-terization gave 81% correct predictions, which is comparable to the accuracy ofother computational methods. However, alternative techniques do not producea structural model that one can use to visualize spatial relations and thus toposit the deeper causes of mutation,2 so that the results justi�ed publication inthe chemistry literature (King et al., 1996).As in other applications, the developers aided the discovery process in anumber of ways. They chose to formulate the task in terms of �nding a classi�erthat labels chemicals as causing mutation or not, rather than predicting levels ofmutagenicity. King et al. also presented their system with background knowledgeabout methyl and nitro groups, the length and connectivity of rings, and otherconcepts. In addition, they manipulated the data by dividing into two groupswith di�erent characteristics, as done earlier by others working in the area.Although the induced rules were understandable in that they made clear contactwith chemical concepts, the authors aided their interpretation by presentinggraphical depictions of their structural claims. Similar interventions have beenused by the developers on related scienti�c problems, including prediction ofcarcinogenicity (King & Srinivasan, 1996) and pharmacophore discovery (Finn,Muggleton, Page, & Srinivasan, 1998).2 This task does not actually involve structural modeling in the sense discussed inSection 2, since the structures are generalizations from observed data rather thancombinations of unobserved entities posited to explain phenomena. However, appli-cations of such structural modeling do not appear in the literature, and the Kinget al. work seems the closest approximation.
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4.7 Reaction Pathways in Catalytic ChemistryFor a century, chemists have known that many reactions involve, not a singlestep, but rather a sequence of primitive interactions. Thus, a recurring problemhas been to formulate the sequence of steps, known as the reaction pathway , fora given chemical reaction. In addition to the reactants and products of the reac-tion, this inference may also be constrained by information about intermediateproducts, concentrations over time, relative quantities, and many other factors.Even so, the great number of possible pathways makes it possible that scientistswill overlook some viable alternatives, so there exists a need for computationalassistance on this task.Vald�es-P�erez (1995) developed Mechem with this end in mind. The sys-tem accepts as input the reactants and products for a chemical reaction, alongwith other experimental evidence and considerable background knowledge aboutthe domain of catalytic chemistry. Mechem lets the user specify interactivelywhich of these constraints to incorporate when generating pathways, giving himcontrol over its global behavior. The system carries out a search through thespace of reaction pathways, generating the elementary steps from scratch usingspecial graph algorithms. Search always proceeds from simpler pathways (fewersubstances and steps) to more complex ones. Mechem uses its constraints toeliminate pathways that are not viable and also to identify any intermediateproducts it hypothesizes in the process. The �nal output is a comprehensive setof simplest pathways that explain the evidence and that are consistent with thebackground knowledge.This approach has produced a number of novel reaction pathways that haveappeared in the chemical literature. For example, Vald�es-P�erez (1994) reportsa new explanation for the catalytic reaction ethane+H2 ! 2 methane, whichchemists had viewed as largely solved, whereas Zeigarnik et al. (1997) present an-other novel result on acrylic acid. Bruk et al. (1998) describe a third applicationof Mechem that produced 41 novel pathways, which prompted experimentalstudies that reduced this to a small set consistent with the new data. The hu-man's role in this process is explicit, with users formulating the problem throughstating the reaction of interest and manipulating the algorithm's behavior by in-voking domain constraints. Because Mechem produces pathways in a notationfamiliar to chemists, its outputs require little interpretation.4.8 Other Computational Aids for Scienti�c ResearchWe have focused on the examples above because they cover a broad range ofscienti�c problems and illustrate the importance of human interaction with thediscovery system, but they do not exhaust the list of successful applications. Forexample, Pericliev and Vald�es-P�erez (in press) have used their Kinship programto generate minimal sets of features that distinguish kinship terms, like son anduncle, given genealogical and matrimonial relations that hold for each. Theyhave applied their system to characterize kinship terms in both English and
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Bulgarian, and the results have found acceptance in anthropological linguisticsbecause they are stated in that �eld's conventional notation.There has also been extensive work in molecular biology, where one majorgoal is to predict the qualitative structure of proteins from their nucleotide se-quence, as Fayyad, Haussler, and Stolorz (1996) briey review. This work has ledto many publications in the biology and biochemistry literature, but we have cho-sen not to focus on it here. One reason is that most studies emphasize predictiveaccuracy, with low priority given to expressing the predictors in some commonscienti�c notation. More important, many researchers have become concernedless with discovering new knowledge than with showing that their predictorsgive slight improvements in accuracy over other methods. A similar trend hasoccurred in work on learning structure-activity relations in biochemistry, and weprefer not to label such e�orts as computational scienti�c discovery.We also distinguish computer-aided scienti�c discovery from the equally chal-lenging, but quite di�erent, use of machine learning to aid scienti�c data analysis.Fayyad et al. (1996) review some impressive examples of the latter approach inastronomy (classifying stars and galaxies in sky photographs), planetology (rec-ognizing volcanoes on Venus), and molecular biology (detecting genes in DNAsequences). But these e�orts invoke induction primarily to automate tediousrecognition tasks in support of cataloging and statistical analysis, rather thanto discover new knowledge that holds scienti�c interest in its own right. Thus,we have not included them in our examples of computer-aided discovery.5 Progress and ProspectsAs the above examples show, work in computational scienti�c discovery no longerfocuses solely on historical models, but also contributes novel knowledge to arange of scienti�c disciplines. To date, such applications remain the exceptionrather than the rule, but the breadth of successful computer-aided discoveriesprovides convincing evidence that these methods have great potential for aidingthe scienti�c process. The clear inuence of humans in each of these applicationsdoes not diminish the equally important contribution of the discovery system;each has a role to play in a complex and challenging endeavor.One recurring theme in applied discovery work has been the di�culty in �nd-ing collaborators from the relevant scienti�c �eld. Presumably, many scientistsare satis�ed with their existing methods and see little advantage to moving be-yond the statistical aids they currently use. This attitude seems less common in�elds like molecular biology, which have taken the computational metaphor toheart, but often there are social obstacles to overcome. The obvious response isto emphasize that we do not intend our computational tools to replace scientistsbut rather to aid them, just as simpler software already aids them in carryingout statistical analyses.However, making this argument convincing will require some changes in oursystems to better reect the position. As noted, existing discovery software al-ready supports intervention by humans in a variety of ways, from initial problem
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