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Abstract

In this essay, I review some early analyses
of machine learning applications, along with
more recent treatments of successful discov-
eries of scientific knowledge. Although the
two problem areas have much in common, we
use recent work on computational discovery
in Earth science and microbiology to illus-
trate some important differences. The lessons
that emerge from these efforts run counter to
some rhetorical claims and assumptions that
are widespread in the machine learning and
data mining communities.

1. Historical Background

Applications of machine learning date back at least to
the early 1980s, when Donald Michie and colleagues
championed use of decision-tree induction on indus-
trial problems. This innovative work led to a number
of fielded systems in which the knowledge base was
constructed by supervised learning methods. Largely
parallel developments occurred within other induction
paradigms, especially with neural networks and case-
based methods, throughout the 1980s.

By the early 1990s, there were enough fielded systems
of this sort that I began to collect examples and talk
with developers about their experiences. This led to
an initial review (Langley, 1992) and a workshop on
fielded applications of machine learning, which Yves
Kodratoff and I organized in 1993, in conjunction with
the Tenth International Conference on Machine Learn-
ing. These events occurred before the first conference
on data mining and, indeed, before that term even be-
came widely used.

The case studies and workshop led in turn to an article
(Langley & Simon, 1995) that reviewed many of these
applications. The paper also drew some initial lessons
about the factors that influence whether such applied
efforts are successful. These included:

e formulating the problem in terms amenable to ex-
isting learning algorithms;

e engineering the representation to make the learning
task tractable;

e collecting data and manipulating it to aid learning;

e evaluating the learned knowledge in terms of its
behavior and acceptability to domain experts;

e fielding the knowledge base in ways that lead to its
acceptance and utilization.

One key hypothesis was that making appropriate de-
cisions about these issues was more crucial to success
than decisions about which learning algorithm to use.
Once they are handled, many induction techniques
would achieve positive results. The primary evidence
for this claim was that few successful applications in-
volved development of new algorithms; almost invari-
ably, they relied on creative use of existing methods.

More recently, other authors (e.g., Fayyad, Piatetsky-
Shapiro, & Smyth, 1996) have proposed similar anal-
yses of stages that arise in knowledge discovery and
data mining. They have also emphasized the impor-
tance of issues like problem formulation, representa-
tion engineering, and data collection. Unfortunately,
most publications in both machine learning and data
mining still focus on algorithm development, despite
general agreement that other issues play at least as
important a role in practical systems.

2. Knowledge Discovery in Science

Computational research on the discovery of scientific
knowledge has existed for well over three decades (e.g.,
Simon, 1966). However, this area became truly active
only in the late 1970s and early 1980s, along with the
generally increased activity in machine learning, with
which it was closely associated. Early research on com-
putational discovery focused on replicating events from
the history of science and mathematics (e.g., Langley,
1981; Lenat, 1978), which was a reasonable starting
point for the field.



However, more recent work has applied similar tech-
niques to discover new scientific knowledge. A clear
criterion for success here is whether the new knowl-
edge is published in the refereed literature of the rele-
vant scientific field. This has occurred in enough cases
that, a few years ago, I decided to analyze a number of
successful applications in an effort to understand their
sources of power (Langley, 2000). These included re-
sults in astronomy, biology, chemistry, ecology, graph
theory, and metallurgy, and the forms of knowledge
included taxonomies, qualitative laws, numeric equa-
tions, structural models, and reaction pathways.

To this end, T adapted the framework from our earlier
treatment of machine learning applications. This anal-
ysis revealed evidence that many of the same factors
were required to obtain positive results. In particular,
successful developers spent significant time in formu-
lating (and reformulating) their problem, in engineer-
ing the representation, and in collecting and manip-
ulating the data. In this analysis, I added steps for
manipulating the discovery algorithm (e.g., by alter-
ing parameters), as well as for filtering and interpret-
ing the results. I also concluded that future systems
should support for these activities explicitly, rather
than forcing them to occur behind the scenes.

In summary, the initial lessons from scientific applica-
tions were quite similar to those from industrial ap-
plications of machine learning. This was encourag-
ing since, in many cases, the discovered knowledge for
these scientific domains often took a different form,
and, in some examples, the discovery process involved
abduction rather than induction. However, our own
recent efforts in this arena have revealed significant
differences between the two types of applications, and
also suggest some quite different lessons from those
already mentioned.

3. New Lessons for Scientific Discovery

Most work on computational scientific discovery has
focused on modeling isolated phenomena in a con-
strained setting. This strategy has been as profitable
for discovery research as for the natural sciences them-
selves. However, there is a growing interest in systems
science, which aims to model the behavior of complex
systems in terms of interacting parts. Another differ-
ence is that systems science typically has access only
to observational or correlational data, rather than to
data from controlled experiments. Our applied work
has addressed scientific discovery in such contexts.

One effort concerns global models of the Earth ecosys-
tem. Existing models match the observed behavior to

some extent, but Earth scientists would like to improve
their predictive ability. Our collaborators want to ac-
count for changes in the global production of carbon
through vegetative growth, as well as the production
and absorption of biogenic trace gases in the atmo-
sphere. Hypothesized predictive variables include sur-
face temperature, moisture levels, available sunlight,
and properties of soil. Data for these variables come
partly from measurements collected at ground stations
and partly from estimations based on satellite images.
The resulting model should explain observed differ-
ences in the behavioral variables as a function of the
predictive variables.

The second application involves models of gene regu-
lation in microorganisms. Biologists understand the
basic mechanisms through which DNA produces bio-
chemical behavior, but they have not yet mastered the
regulatory networks that control the degree to which
each gene is expressed. Our collaborators are con-
cerned especially with determining how gene regula-
tion controls the photosynthesis process in Cyanobac-
teria, an important type of phytoplankton. The avail-
able data come from experiments with wild type and
mutant organisms grown in a chemostat and exposed
to environmental stress such as bright light. ¢cDNA
microarrays measure the expression levels for culture
samples at different points in time for approximately
300 genes believed to play a role in photosynthesis.
The resulting model should explain both the observed
expression levels and high-level behavior, such as the
fact that Cyanobacteria bleaches when exposed to
bright light.

Our experience with these two domains has suggested
five lessons about factors that influence the success
of applied computational work on scientific discovery.
We will see that some of the claims run counter to pre-
vailing wisdom in machine learning and data mining.

e Lesson 1. Traditional machine learning notations
are not easily communicated to scientists.

Most, sciences differ from industries in that they have a
long history of representing their knowledge formally.
Different fields have developed different notations that
suit their needs, including structural models in organic
chemistry, numeric equations in physics, and reaction
networks in nuclear astrophysics. However, few scien-
tific notations bear much relation to the formalisms
popular in machine learning and data mining, which
have mainly been invented by the learning researchers
themselves.

We encountered this issue in both our scientific ap-
plications. We found that Earth scientists state their



models as sets of algebraic and difference equations,
and that our collaborators were most comfortable with
methods that produced knowledge in this format. We
had some success with regression rules (Schwabacher &
Langley, 2001), since they were familiar with piecewise
linear models, but this approach does not support the
theoretical terms that, as noted below, often appear
in Earth science models. A similar problem arose with
our microbiology colleagues, whose models of gene reg-
ulation took the form of qualitative causal diagrams.
Here we were able to adapt techniques for inducing lin-
ear causal models (Langley, Shrager, & Saito, in press),
but we had to introduce a number of additional fea-
tures before our results made biological sense.

e Lesson 2. Scientists often have initial models that
should influence the discovery process.

Science is an inherently incremental activity. Although
scientists sometimes discover isolated laws from data,
development of coherent models for complex systems
takes place gradually and involves revising knowledge
rather than discovering it from scratch. However, few
techniques from machine learning and data mining
support knowledge revision. Moreover, the rhetoric
of these fields often discourages the incorporation of
existing knowledge, since this would presumably bias
the discovery system.

In our two application efforts, we found that our col-
laborators had initial models they hoped to improve
upon, but not replace entirely, using computational
techniques. For instance, the Earth scientists had an
extensive model, stated as sets of equations, that par-
tially accounted for the production of vegative carbon
as a function of climate and other variables. Similarly,
the microbiologists had a qualitative causal model that
hypothesized which genes regulated others and how
this activity influenced photosynthesis. Both groups
felt their models might contain inaccurate assumptions
and might omit important variables, but neither was
interested in developing an entirely new model that
did not build on the existing one.

e Lesson 3. Scientific data are often rare and difficult
to obtain rather than plentiful.

The data mining community assures us that data are
abundant in both business and scientific domains. In-
deed, we have so much data that our primary goals
should be developing algorithms that can process them
efficiently and that can extract the last bit of knowl-
edge from them. Such claims about the quantity of
data may well hold for many business arenas, and there
are some scientific contexts in which many observa-
tions are available, but the scientific applications we

have examined (Langley, 2000) suggest this is the ex-
ception rather than the rule.

Our personal experience with scientific domains is con-
sistent with this view. For ecosystem modeling, we had
access to some 14,000 observations for a few variables
that could be extracted from satellite images, but we
had only 303 data points for the other variables, which
we needed to determine the relations of interest. For
modeling gene regulation, we had available thousands
of measurements, since with DNA microarrays one can
estimate expression levels for many genes at the same
time. However, we had only 20 distinct samples mea-
sured over five time steps, which provided very few
constraints on candidate models. Thus, the frequently
heard rhetoric about the massive data sets generated
by satellite imagery and microarray technology is mis-
leading at best.

e Lesson 4. Scientists want models that move beyond
description to provide explanations of data.

Descriptive laws play an essential role in science, most
especially in the early stages of a field. However, as
a discipline advances, its scientists desire increasingly
to explain phenomena in terms of theoretical variables,
entities, or processes. This holds especially for systems
science, which attempts to account for observations in
terms of interactions among hypothesized components.
Explanations often make use of general concepts or
relations that occur in different models, and thus rely
on domain knowledge for their generation.

Explanatory accounts were important in both our ap-
plications. The ecosystem model we hoped to improve
upon contained more theoretical terms than observ-
able variables, many of them conceptually relevant to
our Earth science collaborators. The initial photosyn-
thesis model incorporated only one theoretical variable
but many unobservable regulatory processes, some
believed in strongly by our microbiology colleagues.
Thus, we had to develop discovery algorithms that
dealt directly with these explanatory terms, rather
than drawing on the more common methods for finding
descriptive knowledge that dominate the literatures on
both scientific discovery and data mining.

e [Lesson 5. Scientists want computational assistance
rather than automated discovery systems.

Throughout their history, machine learning and data
mining have emphasized automated methods for ex-
tracting knowledge from data. Business consumers of
this discovered knowledge would be perfectly happy if
such methods existed; they care about the effectiveness
of the knowledge, not its source. In contrast, scientists’



careers revolve around making their own discoveries.
Naturally, they have little desire to see the process au-
tomated, though many would welcome computational
tools that would make their own data analyses more
productive. This suggests the need for interactive dis-
covery environments that assist the scientist in under-
standing data while letting him remain in control.!

In response, we are developing two such interactive
systems to support our collaborations in Earth sci-
ence and microbiology. The first will provide tools
for specifying, viewing, editing, evaluating, and revis-
ing quantitative models composed of numeric equa-
tions, whereas the second will offer analogous abili-
ties for qualitative causal models. We are endeavor-
ing to make each environment as general as possible,
but the types of scientific models that arise in these
two domains seem different enough to justify separate
systems. Whether scientists find these environments
usable is an empirical question, but we are optimistic
that, with user feedback, they can become useful aides
for our collaborators and other domain experts.

4. Concluding Remarks

The above lessons point to some obvious conclusions
about directions for additional work in computational
approaches to scientific discovery. First, researchers
should continue to focus on methods that generate
knowledge in established scientific formalisms rather
than those popular in the data mining movement.
However, we need more concern with model revision as
opposed to model construction, since this is more rele-
vant to the incremental nature of science. We also need
increased concern with methods that produce good
models from small data sets rather than large ones,
whether through incorporation of domain knowledge
or statistical techniques for variance reduction, and
with methods that generate explanatory models with
theoretical terms to complement existing work on de-
scriptive discovery. Finally, the field should expand its
efforts on interactive environments for computational
scientific discovery, rather than continuing its empha-
sis on automated methods.

These recommendations do not contradict earlier
lessons drawn from applications of machine learning
and discovery methods. Developers should still think
carefully about how to formulate their problems, engi-
neer the representations, manipulate their data and al-
gorithms, and interpret their results. But they do sug-
gest that, despite some impressive successes, we still

!The data mining community has also developed such
interactive environments, but they are designed for use by
professional data miners, not those who use the knowledge.

require research that will produce a broader base of
computational methods for the discovery of scientific
knowledge. This research should address issues like
revising existing models, handling sparse data, gen-
erating explanations, and supporting interaction with
human scientists that appear crucial for the next gen-
eration of applications in this promising field.
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