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Sašo Džeroski1, Pat Langley2, and Ljupčo Todorovski1
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Abstract. This chapter introduces the field of computational scientific
discovery and provides a brief overview thereof. We first try to be more
specific about what scientific discovery is and also place it in the broader
context of the scientific enterprise. We discuss the components of scien-
tific behavior, that is, the knowledge structures that arise in science and
the processes that manipulate them. We give a brief historical review
of research in computational scientific discovery and discuss the lessons
learned, especially in relation to work in data mining that has recently
received substantial attention. Finally, we discuss the contents of the
book and how it fits in the overall framework of computational scientific
discovery.

1 Introduction

This book deals with computational approaches to scientific discovery. Research
on computational scientific discovery aims to develop computer systems which
produce results that, if a human scientist did the same, we would refer to as
discoveries. Of course, if we hope to develop computational methods for scientific
discovery, we must be more specific about the nature of such discoveries and how
they relate to the broader context of the scientific enterprise.

The term science refers both to scientific knowledge and the process of ac-
quiring such knowledge. It includes any systematic field of study that relates
to observed phenomena (as opposed to mathematics) and that involves claims
which can be tested empirically (as opposed to philosophy). We will attempt
to characterize science more fully later in the chapter, but one thing is clear:
Science is about knowledge.

Science is perhaps the most complex human intellectual activity, which makes
it difficult to describe. Shrager and Langley (1990) analyze it in terms of the
knowledge structures that scientists consider and the processes or activities they
use to transform them. Basic knowledge structures that arise in science include
observations, laws, and theories, and related activities include data collection,
law formation, and theory construction.
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There are two primary reasons why we might want to study scientific discovery
from a computational perspective:

– to understand how humans perform this intriguing activity, which belongs
to the realm of cognitive science; and

– to automate or assist in facets of the scientific process, which belongs to the
realm of artificial intelligence.

Science is a highly complex intellectual endeavor, and discovery is arguably
the most creative part of the scientific process. Thus, efforts to automate it
completely would rightfully be judged as audacious, but, as Simon (1966) noted,
one can view many kinds of scientific discovery as examples of problem solving
through heuristic search. Most research in automating scientific discovery has
focused on small, well-defined tasks that are amenable to such treatment and
that allow measurable progress.

Traditional accounts of science (Klemke et al., 1998) focus on the individ-
ual, who supposedly observes nature, hypothesizes laws or theories, and tests
them against new observations. Most computational models of scientific discov-
ery share this concern with individual behavior. However, science is almost al-
ways a collective activity that is conducted by interacting members of a scientific
community. The most fundamental demonstration of this fact is the emphasize
placed on communicating one’s findings to other researchers in journal articles
and conference presentations.

This emphasis on exchanging results makes it essential that scientific knowl-
edge be communicable. We will not attempt to define this term, but it seems
clear that contributions are more communicable if they are cast in established
formalisms and if they make contact with concepts that are familiar to most
researchers in the respective field of study. The research reported in this book
focuses on computational discovery of such communicable knowledge.

In the remainder of this chapter, we first examine more closely the scientific
method and its relation to scientific discovery. After this, we discuss the com-
ponents of scientific behavior, that is, the knowledge structures that arise in
science and the processes that manipulate them. We then give a brief historical
review of research in computational scientific discovery and discuss the lessons
learned, especially in relation to work in data mining that has recently received
substantial attention. Finally, we discuss the contents of the book and how it
fits in the overall framework of computational scientific discovery.

2 The Scientific Method and Scientific Discovery

The Merriam-Webster Dictionary (2003) defines science as: ”a) knowledge or a
system of knowledge covering general truths or the operation of general laws,
especially as obtained and tested through the scientific method, and b) such
knowledge or such a system of knowledge concerned with the physical world and
its phenomena”. The scientific method, in turn, is defined as the ”principles and
procedures for the systematic pursuit of knowledge involving the recognition
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and formulation of a problem, the collection of data through observation and
experiment, and the formulation and testing of hypotheses”.

While there is consensus that science revolves around knowledge, there are dif-
ferent views in the philosophy of science (Klemke et al., 1998; Achinstein, 2004)
about the nature of its content. The ‘causal realism’ position is that scientific
knowledge is ontological, in that it identifies entities in the world, their causal
powers, and the mechanisms through which they exert influence. In contrast, the
‘constructive empiricism’ tradition states that, scientific theories are objective,
testable, and predictive. We believe that both frameworks are correct, in that
they describe different facets of the truth.

The scientific method (Gower, 1996), dedicated to the systematic pursuit of
reliable knowledge, incorporates a number of steps. First we must ask some
meaningful question or identify a significant problem. We must next gather in-
formation relevant to the question, which might include existing scientific knowl-
edge or new observations. We then formulate a hypothesis that could plausibly
answer the question.

Next we must test this proposal by making observations and determining
whether they are consistent with the hypothesis’ predictions. When observations
are consistent with the hypothesis, they lend it support and we may consider
publishing it. If other scientists can reproduce our results, then the community
comes to consider it as reliable knowledge. In contrast, if the observations are
inconsistent, we should reject the hypothesis and either abandon it or, more
typically, modify it, at which point the testing process continues. Hypotheses can
take many different forms, including taxonomies, empirical laws, and explanatory
theories, but all of them can be evaluated by comparing their implications to
observed phenomena.

Most analyses of the scientific method come from philosophers of science, who
have focused mainly on the evaluation of hypotheses and largely ignored their
generation and revision. Unfortunately, what we refer to as discovery resides
in just these activities. Thus, although there is a large literature on normative
methods for making predictions from hypotheses, checking their consistency,
and determining whether they are valid, there are remarkably few treatments of
their production. Some (e.g., Popper (1959)) have even suggested that rational
accounts of the discovery process are impossible. A few philosophers (e.g., Darden
(2006); Hanson (1958); Lakatos (1976)) have gone against this trend and made
important contributions to the topic, but most efforts have come from artificial
intelligence and cognitive science.

Briefly, scientific discovery is the process by which a scientist creates or finds
some hitherto unknown knowledge, such as a class of objects, an empirical law,
or an explanatory theory. The knowledge in question may also be referred to as
a scientific discovery. An important aspect of many knowledge structures, such
as laws and theories, is their generality, in that they apply to many specific situ-
ations or many specific observations. We maintain that generality is an essential
feature of a meaningful discovery, as will become apparent in the next section
when we discuss types of scientific knowledge.
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A defining aspect of discovery is that the knowledge should be new and previ-
ously unknown. Naturally, one might ask ’new to whom?’. We take the position
that the knowledge should be unknown to the scientist in question with respect
to the observations and background knowledge available to him when he made
the discovery. This means that two or more scientists can make the same discov-
ery independently, sometimes years apart, which has indeed happened in practice
many times throughout the history of science. In this view, scientific discovery
concerns a change in an individual’s knowledge, which means that developing
computer systems that reproduce events from the history of science can still
provide important insights into the nature of discovery processes.

3 The Elements of Scientific Behavior

To describe scientific behavior, we follow Shrager and Langley (1990) and use as
basic components knowledge structures and the activities that transform them.
The former represent the raw materials and products of science, while the latter
concern the process of producing scientific knowledge. The account below mostly
follows the earlier treatise, but the definitions of several knowledge structures
and activities have changed, reflecting improvements in our understanding over
the past 15 years.

3.1 Scientific Knowledge Structures

Science is largely about understanding the world in which we live. To this end,
we gather information about the world. Observation is the primary means of
collecting this information, and observations are the primary input to the process
of scientific discovery.

Observations (or data) represent recordings of the environment made by sen-
sors or measuring instruments. Typically, the state of the environment varies
over time or under different conditions, and one makes recordings for these dif-
ferent states, where what constitutes a state depends on the object of scientific
study. We will refer to each of these recordings as an observation.

We can identify three important types of scientific knowledge – taxonomies,
laws, and theories – that constitute the major products of the scientific enter-
prise. The creation of new taxonomies, laws, and theories, as well as revising and
improving existing ones, make up the bulk of scientific discovery, making them
some of the key activities in science.

– Taxonomies define or describe concepts for a domain, along with special-
ization relations among them. A prototypical example is the taxonomy for
biological organisms, which are grouped into species, genera, families, and so
forth, but similar structures play important roles in particle physics, chem-
istry, astronomy, and many other sciences. Taxonomies specify the concepts
and terms used to state laws and theories.

– Laws summarize relations among observed variables, objects, or events. For
example, Black’s heat law states that mixing two substances produces a
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temperature increases in one substance and a decrease in the other until
they reach equilibrium. The law also describes a precise numeric relationship
between the initial and final temperatures. The first statement is qualitative
in form, whereas the latter is quantitative. Some laws may be quite general,
whereas others may be very specific.

– Theories are statements about the structures or processes that arise in the
environment. A theory is stated using terms from the domain’s taxonomy and
interconnects a set of laws into a unified theoretical account. For example,
Boyle’s law describes the inverse relation between the pressure and volume of
a gas, whereas Charles’ law states the direct relation between its temperature
and pressure. The kinetic theory of gases provides a unifying account for
both, explaining them in terms of Newtonian interactions among unobserved
molecules.

Note that all three kinds of knowledge are important and present in the body
of scientific knowledge. Different types of knowledge are generated at different
stages in the development of a scientific discipline. Taxonomies are generated
early in a field’s history, providing the basic concepts for the discipline. After this,
scientists formulate empirical laws based on their observations. Eventually, these
laws give rise to theories that provide a deeper understanding of the structures
and processes studied in the discipline.

A knowledge structure that a scientist has proposed, but that has not yet
been tested with respect to observations, is termed an hypothesis. Note that
taxonomies, laws, and theories can all have this status. As mentioned earlier,
hypotheses must be evaluated to determine whether they are consistent with
observations (and background knowledge). If it is consistent, we say that a hy-
pothesis has been corroborated and it comes to be viewed as scientific knowledge.
If an hypothesis is inconsistent with the evidence, then we either reject or modify
it, giving rise to a new hypothesis that is further tested and evaluated.

Background knowledge is knowledge about the environment separate from
that specifically under study. It typically includes previously generated scientific
knowledge in the domain of study. Such knowledge differs from theories or laws
at the hypothesis stage, in that the scientist regards it with relative certainty
rather than as the subject of active evaluation. Scientific knowledge begins its life
cycle as a hypothesis which (if corroborated) becomes background knowledge.

Besides the basic data and knowledge types considered above, several other
types of structures play important roles in science. These include models, pre-
dictions, and explanations. These occupy an intermediate position, as they are
derived from laws and theories and, as such, they are not primary products of
the scientific process.

– Models are special cases of laws and theories that apply to particular situa-
tions in the environment and only hold under certain environmental condi-
tions. These conditions specify the particular experimental or observational
setting, with the model indicating how the law or theory applies in the set-
ting. By applying laws and theories to a particular setting, models make it
possible to use these for making predictions.
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– Predictions represent expectations about the behavior of the environment
under specific conditions. In science, a model is typically used to make a
prediction, and then an actual observation is made of the behavior in the
environment. Postdictions are analogous to predictions, except that the sci-
entist generates them after making the observations he or she intends to
explain. A prediction/postdiction that is consistent with the respective ob-
servation is successful and lends support to the model (and the respective
law/theory) that produced it.

– Explanations are narratives that connect a theory to a law (or a model
to a prediction) by a chain of inferences appropriate to the field. In such
cases, we say that the theory explains the law. In some disciplines, inference
chains must be deductive or mathematical. If a law cannot be explained by a
theory (or a prediction by a model), we have an anomaly that brings either
the theory or the observation into question.

3.2 Scientific Activities

Scientific processes and activities are concerned with generating and manipulat-
ing scientific data and knowledge structures. Here we consider the processes and
activities in the same order as we discussed the structures that they generate in
the previous subsection.

The process of observation involves inspecting the environmental setting by
focusing an instrument, sometimes simply the agent’s senses, on that setting.
The result is a concrete description of the setting, expressed in terms from the
agent’s taxonomy and guided by the model of the setting. Since one can observe
many things in any given situation, the observer must select some aspects to
record and some to ignore.

As we have noted, scientific discovery is concerned with generating scientific
knowledge in the form of taxonomies, laws and theories. These can be generated
directly from observations (and possibly background knowledge), but, quite of-
ten, scientists modify an existing taxonomy, law, or theory to take into account
anomalous observations that it cannot handle.

– Taxonomy formation (and revision) involves the organization of observa-
tions into classes and subclasses, along with the definition of those classes.
This process may operate on, or take into account, an existing taxonomy or
background knowledge. For instance, early chemists organized certain chem-
icals into the classes of acids, alkalis, and salts to summarize regularities in
their taste and behavior. As time went on, they refined this taxonomy and
modified the definitions of each class.

– Inductive law formation (and revision) involves the generation of empirical
laws that cover observed data. The laws are stated using terms from the
agent’s taxonomy, and they are constrained by a model of the setting and
possibly by the scientist’s background knowledge. In some cases, the scientist
may generate an entirely new law; in others, he may modify or extend an
existing law.
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– Theory formation (and revision) stands in the same relation to empirical
laws as does law formation to data. Given one or more laws, this activity
generates a theory from which one can derive the laws for a given model by
explanation. Thus, a theory interconnects a set of laws into a unified account.
Theory revision responds to anomalous phenomena or laws that cannot be
explained by an existing theory, producing a revised theory that explains
the anomaly while maintaining the ability to cover existing laws.

While some scientific activities revolve around inductive reasoning, others
instead rely on deduction. Scientists typically derive predictions from laws or
models, and sometimes they even deduce laws from theoretical principles.

– In contrast to inductive law discovery from observations, deductive law for-
mation starts with a theory and uses an explanatory framework to deduce
both a law and an explanation of how that law follows from the theory.

– The prediction process takes a law, along with a particular setting, and pro-
duces a prediction about what one will observe in the setting. Typically,
a scientist derives a model from the law, taking into account the setting’s
particularities, and derives a prediction from the model. The analogous pro-
cess of postdiction takes place in cases where the scientist must account for
existing observations. Prediction and postdiction stand in the same relation
to each other as deductive law formation and explanation.

– The process of explanation connects a theory to a law (or a law to a pre-
diction) by specifying the deductive reasoning that derives the law from the
theory. In the context of evaluation, a successful explanation lends support
to the theory or law. If explanation fails, then an anomaly results that may
trigger a revision of the theory or law. Explanation and deductive law for-
mation are closely related, although explanation aims to account for a law
that is already known. Also, in some fields explanation relies on abductive
reasoning that leads the scientist to posit unobserved structures or processes,
rather than deduction from given premises.

To assess the validity of theories or laws, scientists compare their predic-
tions or postdictions with observations. This produces either consistent results
or anomalies, which may serve to stimulate further theory or law formation or
revision. This process is called evaluation and generally follows experimentation
and observation.

Experimentation involves experimental design and manipulation. Experimen-
tal design specifies settings in which the scientist will collect measurements.
Typically, he varies selected aspects of the environment (the independent vari-
ables) to determine their effect on other aspects (the dependent variables). He
then constructs a physical setting (this is called manipulation) that corresponds
to the desired environmental conditions and carries out the experiment.

Observation will typically follow or will be interleaved with systematic ex-
perimentation, in which case we call it active observation. However, there are
fields and phenomena where experimental control is difficult, and sometimes
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impossible. In such cases the scientist can still collect data to test his hypotheses
through passive observation.

4 History of Research on Computational Discovery of
Scientific Knowledge

4.1 A Brief Historical Account of Computational Scientific
Discovery

Now that we have considered the goals of research on computational discovery
and the elements it involves, we can provide some historical context for the
work reported in this volume. The idea that one might automate the discovery
of scientific knowledge has a long history, going back at least to the writings
of Francis Bacon (1620) and John Stuart Mill (1900). However, the modern
treatment of this task came from Herbert Simon, who proposed viewing scientific
discovery as an instance of heuristic problem solving. In this paradigm, one uses
mental operators to transform one knowledge state into another, invoking rules
of thumb to select from applicable operators, choose among candidate states, and
decide when one has found an acceptable solution. Newell et al. (1958) proposed
this framework as both a theory of human problem solving and an approach to
building computer programs with similar abilities.

Simon (1966) suggested that, despite the mystery normally attached to sci-
entific discovery, one might explain it in similar terms. He noted that scientific
theories can be viewed as knowledge states, and that mental operations can
transform them in response to observations. He even outlined an approach to
explaining creative phenomena such as scientific insight using these and other
established psychological mechanisms. Simon’s early papers on this topic only
outlined an approach to modeling discovery as problem-space search, but they
set a clear research agenda that is still being explored today.

The late 1970s saw two research efforts that transformed Simon’s early pro-
posals into running computer programs. The AM system (Lenat, 1978) redis-
covered a variety of concepts and conjectures in number theory, starting from
basic concepts and heuristics for combining them. The Bacon system (Langley,
1979; Langley et al., 1983) rediscovered a number of numeric laws from the his-
tory of physics and chemistry, starting from experimental data and heuristics for
detecting regularities in them. Despite many differences, both systems utilized
data-driven induction of descriptive laws and were demonstrated on historical
examples. Together, they provided the first compelling evidence that computa-
tional scientific discovery was actually possible. There is no question that these
early systems had many limitations, but they took the crucial first steps toward
understanding the discovery process.

The following decade saw a number of research teams build on and extend
the ideas developed in AM and Bacon. A volume edited by Shrager and Langley
(1990) includes representative work from this period that had previously been
scattered throughout the literature in different fields. This collection reported
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work on discovery of descriptive laws, but it also included chapters on new topics,
including the formation of explanatory models, hypothesis-driven experimental
design, and model revision. On reading this book, one gets the general impression
of an active research community exploring a variety of ideas that address different
facets of the complex endeavor we know as science.

The early work on computational discovery focused on reconstructions from
the history of science that were consistent with widely accepted theories of hu-
man cognition. This was an appropriate strategy, in that these examples let
researchers test their methods on relatively simple problems for which answers
were known, yet that were relevant because they had once been challenging to
human scientists. Such evaluations were legitimate because it was quite possible
to develop methods that failed on historical examples, and many approaches
were ruled out in this manner. However, critics often argued that the evidence
for computational discovery methods would be more compelling when they had
uncovered new scientific knowledge rather than rediscovered existing results.

The period from 1990 to 2000 produced a number of novel results along these
lines, a number of which have been reviewed by Valdez-Perez (1996) and Langley
(2000). These successes have involved a variety of scientific disciplines, including
astronomy, biology, chemistry, metallurgy, ecology, linguistics, and even mathe-
matics, and they run the gamut of discovery tasks, including the formation of
taxonomies, qualitative laws, numeric equations, structural models, and process
explanations. What they hold in common is that each led to the discovery of
new knowledge that was deemed significant enough to appear in the literature
of the relevant field, which is the usual measure of scientific success. The same
techniques have also proved successful in engineering disciplines, in which anal-
ogous modeling tasks also arise. These results provide clear evidence that our
computational methods are capable of making new discoveries, and thus respond
directly to early criticisms.

Another development during this period was the emergence of the data min-
ing movement, which held its first major conference in 1995. This paradigm has
emphasized the efficient induction of accurate predictive models from very large
data sets. Typical applications involved records of commercial transactions, but
some data-mining work has instead dealt with scientific domains. Although re-
search in this area is sometimes referred to as “knowledge discovery” (Fayyad
et al., 1996), the resulting models are generally encoded as decision trees, logical
rules, Bayesian networks, or other formalisms invented by computer scientists.
Thus, it contrasts with the smaller but older movement of computational scien-
tific discovery, which focuses on knowledge cast in formalisms used by practicing
scientists and which is less concerned with large data sets than with making the
best use of available observations.

4.2 Lessons Learned for the Computational Discovery of Scientific
Knowledge

Developments in both data mining and computational scientific discovery
make it clear that technologies for knowledge discovery are mature enough for
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application, but this does not mean there remains no need for additional research.
In another paper, Langley (2002) recounts some lessons that have emerged from
work in scientific domains, which we review here.

1. The output of a discovery system should be communicated easily to domain
scientists. This issue deserves mention because traditional notations devel-
oped by machine learning researchers, such as decision trees or Bayesian net-
works, differ substantially from formalisms typical to the natural sciences,
such as numeric equations and reaction pathways. Most work on computa-
tional scientific discovery attempts to generate knowledge in an established
notation, but communicability is a significant enough issue that it merits
special attention.

2. Discovery systems should take advantage of background knowledge to con-
strain their search. Most research in computational scientific discovery and
data mining emphasizes the construction of knowledge from scratch, whereas
human scientists often utilize their prior knowledge to make tasks tractable.
For instance, science is an incremental process that involves the gradual im-
provement and extension of previous knowledge, which suggests the need for
more work on methods for revising scientific laws, models, and theories. In
addition, scientists often use theoretical constraints to guide their construc-
tion of models, so more work on this topic is needed as well.

3. Computational methods for scientific discovery should be able to infer knowl-
edge from small data sets. Despite the rhetoric common in papers on data
mining, scientific data are often rare and difficult to obtain. This suggests
an increased focus on ways to reduce the variance of discovered models and
mitigate the tendency to overfit the data, as opposed to developing methods
for processing large data sets efficiently.

4. Discovery systems should produce models that move beyond description
to provide explanations of data. Early work focused on discovery of de-
scriptive regularities that summarized data, and most work on data mining
retains this focus. However, mature sciences are generally concerned with
explanatory accounts that incorporate theoretical variables, entities, or pro-
cesses, and we increased work on methods that support such deeper scientific
reasoning.

5. Computational discovery systems should support interaction with domain
scientists. Most discovery research has focused on automated systems, yet
few scientists want computers to replace them. Rather, they want computa-
tional tools that can assist them in constructing and revising their models.
To this end, we need more work on interactive systems that let users play
at least an equal role in the discovery process.

The chapters in this book respond directly to the first four of these issues,
which suggests that they are now receiving the attention they deserve from
researchers in the area. However, the fifth topic is not represented, and we hope
it will become a more active topic in the future.
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5 Overview of the Book

The chapters of the book present state-of-the-art approaches to computational
scientific discovery, representing recent progress in the area. These approaches
correspond to various scientific activities and deal with different scientific knowl-
edge structures. Note, however, that the main focus of this edited volume is on
inductive model formation from observed data. This is in contrast with a previ-
ous related book (Shrager & Langley, 1990) where most of the research presented
concerned the formation and revision of scientific theories and laws.

In the first part of the book, titled “Equation Discovery & Dynamic Systems
Identification”, the focus is on establishing models of dynamic systems, i.e., sys-
tems that change their state over time. The models are mostly based on equations,
in particular ordinary differential equations that represent a standard formalism
for modeling dynamic systems in many engineering and scientific areas. This is in
contrast to the bulk of previous research on equation discovery, which focuses on
algebraic equations. The first two chapters by Stole, Easley, and Bradley present
the Pret reasoning tool for nonlinear system identification, i.e., for solving the
task of establishing equation-based models of dynamic systems. Pret integrates
qualitative reasoning, numerical simulation, geometric reasoning, constraint rea-
soning, backward chaining, reasoning with abstraction levels, declarative meta-
control, and truth maintenance to identify a proper model structure and its
parameters for the modeling task at hand. Background knowledge for building
models guides the reasoning engine. While the first chapter focuses mainly on
general modeling knowledge that is valid in different scientific and engineering
domains, the focus of the second chapter is on representing and use of knowledge
specific to the domain of interest. The second chapter also presents Pret’s heuris-
tics for performing active observation of the modeled dynamic system.

The following chapter by Todorovski and Džeroski provides an overview of
equation discovery approaches to inducing models of dynamic systems. Equation
discovery deals with the task of automated discovery of quantitative laws, ex-
pressed in the form of equations, in collections of measured data. It has advanced
greatly from the early stage, when the focus was on reconstructing well-known
laws from scientific textbooks, and state-of-the-art approaches deal with estab-
lishing new laws and models from observed data. Among the most important
recent research directions in this area has been the use of domain knowledge in
addition to measured data in the equation discovery process. The chapter shows
how modeling knowledge specific to the domain at hand can be integrated in
the process of equation discovery for establishing and revising comprehensible
models of real-world dynamic systems.

The chapter by Washio and Motoda also presents an approach to formulating
equation-based models and laws from observed data. They use results from mea-
surement theory (in particular the Buckingam theorem) about how to properly
combine variables measured using different measurement units and scales. These
rules are used to constrain the space of candidate models and laws for the ob-
served phenomena. The second part of the chapter discusses the conditions that
equations have to satisfy in order to be considered communicable knowledge.
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The next two chapters deal with establishing models from Earth science data.
The first chapter by Saito and Langley presents an approach to revising existing
scientific models cast as sets of equations. The revision is guided by the goal of
reducing the model error on newly acquired data and allows for revising parame-
ter values, intrinsic properties, and functional forms used in the model equations.
The second chapter by Schwabacher et al. shows how standard machine learn-
ing methods can be used to induce models that are represented in formalisms
specific to the scientific fields of artificial intelligence and machine learning and
yet understandable and communicable to Earth scientists.

In the next chapter, Colton reviews research on computational discovery in
pure mathematics, where the focus is on theory and law formation. The author
puts special emphasis on his own work in the area of taxonomy formation in
mathematics, especially with respect to identifying important classes of numbers.

The last chapter in the first part of the book by Zhao et al. presents a spatial
aggregation method for identifying spatio-temporal objects in observations. The
method recursively aggregates data into objects and artifacts at higher levels of
abstraction. Although the presented method does not correspond directly to any
of the scientific activities presented in this introduction, it can be a very useful
tool for aiding the processes of taxonomy, law, and model formation.

While the first part of the book focuses on a class of methods and covers a vari-
ety of scientific fields and areas, the focus of the second part is on computational
scientific discovery in biomedicine and bioinformatics. The first three chapters
are in line with the first part of the book and continue with the theme of model
formation. However, the model representation formalisms change from equations
to formalisms specific to biomedicine, such as chemical reaction networks and
genetic pathways.

The chapter by Koza et al. deals with the problem of inducing chemical reac-
tion networks from observations of compounds concentration through time. The
authors show that chemical reaction networks can be transformed to (systems
of) ordinary differential equations. They present and evaluate a genetic pro-
gramming approach to inducing a restricted class of equations that correspond
to chemical reaction networks.

The chapter by Zupan et al. presents a reasoning system for inferring ge-
netic networks, i.e., networks of gene influences on one another and on biological
outcomes of interest. The system uses abduction and qualitative simulation to
transform observations into constraints that have to satisfied by a network that
would describe observed experimental data best. The following chapter by Gar-
rett et al. also represents genetic networks as qualitative models and uses quali-
tative simulation to match them against observed data. The authors present and
evaluate a method for inducing qualitative models from observational data that
is based on inductive logic programming.

The chapter by King et al. deals with the application of inductive logic pro-
gramming methods to the task of analyzing a complex bioinformatic database in
the domain of functional genomics. The authors discuss the importance of inte-
grating background knowledge in the process of scientific data analysis and show
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that inductive logic programming tools provide an appropriate environment for
the integration of knowledge and data in the process of scientific discovery. The
work presented in the chapter is the initial step that later lead to the development
of a robot scientist, capable of automatically performing a variety of scientific ac-
tivities. The robot scientist project is one of the most exciting recent developments
in the field of computational scientific discovery (King et al., 2004).

Finally, the last two chapters present approaches to forming hypotheses by
connecting disconnected scientific literatures on the same topic. Weber presents
a general model that, based on connections already published in the scientific lit-
erature between a symptom and a disease on one hand and connections between
an active substance (chemical compound) and a symptom on the other hand,
establishes a hypothesis that the chemical compound can be used for treatment
of the disease. The hypothesis is of interest, if the relation between the disease
and the compound has not been established before while evidences for the other
two relations are well presented in scientific literature. In the final chapter, Hris-
tovski et al. present an interactive system for literature discovery and apply it
to the task of identifying gene markers for a particular disease. The system uses
association rule mining to find relations between medical concepts from a bibli-
ographic database and uses them to discover new relations that have not been
reported in the medical literature yet.
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