
Lessons for the Computational Disovery of Sienti� KnowledgePat Langley langley�isle.orgInstitute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, California 94306 USAAbstratIn this essay, I review some early analysesof mahine learning appliations, along withmore reent treatments of suessful disov-eries of sienti� knowledge. Although thetwo problem areas have muh in ommon, weuse reent work on omputational disoveryin Earth siene and mirobiology to illus-trate some important di�erenes. The lessonsthat emerge from these e�orts run ounter tosome rhetorial laims and assumptions thatare widespread in the mahine learning anddata mining ommunities.1. Historial BakgroundAppliations of mahine learning date bak at least tothe early 1980s, when Donald Mihie and olleagueshampioned use of deision-tree indution on indus-trial problems. This innovative work led to a numberof �elded systems in whih the knowledge base wasonstruted by supervised learning methods. Largelyparallel developments ourred within other indutionparadigms, espeially with neural networks and ase-based methods, throughout the 1980s.By the early 1990s, there were enough �elded systemsof this sort that I began to ollet examples and talkwith developers about their experienes. This led toan initial review (Langley, 1992) and a workshop on�elded appliations of mahine learning, whih YvesKodrato� and I organized in 1993, in onjuntion withthe Tenth International Conferene on Mahine Learn-ing. These events ourred before the �rst onfereneon data mining and, indeed, before that term even be-ame widely used.The ase studies and workshop led in turn to an artile(Langley & Simon, 1995) that reviewed many of theseappliations. The paper also drew some initial lessonsabout the fators that inuene whether suh appliede�orts are suessful. These inluded:

� formulating the problem in terms amenable to ex-isting learning algorithms;� engineering the representation to make the learningtask tratable;� olleting data and manipulating it to aid learning;� evaluating the learned knowledge in terms of itsbehavior and aeptability to domain experts;� �elding the knowledge base in ways that lead to itsaeptane and utilization.One key hypothesis was that making appropriate de-isions about these issues was more ruial to suessthan deisions about whih learning algorithm to use.One they are handled, many indution tehniqueswould ahieve positive results. The primary evidenefor this laim was that few suessful appliations in-volved development of new algorithms; almost invari-ably, they relied on reative use of existing methods.More reently, other authors (e.g., Fayyad, Piatetsky-Shapiro, & Smyth, 1996) have proposed similar anal-yses of stages that arise in knowledge disovery anddata mining. They have also emphasized the impor-tane of issues like problem formulation, representa-tion engineering, and data olletion. Unfortunately,most publiations in both mahine learning and datamining still fous on algorithm development, despitegeneral agreement that other issues play at least asimportant a role in pratial systems.2. Knowledge Disovery in SieneComputational researh on the disovery of sienti�knowledge has existed for well over three deades (e.g.,Simon, 1966). However, this area beame truly ativeonly in the late 1970s and early 1980s, along with thegenerally inreased ativity in mahine learning, withwhih it was losely assoiated. Early researh on om-putational disovery foused on repliating events fromthe history of siene and mathematis (e.g., Langley,1981; Lenat, 1978), whih was a reasonable startingpoint for the �eld.



However, more reent work has applied similar teh-niques to disover new sienti� knowledge. A learriterion for suess here is whether the new knowl-edge is published in the refereed literature of the rele-vant sienti� �eld. This has ourred in enough asesthat, a few years ago, I deided to analyze a number ofsuessful appliations in an e�ort to understand theirsoures of power (Langley, 2000). These inluded re-sults in astronomy, biology, hemistry, eology, graphtheory, and metallurgy, and the forms of knowledgeinluded taxonomies, qualitative laws, numeri equa-tions, strutural models, and reation pathways.To this end, I adapted the framework from our earliertreatment of mahine learning appliations. This anal-ysis revealed evidene that many of the same fatorswere required to obtain positive results. In partiular,suessful developers spent signi�ant time in formu-lating (and reformulating) their problem, in engineer-ing the representation, and in olleting and manip-ulating the data. In this analysis, I added steps formanipulating the disovery algorithm (e.g., by alter-ing parameters), as well as for �ltering and interpret-ing the results. I also onluded that future systemsshould support for these ativities expliitly, ratherthan foring them to our behind the senes.In summary, the initial lessons from sienti� applia-tions were quite similar to those from industrial ap-pliations of mahine learning. This was enourag-ing sine, in many ases, the disovered knowledge forthese sienti� domains often took a di�erent form,and, in some examples, the disovery proess involvedabdution rather than indution. However, our ownreent e�orts in this arena have revealed signi�antdi�erenes between the two types of appliations, andalso suggest some quite di�erent lessons from thosealready mentioned.3. New Lessons for Sienti� DisoveryMost work on omputational sienti� disovery hasfoused on modeling isolated phenomena in a on-strained setting. This strategy has been as pro�tablefor disovery researh as for the natural sienes them-selves. However, there is a growing interest in systemssiene, whih aims to model the behavior of omplexsystems in terms of interating parts. Another di�er-ene is that systems siene typially has aess onlyto observational or orrelational data, rather than todata from ontrolled experiments. Our applied workhas addressed sienti� disovery in suh ontexts.One e�ort onerns global models of the Earth eosys-tem. Existing models math the observed behavior to

some extent, but Earth sientists would like to improvetheir preditive ability. Our ollaborators want to a-ount for hanges in the global prodution of arbonthrough vegetative growth, as well as the produtionand absorption of biogeni trae gases in the atmo-sphere. Hypothesized preditive variables inlude sur-fae temperature, moisture levels, available sunlight,and properties of soil. Data for these variables omepartly from measurements olleted at ground stationsand partly from estimations based on satellite images.The resulting model should explain observed di�er-enes in the behavioral variables as a funtion of thepreditive variables.The seond appliation involves models of gene regu-lation in miroorganisms. Biologists understand thebasi mehanisms through whih DNA produes bio-hemial behavior, but they have not yet mastered theregulatory networks that ontrol the degree to whiheah gene is expressed. Our ollaborators are on-erned espeially with determining how gene regula-tion ontrols the photosynthesis proess in Cyanoba-teria, an important type of phytoplankton. The avail-able data ome from experiments with wild type andmutant organisms grown in a hemostat and exposedto environmental stress suh as bright light. DNAmiroarrays measure the expression levels for ulturesamples at di�erent points in time for approximately300 genes believed to play a role in photosynthesis.The resulting model should explain both the observedexpression levels and high-level behavior, suh as thefat that Cyanobateria bleahes when exposed tobright light.Our experiene with these two domains has suggested�ve lessons about fators that inuene the suessof applied omputational work on sienti� disovery.We will see that some of the laims run ounter to pre-vailing wisdom in mahine learning and data mining.� Lesson 1. Traditional mahine learning notationsare not easily ommuniated to sientists .Most sienes di�er from industries in that they have along history of representing their knowledge formally.Di�erent �elds have developed di�erent notations thatsuit their needs, inluding strutural models in organihemistry, numeri equations in physis, and reationnetworks in nulear astrophysis. However, few sien-ti� notations bear muh relation to the formalismspopular in mahine learning and data mining, whihhave mainly been invented by the learning researhersthemselves.We enountered this issue in both our sienti� ap-pliations. We found that Earth sientists state their



models as sets of algebrai and di�erene equations,and that our ollaborators were most omfortable withmethods that produed knowledge in this format. Wehad some suess with regression rules (Shwabaher &Langley, 2001), sine they were familiar with pieewiselinear models, but this approah does not support thetheoretial terms that, as noted below, often appearin Earth siene models. A similar problem arose withour mirobiology olleagues, whose models of gene reg-ulation took the form of qualitative ausal diagrams.Here we were able to adapt tehniques for induing lin-ear ausal models (Langley, Shrager, & Saito, in press),but we had to introdue a number of additional fea-tures before our results made biologial sense.� Lesson 2. Sientists often have initial models thatshould inuene the disovery proess .Siene is an inherently inremental ativity. Althoughsientists sometimes disover isolated laws from data,development of oherent models for omplex systemstakes plae gradually and involves revising knowledgerather than disovering it from srath. However, fewtehniques from mahine learning and data miningsupport knowledge revision. Moreover, the rhetoriof these �elds often disourages the inorporation ofexisting knowledge, sine this would presumably biasthe disovery system.In our two appliation e�orts, we found that our ol-laborators had initial models they hoped to improveupon, but not replae entirely, using omputationaltehniques. For instane, the Earth sientists had anextensive model, stated as sets of equations, that par-tially aounted for the prodution of vegative arbonas a funtion of limate and other variables. Similarly,the mirobiologists had a qualitative ausal model thathypothesized whih genes regulated others and howthis ativity inuened photosynthesis. Both groupsfelt their models might ontain inaurate assumptionsand might omit important variables, but neither wasinterested in developing an entirely new model thatdid not build on the existing one.� Lesson 3. Sienti� data are often rare and diÆultto obtain rather than plentiful .The data mining ommunity assures us that data areabundant in both business and sienti� domains. In-deed, we have so muh data that our primary goalsshould be developing algorithms that an proess themeÆiently and that an extrat the last bit of knowl-edge from them. Suh laims about the quantity ofdata may well hold for many business arenas, and thereare some sienti� ontexts in whih many observa-tions are available, but the sienti� appliations we

have examined (Langley, 2000) suggest this is the ex-eption rather than the rule.Our personal experiene with sienti� domains is on-sistent with this view. For eosystemmodeling, we hadaess to some 14,000 observations for a few variablesthat ould be extrated from satellite images, but wehad only 303 data points for the other variables, whihwe needed to determine the relations of interest. Formodeling gene regulation, we had available thousandsof measurements, sine with DNA miroarrays one anestimate expression levels for many genes at the sametime. However, we had only 20 distint samples mea-sured over �ve time steps, whih provided very fewonstraints on andidate models. Thus, the frequentlyheard rhetori about the massive data sets generatedby satellite imagery and miroarray tehnology is mis-leading at best.� Lesson 4. Sientists want models that move beyonddesription to provide explanations of data.Desriptive laws play an essential role in siene, mostespeially in the early stages of a �eld. However, asa disipline advanes, its sientists desire inreasinglyto explain phenomena in terms of theoretial variables,entities, or proesses. This holds espeially for systemssiene, whih attempts to aount for observations interms of interations among hypothesized omponents.Explanations often make use of general onepts orrelations that our in di�erent models, and thus relyon domain knowledge for their generation.Explanatory aounts were important in both our ap-pliations. The eosystem model we hoped to improveupon ontained more theoretial terms than observ-able variables, many of them oneptually relevant toour Earth siene ollaborators. The initial photosyn-thesis model inorporated only one theoretial variablebut many unobservable regulatory proesses, somebelieved in strongly by our mirobiology olleagues.Thus, we had to develop disovery algorithms thatdealt diretly with these explanatory terms, ratherthan drawing on the more ommon methods for �ndingdesriptive knowledge that dominate the literatures onboth sienti� disovery and data mining.� Lesson 5. Sientists want omputational assistanerather than automated disovery systems .Throughout their history, mahine learning and datamining have emphasized automated methods for ex-trating knowledge from data. Business onsumers ofthis disovered knowledge would be perfetly happy ifsuh methods existed; they are about the e�etivenessof the knowledge, not its soure. In ontrast, sientists'



areers revolve around making their own disoveries.Naturally, they have little desire to see the proess au-tomated, though many would welome omputationaltools that would make their own data analyses moreprodutive. This suggests the need for interative dis-overy environments that assist the sientist in under-standing data while letting him remain in ontrol.1In response, we are developing two suh interativesystems to support our ollaborations in Earth si-ene and mirobiology. The �rst will provide toolsfor speifying, viewing, editing, evaluating, and revis-ing quantitative models omposed of numeri equa-tions, whereas the seond will o�er analogous abili-ties for qualitative ausal models. We are endeavor-ing to make eah environment as general as possible,but the types of sienti� models that arise in thesetwo domains seem di�erent enough to justify separatesystems. Whether sientists �nd these environmentsusable is an empirial question, but we are optimistithat, with user feedbak, they an beome useful aidesfor our ollaborators and other domain experts.4. Conluding RemarksThe above lessons point to some obvious onlusionsabout diretions for additional work in omputationalapproahes to sienti� disovery. First, researhersshould ontinue to fous on methods that generateknowledge in established sienti� formalisms ratherthan those popular in the data mining movement.However, we need more onern with model revision asopposed to model onstrution, sine this is more rele-vant to the inremental nature of siene. We also needinreased onern with methods that produe goodmodels from small data sets rather than large ones,whether through inorporation of domain knowledgeor statistial tehniques for variane redution, andwith methods that generate explanatory models withtheoretial terms to omplement existing work on de-sriptive disovery. Finally, the �eld should expand itse�orts on interative environments for omputationalsienti� disovery, rather than ontinuing its empha-sis on automated methods.These reommendations do not ontradit earlierlessons drawn from appliations of mahine learningand disovery methods. Developers should still thinkarefully about how to formulate their problems, engi-neer the representations, manipulate their data and al-gorithms, and interpret their results. But they do sug-gest that, despite some impressive suesses, we still1The data mining ommunity has also developed suhinterative environments, but they are designed for use byprofessional data miners, not those who use the knowledge.
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