
Lessons for the Computational Dis
overy of S
ienti�
 KnowledgePat Langley langley�isle.orgInstitute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, California 94306 USAAbstra
tIn this essay, I review some early analysesof ma
hine learning appli
ations, along withmore re
ent treatments of su

essful dis
ov-eries of s
ienti�
 knowledge. Although thetwo problem areas have mu
h in 
ommon, weuse re
ent work on 
omputational dis
overyin Earth s
ien
e and mi
robiology to illus-trate some important di�eren
es. The lessonsthat emerge from these e�orts run 
ounter tosome rhetori
al 
laims and assumptions thatare widespread in the ma
hine learning anddata mining 
ommunities.1. Histori
al Ba
kgroundAppli
ations of ma
hine learning date ba
k at least tothe early 1980s, when Donald Mi
hie and 
olleagues
hampioned use of de
ision-tree indu
tion on indus-trial problems. This innovative work led to a numberof �elded systems in whi
h the knowledge base was
onstru
ted by supervised learning methods. Largelyparallel developments o

urred within other indu
tionparadigms, espe
ially with neural networks and 
ase-based methods, throughout the 1980s.By the early 1990s, there were enough �elded systemsof this sort that I began to 
olle
t examples and talkwith developers about their experien
es. This led toan initial review (Langley, 1992) and a workshop on�elded appli
ations of ma
hine learning, whi
h YvesKodrato� and I organized in 1993, in 
onjun
tion withthe Tenth International Conferen
e on Ma
hine Learn-ing. These events o

urred before the �rst 
onferen
eon data mining and, indeed, before that term even be-
ame widely used.The 
ase studies and workshop led in turn to an arti
le(Langley & Simon, 1995) that reviewed many of theseappli
ations. The paper also drew some initial lessonsabout the fa
tors that in
uen
e whether su
h appliede�orts are su

essful. These in
luded:

� formulating the problem in terms amenable to ex-isting learning algorithms;� engineering the representation to make the learningtask tra
table;� 
olle
ting data and manipulating it to aid learning;� evaluating the learned knowledge in terms of itsbehavior and a

eptability to domain experts;� �elding the knowledge base in ways that lead to itsa

eptan
e and utilization.One key hypothesis was that making appropriate de-
isions about these issues was more 
ru
ial to su

essthan de
isions about whi
h learning algorithm to use.On
e they are handled, many indu
tion te
hniqueswould a
hieve positive results. The primary eviden
efor this 
laim was that few su

essful appli
ations in-volved development of new algorithms; almost invari-ably, they relied on 
reative use of existing methods.More re
ently, other authors (e.g., Fayyad, Piatetsky-Shapiro, & Smyth, 1996) have proposed similar anal-yses of stages that arise in knowledge dis
overy anddata mining. They have also emphasized the impor-tan
e of issues like problem formulation, representa-tion engineering, and data 
olle
tion. Unfortunately,most publi
ations in both ma
hine learning and datamining still fo
us on algorithm development, despitegeneral agreement that other issues play at least asimportant a role in pra
ti
al systems.2. Knowledge Dis
overy in S
ien
eComputational resear
h on the dis
overy of s
ienti�
knowledge has existed for well over three de
ades (e.g.,Simon, 1966). However, this area be
ame truly a
tiveonly in the late 1970s and early 1980s, along with thegenerally in
reased a
tivity in ma
hine learning, withwhi
h it was 
losely asso
iated. Early resear
h on 
om-putational dis
overy fo
used on repli
ating events fromthe history of s
ien
e and mathemati
s (e.g., Langley,1981; Lenat, 1978), whi
h was a reasonable startingpoint for the �eld.



However, more re
ent work has applied similar te
h-niques to dis
over new s
ienti�
 knowledge. A 
lear
riterion for su

ess here is whether the new knowl-edge is published in the refereed literature of the rele-vant s
ienti�
 �eld. This has o

urred in enough 
asesthat, a few years ago, I de
ided to analyze a number ofsu

essful appli
ations in an e�ort to understand theirsour
es of power (Langley, 2000). These in
luded re-sults in astronomy, biology, 
hemistry, e
ology, graphtheory, and metallurgy, and the forms of knowledgein
luded taxonomies, qualitative laws, numeri
 equa-tions, stru
tural models, and rea
tion pathways.To this end, I adapted the framework from our earliertreatment of ma
hine learning appli
ations. This anal-ysis revealed eviden
e that many of the same fa
torswere required to obtain positive results. In parti
ular,su

essful developers spent signi�
ant time in formu-lating (and reformulating) their problem, in engineer-ing the representation, and in 
olle
ting and manip-ulating the data. In this analysis, I added steps formanipulating the dis
overy algorithm (e.g., by alter-ing parameters), as well as for �ltering and interpret-ing the results. I also 
on
luded that future systemsshould support for these a
tivities expli
itly, ratherthan for
ing them to o

ur behind the s
enes.In summary, the initial lessons from s
ienti�
 appli
a-tions were quite similar to those from industrial ap-pli
ations of ma
hine learning. This was en
ourag-ing sin
e, in many 
ases, the dis
overed knowledge forthese s
ienti�
 domains often took a di�erent form,and, in some examples, the dis
overy pro
ess involvedabdu
tion rather than indu
tion. However, our ownre
ent e�orts in this arena have revealed signi�
antdi�eren
es between the two types of appli
ations, andalso suggest some quite di�erent lessons from thosealready mentioned.3. New Lessons for S
ienti�
 Dis
overyMost work on 
omputational s
ienti�
 dis
overy hasfo
used on modeling isolated phenomena in a 
on-strained setting. This strategy has been as pro�tablefor dis
overy resear
h as for the natural s
ien
es them-selves. However, there is a growing interest in systemss
ien
e, whi
h aims to model the behavior of 
omplexsystems in terms of intera
ting parts. Another di�er-en
e is that systems s
ien
e typi
ally has a

ess onlyto observational or 
orrelational data, rather than todata from 
ontrolled experiments. Our applied workhas addressed s
ienti�
 dis
overy in su
h 
ontexts.One e�ort 
on
erns global models of the Earth e
osys-tem. Existing models mat
h the observed behavior to

some extent, but Earth s
ientists would like to improvetheir predi
tive ability. Our 
ollaborators want to a
-
ount for 
hanges in the global produ
tion of 
arbonthrough vegetative growth, as well as the produ
tionand absorption of biogeni
 tra
e gases in the atmo-sphere. Hypothesized predi
tive variables in
lude sur-fa
e temperature, moisture levels, available sunlight,and properties of soil. Data for these variables 
omepartly from measurements 
olle
ted at ground stationsand partly from estimations based on satellite images.The resulting model should explain observed di�er-en
es in the behavioral variables as a fun
tion of thepredi
tive variables.The se
ond appli
ation involves models of gene regu-lation in mi
roorganisms. Biologists understand thebasi
 me
hanisms through whi
h DNA produ
es bio-
hemi
al behavior, but they have not yet mastered theregulatory networks that 
ontrol the degree to whi
hea
h gene is expressed. Our 
ollaborators are 
on-
erned espe
ially with determining how gene regula-tion 
ontrols the photosynthesis pro
ess in Cyanoba
-teria, an important type of phytoplankton. The avail-able data 
ome from experiments with wild type andmutant organisms grown in a 
hemostat and exposedto environmental stress su
h as bright light. 
DNAmi
roarrays measure the expression levels for 
ulturesamples at di�erent points in time for approximately300 genes believed to play a role in photosynthesis.The resulting model should explain both the observedexpression levels and high-level behavior, su
h as thefa
t that Cyanoba
teria blea
hes when exposed tobright light.Our experien
e with these two domains has suggested�ve lessons about fa
tors that in
uen
e the su

essof applied 
omputational work on s
ienti�
 dis
overy.We will see that some of the 
laims run 
ounter to pre-vailing wisdom in ma
hine learning and data mining.� Lesson 1. Traditional ma
hine learning notationsare not easily 
ommuni
ated to s
ientists .Most s
ien
es di�er from industries in that they have along history of representing their knowledge formally.Di�erent �elds have developed di�erent notations thatsuit their needs, in
luding stru
tural models in organi

hemistry, numeri
 equations in physi
s, and rea
tionnetworks in nu
lear astrophysi
s. However, few s
ien-ti�
 notations bear mu
h relation to the formalismspopular in ma
hine learning and data mining, whi
hhave mainly been invented by the learning resear
hersthemselves.We en
ountered this issue in both our s
ienti�
 ap-pli
ations. We found that Earth s
ientists state their



models as sets of algebrai
 and di�eren
e equations,and that our 
ollaborators were most 
omfortable withmethods that produ
ed knowledge in this format. Wehad some su

ess with regression rules (S
hwaba
her &Langley, 2001), sin
e they were familiar with pie
ewiselinear models, but this approa
h does not support thetheoreti
al terms that, as noted below, often appearin Earth s
ien
e models. A similar problem arose withour mi
robiology 
olleagues, whose models of gene reg-ulation took the form of qualitative 
ausal diagrams.Here we were able to adapt te
hniques for indu
ing lin-ear 
ausal models (Langley, Shrager, & Saito, in press),but we had to introdu
e a number of additional fea-tures before our results made biologi
al sense.� Lesson 2. S
ientists often have initial models thatshould in
uen
e the dis
overy pro
ess .S
ien
e is an inherently in
remental a
tivity. Althoughs
ientists sometimes dis
over isolated laws from data,development of 
oherent models for 
omplex systemstakes pla
e gradually and involves revising knowledgerather than dis
overing it from s
rat
h. However, fewte
hniques from ma
hine learning and data miningsupport knowledge revision. Moreover, the rhetori
of these �elds often dis
ourages the in
orporation ofexisting knowledge, sin
e this would presumably biasthe dis
overy system.In our two appli
ation e�orts, we found that our 
ol-laborators had initial models they hoped to improveupon, but not repla
e entirely, using 
omputationalte
hniques. For instan
e, the Earth s
ientists had anextensive model, stated as sets of equations, that par-tially a

ounted for the produ
tion of vegative 
arbonas a fun
tion of 
limate and other variables. Similarly,the mi
robiologists had a qualitative 
ausal model thathypothesized whi
h genes regulated others and howthis a
tivity in
uen
ed photosynthesis. Both groupsfelt their models might 
ontain ina

urate assumptionsand might omit important variables, but neither wasinterested in developing an entirely new model thatdid not build on the existing one.� Lesson 3. S
ienti�
 data are often rare and diÆ
ultto obtain rather than plentiful .The data mining 
ommunity assures us that data areabundant in both business and s
ienti�
 domains. In-deed, we have so mu
h data that our primary goalsshould be developing algorithms that 
an pro
ess themeÆ
iently and that 
an extra
t the last bit of knowl-edge from them. Su
h 
laims about the quantity ofdata may well hold for many business arenas, and thereare some s
ienti�
 
ontexts in whi
h many observa-tions are available, but the s
ienti�
 appli
ations we

have examined (Langley, 2000) suggest this is the ex-
eption rather than the rule.Our personal experien
e with s
ienti�
 domains is 
on-sistent with this view. For e
osystemmodeling, we hada

ess to some 14,000 observations for a few variablesthat 
ould be extra
ted from satellite images, but wehad only 303 data points for the other variables, whi
hwe needed to determine the relations of interest. Formodeling gene regulation, we had available thousandsof measurements, sin
e with DNA mi
roarrays one 
anestimate expression levels for many genes at the sametime. However, we had only 20 distin
t samples mea-sured over �ve time steps, whi
h provided very few
onstraints on 
andidate models. Thus, the frequentlyheard rhetori
 about the massive data sets generatedby satellite imagery and mi
roarray te
hnology is mis-leading at best.� Lesson 4. S
ientists want models that move beyonddes
ription to provide explanations of data.Des
riptive laws play an essential role in s
ien
e, mostespe
ially in the early stages of a �eld. However, asa dis
ipline advan
es, its s
ientists desire in
reasinglyto explain phenomena in terms of theoreti
al variables,entities, or pro
esses. This holds espe
ially for systemss
ien
e, whi
h attempts to a

ount for observations interms of intera
tions among hypothesized 
omponents.Explanations often make use of general 
on
epts orrelations that o

ur in di�erent models, and thus relyon domain knowledge for their generation.Explanatory a

ounts were important in both our ap-pli
ations. The e
osystem model we hoped to improveupon 
ontained more theoreti
al terms than observ-able variables, many of them 
on
eptually relevant toour Earth s
ien
e 
ollaborators. The initial photosyn-thesis model in
orporated only one theoreti
al variablebut many unobservable regulatory pro
esses, somebelieved in strongly by our mi
robiology 
olleagues.Thus, we had to develop dis
overy algorithms thatdealt dire
tly with these explanatory terms, ratherthan drawing on the more 
ommon methods for �ndingdes
riptive knowledge that dominate the literatures onboth s
ienti�
 dis
overy and data mining.� Lesson 5. S
ientists want 
omputational assistan
erather than automated dis
overy systems .Throughout their history, ma
hine learning and datamining have emphasized automated methods for ex-tra
ting knowledge from data. Business 
onsumers ofthis dis
overed knowledge would be perfe
tly happy ifsu
h methods existed; they 
are about the e�e
tivenessof the knowledge, not its sour
e. In 
ontrast, s
ientists'




areers revolve around making their own dis
overies.Naturally, they have little desire to see the pro
ess au-tomated, though many would wel
ome 
omputationaltools that would make their own data analyses moreprodu
tive. This suggests the need for intera
tive dis-
overy environments that assist the s
ientist in under-standing data while letting him remain in 
ontrol.1In response, we are developing two su
h intera
tivesystems to support our 
ollaborations in Earth s
i-en
e and mi
robiology. The �rst will provide toolsfor spe
ifying, viewing, editing, evaluating, and revis-ing quantitative models 
omposed of numeri
 equa-tions, whereas the se
ond will o�er analogous abili-ties for qualitative 
ausal models. We are endeavor-ing to make ea
h environment as general as possible,but the types of s
ienti�
 models that arise in thesetwo domains seem di�erent enough to justify separatesystems. Whether s
ientists �nd these environmentsusable is an empiri
al question, but we are optimisti
that, with user feedba
k, they 
an be
ome useful aidesfor our 
ollaborators and other domain experts.4. Con
luding RemarksThe above lessons point to some obvious 
on
lusionsabout dire
tions for additional work in 
omputationalapproa
hes to s
ienti�
 dis
overy. First, resear
hersshould 
ontinue to fo
us on methods that generateknowledge in established s
ienti�
 formalisms ratherthan those popular in the data mining movement.However, we need more 
on
ern with model revision asopposed to model 
onstru
tion, sin
e this is more rele-vant to the in
remental nature of s
ien
e. We also needin
reased 
on
ern with methods that produ
e goodmodels from small data sets rather than large ones,whether through in
orporation of domain knowledgeor statisti
al te
hniques for varian
e redu
tion, andwith methods that generate explanatory models withtheoreti
al terms to 
omplement existing work on de-s
riptive dis
overy. Finally, the �eld should expand itse�orts on intera
tive environments for 
omputationals
ienti�
 dis
overy, rather than 
ontinuing its empha-sis on automated methods.These re
ommendations do not 
ontradi
t earlierlessons drawn from appli
ations of ma
hine learningand dis
overy methods. Developers should still think
arefully about how to formulate their problems, engi-neer the representations, manipulate their data and al-gorithms, and interpret their results. But they do sug-gest that, despite some impressive su

esses, we still1The data mining 
ommunity has also developed su
hintera
tive environments, but they are designed for use byprofessional data miners, not those who use the knowledge.

require resear
h that will produ
e a broader base of
omputational methods for the dis
overy of s
ienti�
knowledge. This resear
h should address issues likerevising existing models, handling sparse data, gen-erating explanations, and supporting intera
tion withhuman s
ientists that appear 
ru
ial for the next gen-eration of appli
ations in this promising �eld.A
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