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Abstract
Autonomous agents have many applications in familiar situations, but they also have great potential to help
us understand novel settings. In this paper, I propose a new challenge for the AI research community: de-
veloping embodied systems that not only explore new environments but that characterize them in scientific
terms. Illustrative examples include autonomous rovers on planetary surfaces and unmanned vehicles on
undersea missions. I review two relevant paradigms: robotic agents that explore unknown areas and com-
putational systems that discover scientific models. In each case, I specify the problem, identify component
functions, describe current abilities, and note remaining limitations. Finally, I discuss obstacles that the
community must overcome before it can develop integrated agents of exploration and discovery.

Background and Motivation

Recent years have seen substantial progress and corresponding excitement about autonomous agents for hu-
man environments, such as self-driving vehicles and delivery drones. However, there is also a need for agents
that operate in unfamiliar, remote settings to pursue more open-ended research activities. Examples include
robots that explore the surfaces of other planets, traverse deep ocean trenches, and navigate subterranean
caverns to understand environments that differ radically from our own. We need artifacts that follow in the
footsteps of early scientific explorers like Charles Darwin and Alfred Wallace, who not only collected sam-
ples on their extended voyages but who also noted relations among them and formed suggestive hypotheses
about the processes that produced them.

I will refer to such systems as agents of exploration and discovery, as they combine two facets of human
intelligence that have previously been studied separately. First is the ability to explore a novel environment
physically, visiting locations and mapping their features. Second is the capacity to pursue scientific research
in this context, collecting measurements, finding regularities, forming hypotheses, and gathering additional
data to test them. There has been some work along these lines with planetary rovers and unmanned under-
water vehicles, but they have mainly been teleoperated and they have focused on collection of data rather
than on their interpretation. In the longer term, we will need truly autonomous explorer scientists that, like
the one envisioned in Zelazny’s (1975) Home is the Hangman, visit environments humans cannot tolerate
and communicate discoveries to their developers in familiar and understandable terms.

The next section presents some motivating examples of such intelligent systems. I then examine the
two core abilities – exploring novel environments and characterizing them scientifically – in some detail. In
each case, I define the task addressed, identify component abilities, cite relevant work, and note the state
of the art. After this, I discuss integrated agents that combine these two capacities, posing a number of
open challenges that could drive future research in this area. The closing section reviews the key ideas and
encourages readers to tackle this important and audacious problem.
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Illustrative Examples

Consider a scenario in which a planetary rover lands on Venus to explore and understand its little-known
surface. The planet’s dense cloud cover means that, unlike Mars and the Moon, detailed satellite maps are
unavailable. The rover must explore the region and build informative maps while avoiding local hazards.
High temperature and pressure make the surface an unlikely host for life, but the geology and weather hold
great scientific interest. To this end, the rover would identify categories of rock formations and weather
patterns, induce laws that govern their behavior, and infer mechanisms (like erosion and tectonics) that
may have produced them. Much of the data would come from passive observation, with the rover selecting
promising locations for measurements, but it could also carry out focused experiments to determine which
chemical reactions are supported by the environment. The distance and time lag would make communication
with Earth difficult, so both exploration and discovery would be primarily autonomous.

Another scenario involves an unmanned underwater vehicle on a mission to observe and understand
phenomena on the ocean floor, including hydrothermal vents. The great depth means that only coarse maps
will be available in advance, so the agent must visit sites of interest to create detailed descriptions. These
will include information about temperature, pressure, salinity, and currents, as well as geological structures
and seafloor covers. Using passive sensors, the vehicle would estimate distributions of species, relating them
to conditions like the presence of heat sources and nutrients. The agent would identify food webs in different
areas and their connection to geological and ocean processes like volcanic activity. Another scientific target
would be chemical and biochemical reactions enabled by extreme pressures and temperatures on the ocean
floor. Again, communication would be very limited, so the agent would operate autonomously for extended
periods, carrying out much of its data analysis on board.

This does not limit the settings in which autonomous agents could combine exploration with discovery.
The integrated technology would be relevant to any remote physical environment in which humans will
find it difficult to survive, much less pursue systematic research. These include equatorial jungles, polar
regions, subterranean caverns, deep ocean trenches, dense forest canopies, active volcanic slopes, and airless
asteroids. In such challenging surroundings, robotic explorer scientists can serve as proxies that carry out
extended and comprehensive research missions.1

Agents of Exploration

Encounters with entirely new milieus have often led to scientific advances, but they are invariably associated
with careful descriptions of those environs. Because the autonomous agents envisioned will operate in unfa-
miliar settings, they must explore their locales in order to find content of scientific interest. We can specify
this exploration task as:

• Given: An environment to be traversed and described;

• Given: A mobile robot with appropriate sensors and effectors;

• Given: Procedures and criteria for using these sensors and effectors;

• Find: A descriptive map of the environment with features of interest.

This statement is abstract, but our aim is to provide a framework for discussion rather than any specific
solution. For instance, the generated map may be a simple grid or a more structured description with distinct
places and regions. Each location on the map may be annotated with qualitative content (e.g., water or land),

1This vision shares some key features with DARPA’s SAIL-ON program (Senator, 2019) for open-world learning, but the latter
differs in its emphasis on responding to changes in environments that are already familiar to agents.
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quantitative attributes (e.g., elevation, salinity), or other descriptors. Robotic map construction is a standard
problem that has been studied for decades, but we should review which facets are relevant to our agenda.

Facets of Robotic Exploration

Research on the robotic exploration of large-scale environments has a long history, but some distinctions
within the field are especially important to extended, remote missions:

• Teleoperation vs. autonomy. Early mobile robots were teleoperated by humans, and this continues for
many applications, including most instances of planetary exploration. Robotic autonomy has since be-
come far more common, but it occurs mainly in highly structured settings, such as cars that drive them-
selves on city streets and highways. Exploration of truly remote sites will require more nearly autonomous
agents that are out of touch and on their own for extended periods.

• Types of effectors. Mobile robots have been developed for a variety of environmental conditions. In addi-
tion to wheeled vehicles for driving, there has been work on legged movement over natural terrains, sub-
mersible vehicles for underwater traversal, and flying platforms for aerial operation. Different forms of
locomotion will be appropriate for different types of environments (e.g., caverns vs. underwater trenches),
but most alternatives will support the types of exploration that we desire.

• Types of sensors. The robotics community has created many devices for observing the agent’s environ-
ment, including sonar, lasers, LiDAR, stereo vision, and other range finders that let agents infer their
surrounding structures. These may be complemented by standard sensors for temperature, pressure, and
other ambient variables, as well as more sophisticated devices like mass spectrometers. Different devices
will be useful in disparate environments and for distinct scientific objectives.

Of course, researchers have also developed numerous robotic architectures that combine sensors and effec-
tors with internal processing to infer descriptions of agent surroundings and to respond accordingly. I will
not delve into issues of architectural design here, as many alternative frameworks can support the function-
ality that is needed for our purposes.

However, I should review the constituent abilities that are required for effective robot exploration as
revealed by previous work on the topic. These capacities include:

• Localization, which determines the agent’s position and orientation on a local or large-scale map. This
process involves comparing current sensor readings to those predicted by different hypotheses, ranking
candidates by their degree of match, and selecting one or more options from this set. In continuous local-
ization, the robot must update its position and orientation estimates repeatedly, as the platform traverses
the environment and collects new sensor readings.

• Target selection, which chooses one or more destinations that the robot should visit during its exploration
activities. This process involves evaluating candidate locations in terms of the agent’s objectives, select-
ing a subset of them based on these criteria, and deciding on their relative priorities. Decisions about
targets can change as the robot moves through an area and as additional information becomes available,
suggesting new candidates and changing the scores for old ones.

• Navigation, which generates a route that the agent can follow from its current location to one or more se-
lected targets. This process includes both high-level route planning, which often requires search through
a space of possible paths, and low-level obstacle avoidance, which typically draws on reactive control.
Decisions to change target locations can force the agent to revise its route plans, while dynamic environ-
ments can require rapid responses at the control level.
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• Mapping, which extends or refines the agent’s current map based on sensor readings that it collects during
traversal of planned routes or during visits to target destinations. This process can range from low-level
updates about the occupancy of grid cells to high-level structural changes about places and spatial re-
lations among them. Effective map construction relies on accurate localization of the robot for proper
estimates about its position and orientation.

Of course, mobile robots must also deal with maintenance issues, such as ensuring they have enough power
to continue their missions, but the four elements described above form the core mechanisms of exploration.
More generally, such agents must address the tradeoff between exploration and exploitation, although the
former will have higher priority in our scenarios than in many classic robotics applications.

State of Robotic Exploration

One might naturally ask whether these technical solutions are mature enough for robotic exploration on
extended, autonomous missions to distant environments. Fortunately, 50 years of research and development
have produced a suite of robust representations and mechanisms that have been tested extensively not only
in laboratories but also in many less constrained outdoor settings. The component tasks are well defined,
algorithms for addressing them are well understood, and integrated robotic systems have combined them
in effective ways. Textbooks (e.g., Stachniss, 2009; Sturges, 2015) and edited collections (e.g., Ishigami
& Yoshida, 2021) have documented many of the advances in this arena, some of them computational in
character and others due to new sensors and effectors.

The literature on robotic exploration is broad and extensive. Early work on the acquisition and use of
maps focused on this task in isolation. Probabilistic occupancy grids emerged as a key representation for
map construction (Moravec & Elfes, 1985), but they have also proved useful for localization (Yamauchi &
Langley, 1997). Later efforts combined these ideas into methods for simultaneous localization and mapping
(Yamauchi, Schultz, & Adams, 1998; Durrant-Whyte & Bailey, 2006), which have been strengthened by
techniques like particle filtering (Arulampalam et al., 2002) that deal with position uncertainty and by com-
bining topological and metric approaches (Beeson et al., 2010) to handle large spaces. Robotic platforms
can now acquire accurate, large-scale maps quite rapidly, and early work on indoor exploration has been
superseded by systems that operate in rich outdoor environments (Thrun & Montemerlo, 2005). These and
related techniques have been used in many different physical settings, including self-driving cars (Bresson
et al., 2017), underwater vehicles (Hidalgo & Braunl, 2015; Zhao et al., 2019), aerial drones (Li et al.,
2020), underground robots (Ebadi et al., 2020), and even planetary rovers (Geromichalos et al., 2020). The
last three topics are especially relevant for agents that must pursue extended remote missions.

Despite this progress, research on robotic exploration has two drawbacks that limit its usefulness for
scientific aims. The first is that the constructed maps emphasize voxel-level summaries of the environment
rather than more complex descriptions. These maps can incorporate values for multiple variables and even
detected objects, but they generally do not move beyond annotated grids to higher-level scientific accounts.
There has been some progress in “semantic mapping” (Kostavelis & Gasteratos, 2015; Rosinol et al., 2020)
that assigns labels to locations and infers spatial structures, but this area is far less advanced than basic
map construction and needs further development. The second is that current robotic platforms depend on
humans to specify many aspects of their missions, as they lack the ability to pursue open-ended scientific
exploration. The field needs additional work on generating and selecting high-level tasks, possibly borrowing
from the recent literature on goal reasoning (Aha, Cox, & Muñoz-Avila, 2013). We must extend the current
exploration paradigm to overcome both of these limitations before it can help turn our vision into reality.
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Agents of Discovery

Although exploratory agents are essential to our vision, creating detailed maps alone will not be sufficient.
We must combine robotic explorers with agents of discovery that note and explain regularities in the envi-
ronments they traverse. We can specify this task more explicitly as:

• Given: An environment to be understood scientifically;

• Given: High-level scientific objectives of the mission;

• Given: Observations taken from this environment;

• Find: Hypotheses and models stated in scientific formalisms;

• Find: New observations relevant to testing these claims.

This statement is similar to those for machine learning and data mining, but differs in its emphasis on
generating models in scientific formalisms (Džeroski, Langley, & Todorovski, 2007), rather than notations
invented by computational researchers. These differ for different fields – equations in physics, reaction path-
ways in chemistry, food webs in ecology – but they ensure that findings are accessible to human scientists.

Facets of Scientific Discovery

Historians of science study many different aspects of the research process, but they make three high-level
distinctions among activities that are especially important for devising agents of discovery:

• Observation vs. experimentation. Some scientific activities focus on the collection and analysis of samples
available in the environment, while others emphasize controlled studies that determine some variables’
effects on others.2 Certain fields, such as astronomy, geology, and meteorology, commonly rely on ob-
servational studies because they often lack experimental control. Others, such as physics, chemistry, and
biology, began as primarily observational but have shifted almost entirely to experimentation as they have
matured. The exploratory character of the envisioned agents means they will be largely observational, al-
though they must still decide which data to collect and where to take measurements.

• Qualitative vs. quantitative accounts. Although mature scientific fields are usually associated with nu-
meric laws and models, they are typically preceded by the discovery of qualitative relations that provide
context for them. This ordering may seem counterintuitive to readers who are familiar with recent results
in statistical learning, which often cast problems in terms of regression. However, the precedence of qual-
itative over quantitative discovery has been well documented in the history of science (Mason, 1962).
Chemists detect the existence of particular reactions before they determine details about their proportions
and rates, and ecologists establish food webs before they identify numeric functions that control popula-
tions. Our agents should engage in both forms of scientific inquiry, but they will often need to develop
qualitative accounts before they attempt to quantify them.

• Normal vs. revolutionary science. Many popular accounts of discovery focus on rare breakthroughs like
universal gravitation or evolution, but typical activities involve what Kuhn (1962) has called normal
science. Here researchers adopt shared assumptions and goals, and they aim at filling in a framework’s
details rather than replacing it. Such paradigmatic frameworks provide concepts and constraints that serve
to canalize the scientific process, making it tractable and enabling incremental progress. For this reason,
2This distinction is not common in AI or other engineering disciplines because researchers and developers have experimental

control over their artifacts (Cohen, 1995; Kibler & Langley, 1988). However, it is widely accepted among historians and philoso-
phers of science, who also study fields that cannot run controlled experiments.
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agents that operate in novel environs should favor normal science, relying on established theories of
hydrology, chemistry, and ecology to guide their discoveries, although some findings (e.g., extremophiles
near thermal vents) may border on revolutionary.

Discovery systems should also mimic the incremental and cumulative character of human science. With a
few exceptions like astronomy, the latter seldom acquires and processes samples in large batches. Rather,
it accumulates observations a few at a time, then uses them to extend and revise existing laws and models.
Our agents of discovery should follow a similar strategy.

The history of science also shows that the discovery process occurs in identifiable stages, with later
forms typically building on earlier ones (Mason, 1962). These steps include:

• Taxonomy formation, which organizes entities with similar characteristics into classes and subclasses,
often in a hierarchy. For example, chemistry identifies different types of substances, geology specifies
rock categories, and biology distinguishes among life forms. Such ontologies define the basic terms that
can appear in other scientific statements. They are generally stable, but they are extended and occasionally
restructured in response to new observations.

• Descriptive law induction, which infers qualitative relations among classes of entities or numeric equa-
tions that connect variables. These summarize regularities in the environment using terms from the taxon-
omy. For instance, chemistry specifies which substances react to form others, but also states the relative
masses involved in each reaction. Similarly, the specific heat law declares that two objects will approach
equilibrium, but also how final temperature relates to initial temperatures, mass, and specific heat.

• Explanatory model construction, which posits unobserved structures or processes that, if present, would
account for observations or laws that summarize them. These hypothesize the underlying reasons for ob-
served regularities, typically stated in terms of familiar concepts.3 For example, the atomic theory asserts
that physical substances comprise tiny molecules, with different types made from different elements. The
germ theory states that diseases result from microorganisms that spread throughout the population.

Autonomous discovery agents would engage in all of these scientific activities, each of which can involve
detecting and responding to anomalous observations. They would identify new types of rock formations
and organisms, form generalizations about when these entities co-occur and how they interact, and generate
explanations of these phenomena in terms of structures and processes consistent with existing physical,
chemical, geological, and biological theories.

State of Computational Scientific Discovery

Some readers may question whether our understanding of the discovery process is mature enough for au-
tonomous application to new environments. However, over 40 years of research has produced a substantial
literature on computational discovery using heuristic search, guided by data, through a space of models
stated in established scientific formalisms. Edited volumes and special issues by Shrager and Langley (1990),
Sleeman, Corruble, and Valdés-Pérez (2000), Džeroski and Todorovski (2007), and Addis et al. (2019) have
documented intellectual advances, and Langley (2000) has reviewed efforts that produced publications in
refereed journals devoted to a variety of natural sciences.

Early research in the area focused on induction of numeric equations (Langley, 1981; Langley & Zytkow,
1989), sometimes referred to as equation discovery (Todorovski, 2011). Initial results involved examples

3Some causal models (e.g., Spirtes, Glymour, & Scheines, 1993) have an explanatory flavor, but they often relate observed
variables and make no reference to domain knowledge, giving them an intermediate status.
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from the history of physics and chemistry (Langley et al., 1987), but later endeavors have produced novel
results in metallurgy (Mitchell et al., 1997), ecology (Todorovski et al., 1998, 2003), and other scientific
fields. Work on the problem has continued unabated, with more recent efforts examining classical physics
(Wu & Tegmark, 2019), fluid dynamics (Bruntona et al., 2016; Raissi & Karniadakis, 2018), visual atten-
tion (Lane et al., 2016), and macroeconomics (Georgiev & Kazakov, 2015). A parallel line of research has
focused on inducing qualitative relations, leading to new results in medicine (King & Srinivasan, 1996),
biochemistry (Finn et al., 1998), number theory (Colton et al., 2000), and other disciplines. Unlike many
approaches to machine induction, these systems do not require large training sets to produce useful results.

Analysis of techniques for discovery of descriptive laws clarify why the field has made such progress
and why it may be ready for use in autonomous missions. As Langley, Shrager, and Saito (2002) and oth-
ers have argued, we can always specify a space of possible descriptive laws and search this space to find
relations that fit observations. This search need not be blind, but can be guided by heuristics that combine
regularities in the data, known domain constraints, and high-level criteria like parsimony. This lets one au-
tomate search of large spaces of hypotheses that cannot be traversed exhaustively. Naturally, this approach
depends on some framework to define the space, but we are concerned here with normal science that op-
erates within an established paradigm. When controlled experimentation is possible, it provides additional
power by decomposing the discovery task into subtasks to further aid tractability (Langley, 1981). Similar
techniques have produced many successes in the data-mining community; the key difference lies in the use
of established scientific formalisms (e.g., numeric equations) to ensure that results are interpretable.

Another line of research has addressed the construction of deeper models that explain phenomena in
terms of hypothesized structures or processes. Some early results dealt with historical reconstructions from
chemistry (Langley et al., 1987), biochemistry (Kulkarni & Simon, 1990), and particle physics (Kocabas,
1991). However, predating these efforts was the DENDRAL project (Lindsay et al., 1980), which con-
structed structural models of molecules to explain mass spectroscopy measurements and which led to many
publications in the organic chemistry literature.4 Later research in a similar spirit has produced refereed
papers that reported new findings about reaction pathways in catalytic chemistry (Valdés-Pérez, 1994) and
metabolic regulation (King et al., 2004, 2009). More recently, the ACE system (Anderson et al., 2014), which
infers process models that explain rock nuclide densities, has been widely used by geologists. Some work
has combined the two themes by embedding equation discovery within construction of explanatory models
(e.g., Bridewell et al., 2008). This hybrid approach has been applied to aquatic ecosystems (Atanasova et al.,
2008) and epidemiology (Tanevski et al., 2016). The notion of explanation here is quite different from that
adopted by recent AI research on the behavior of learned classifiers or policies. The aim is not to elucidate
internal decisions but rather to explain external phenomena in terms of familiar concepts (Langley, 2020).

These successes suggest that computational discovery of explanatory models also holds promise for use
in remote settings, where it could propose accounts of observed phenomena that move beyond descriptive
summaries. Like mechanisms for law discovery, methods for constructing explanatory models carry out
constrained search through a space of candidates. The main difference is their introduction of theoretical
entities or processes from which one can derive a set of observed phenomena, which may themselves be
descriptive laws. Such models invariably draw on background knowledge and thus fall within an established
paradigm, although this knowledge is often generic and thus requires little domain engineering. For example,
Adams and Le Verrier attempted to explain deviations in the orbit of Uranus by positing an unobserved planet

4Apparently, Joshua Lederberg’s enthusiasm for the robotic hunt for Martian life was a major inspiration for DENDRAL. An
early report by McCarthy (1964) on the computer-controlled exploration of Mars confirms early AI excitement about this idea.
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Figure 1: The synergistic activities of exploration and discovery. The small boxes itemize the component
processes of each activity and the large boxes show the structures they produce. This diagram highlights
how the content generated by exploration and discovery inform the complementary process, rather than the
influence of spatial and scientific data, which play equally important roles.

while operating within Newton’s theory of gravitation. Similarly, based on theories of elementary particle
interactions, astrophysicists hypothesized reaction pathways to explain the relative abundance of elements
in stars. Accounts of this sort are more complex than taxonomies or descriptive laws, but their construction
is tractable because search is constrained by theoretical knowledge.

Despite these encouraging signs, research on computational scientific discovery still has some important
drawbacks. One has been its focus on a single facet of the discovery process – taxonomy formation, law
induction, or model construction – while our agents must integrate these abilities. Attempts to combine
these different elements of science have been rare (e.g., Nordhausen & Langley, 1993) and have produced
only conceptual demonstrations. Another has been an emphasis on isolated discoveries, rather than the
extended research programs our systems must pursue. There have been some efforts along the latter lines
(e.g., Kulkarni & Simon, 1990; King et al., 2004), but they have been few and far between. Finally, previous
work has assumed that observational data has already been collected or that experimental data comes from
a fixed laboratory. In contrast, our agent must seek out phenomena in new locations that it selects itself,
which raises a number of challenges. We must extend techniques for computational scientific discovery to
overcome these limitations before we can embed them in autonomous agents on remote missions.5

Joining Exploration with Discovery
I have argued that there is a need for autonomous agents that carry out exploration and discovery in new en-
vironments, and also that both research areas are reasonably mature. However, it is not enough to have both
functionalities; they must also interact in productive ways. We desire a closed-loop framework in which ex-
ploration, like that depicted in Figure 1, leads to new scientific discoveries and in which these discoveries aid

5I have not documented work on taxonomy formation and clustering, which has been an active area since the 1960s, but which
has also been largely separate from the efforts on scientific discovery.
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exploration. This is similar in spirit to experimental science, but identifying and navigating to new locations
involves more than carrying out systematic studies in a laboratory. Let us consider some challenges that the
AI research community must address before it can create reliable agents of exploration and discovery.

• Survival. Obviously, the autonomous agent must survive while exploring the new environment.6 Thus,
it should be cautious in moving to new locations and mitigate risk by taking routes it believes are safe.
For instance, it might note local fauna follow paths that circumvent rock ledges where dangerous preda-
tors might lurk. Similarly, it might rely on generic knowledge to avoid marsh-like regions and stay on
apparently firm ground. The agent might also devote its energies to making general observations, rather
than spending them on focused studies of specific phenomena. These strategies all rely on knowledge-
based reasoning, but they involve very abstract heuristics about responding to possible sources of danger,
making them appropriate to a broad range of unfamiliar environments.

• Environmental protection. To the extent possible, the agent should avoid damaging or contaminating the
environment it explores and studies. Thus, it might favor paths that bypass small or fragile structures, and
it might prefer to observe organisms from a distance, at least until it understands their behavior. There
are ethical arguments against interfering with untouched ecosystems or even crystalline formations, but
there are also good scientific reasons for minimizing impact on any complex system under study. Any
physical agent must interact with the environment it explores, but limiting contacts can extend mission
time and avoid contaminating results. Reasoning over generic knowledge can play a role here as well,
with an emphasis on survival of the environment rather than that of the agent itself.

• Scientific interest. When the autonomous system makes decisions about where to explore, it should take
scientific goals into account. This means selecting locations that hold greater potential for novel discov-
eries and avoiding ones that are well understood. For instance, if the agent observes from afar a seafloor
site with distinctive cover, it might favor this choice over ones similar to those already studied. Identi-
fying interesting results has also been an important theme in data mining (Geng & Hamilton, 2006), but
most work has assumed batch processing of existing data sets. The incremental character of exploratory
discovery will let the agent compare new phenomena with current models and detect anomalies that
merit further study. This strategy will help guard against confirmation bias and support the cumulative
construction of scientific models with ever broader coverage.

• Focusing attention. In some environments, the agent must deal with many new entities, which means it
must allocate limited attention. This holds even if an agent has an extensive sensor suite that processes
its surroundings in parallel, as it must still approach objects to collect samples and run experiments
sequentially. Here the agent might use heuristics similar to those used to select target locations, such as
attending to anomalous entities or events that are likely to provide more information. For instance, when
collecting rock samples, it might prefer objects that it cannot readily explain with current models, much
as surprising results shifted Krebs’ attention during his discovery of the urea cycle (Kulkarni & Simon,
1990). More generally, the agent must set research goals that are consistent with its high-level mission
objectives, then formulate and execute concrete plans to achieve them.

• Condensing results. Because the autonomous agent will operate at remote sites with extremely limited
communication bandwidth, it cannot simply beam data to home base for processing. Instead, it must fil-
ter or summarize the information it collects substantially and convey only the most interesting results
(Wagstaff et al., 2005). Fortunately, scientific taxonomies, laws, and models, along with their fit to mea-
6This includes monitoring its own health and adapting when problems arise, a topic that I do not have space to discuss here.
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surements, offer natural ways to codify the observed regularities in familiar notations that researchers
will understand. This includes explanatory accounts, which can often be stated in compact forms that the
agent can transmit despite low bandwidth. The most important results will be those that diverge from
previous models, suggesting a role for information theory in deciding what to communicate.

• Increasing effectiveness. The autonomous system should also take advantage of the knowledge it has
discovered to make it a more effective explorer. For instance, the agent might use inferred characteristics
of ground cover to follow more efficient paths, draw on regularities in cloud dynamics to make recharging
plans, or invoke newfound chemical reactions to replenish trace minerals needed for its operation. As
environmental understanding increases, the agent would get better at the localization, navigation, and
maintenance tasks that underlie the activity of extended exploration. This improvement would in turn
speed the process of data collection and better support the scientific mission.

• Collaborating with humans. I have focused here on autonomous exploration and discovery, but collabo-
ration between intelligent agents and humans also holds great promise, especially in undersea and subter-
ranean settings where two-way communication is occasionally possible. The exploration side has much in
common with classic scenarios for human-robot interaction (Goodrich & Schultz, 2007), where a remote
agent explores and manipulates its environment while a person provides high-level goals and commands.
Collaborative discovery can operate in a similar way, where a human scientist selects intriguing phenom-
ena or hypotheses that provide constraints on the AI system’s search (e.g., Bridewell et al., 2006). The
ability to consult humans, even rarely, would mitigate the challenges of survival, environmental protec-
tion, and attention, making agents for exploration and discovery practical in the near term.

The research community must address these issues before it can deploy autonomous agents to study distant
environments. We should also examine multi-agent teams of scientist explorers, which can borrow heavily
from earlier results on communication and coordination of distributed systems (Weiss, 1999). The ability to
share maps, data, and hypotheses will certainly help with some challenges outlined above.

Finally, we should devise methods for testing and evaluating the prototype agents that we design and
develop. Simulated environments with known landscapes and laws can play a key role, as they could measure
the ability to combine exploration with scientific inquiry on extended missions. After this, we can deposit
agents in terrestrial environments that are reasonably well understood, such as equatorial rainforests and
the Antarctic Peninsula, which will let us test them in more realistic situations. Finally, we can embed our
prototypes in uncharted local settings, such as littoral seabeds and underground caverns, that would still
allow frequent communication and, if necessary, software updates and mechanical repairs.

Closing Remarks

In this paper, I proposed an audacious new challenge for the AI research community: developing autonomous
robotic agents that carry out scientific research in remote and novel environments. I presented motivating
scenarios that involved extended missions to distant planetary surfaces and to deep ocean floors, although
the idea applies equally well to many other physical settings. Later sections examined two necessary com-
ponent abilities – exploration and discovery – in terms of the tasks they address, the constituent processes
that support them, and the previous progress in each arena. We saw that both subfields are technologically
mature and have contributed to many successful applications, indicating that they could support our vision.
However, each paradigm also has some remaining limitations that deserve further attention and effort from
relevant researchers and developers.
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In addition, I examined some technical hurdles that must be overcome to develop and deploy systems
that integrate robotic exploration with scientific discovery. These challenges include surviving in unfamiliar
and possibly dangerous surroundings, protecting the environment being explored, selecting sites of scien-
tific interest to visit, focusing agent attention on promising phenomena, condensing scientific results for
efficient communication, and using these findings to increase agent effectiveness. Although I emphasized
autonomous operation, I also noted the potential for human-system collaboration when some remote inter-
action is possible. Progress on these issues should help the research community to design, implement, and
demonstrate the first agents for exploration and discovery in remote and unfamiliar environments. In the
longer term, this will lead to wayfaring robotic scientists that can follow in the footsteps of Charles Darwin
and Alfred Wallace, whose journeys to distant lands resulted in deep insights about the evolution of life.

In closing, I should note that the challenge posed in this paper follows the same spirit that moved the ear-
liest efforts on artificial intelligence. In other words, it identifies a complex cognitive activity that currently
only humans exhibit, but that it seems possible, in principle, to replicate. The first stage is to analyze this
capability’s components, identify mental structures that can support them, and propose mechanisms that can
mimic them. The next step is to consider interactions among the elements and how they can combine to pro-
duce the target functionality. This analysis and design stage leads to the implementation of a computational
artifact that demonstrates the intellectual behavior on compelling scenarios. Experimental comparisons, or-
ganized competitions, or even grand challenges like the one Kitano (2016) has proposed are not appropriate
at this stage, as developing even one prototype that exemplifies our vision of a robotic explorer scientist
should prove daunting enough for the AI research community.

Acknowledgements

The analysis reported in this paper was supported by the Office of the Under Secretary of Defense (Research
and Engineering) and by the Institute for Defense Analyses, which are not responsible for its contents. I
thank Daniel Shapiro, Jason Stack, and the reviewers for their constructive comments on earlier drafts.

References

Addis, M., Lane, P. C. R., Sozou, P. D., & Gobet, F. (Eds.). (2019). Scientific discovery in the social sciences.
Cham, Switzerland: Springer.
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Valdés-Pérez, R. E. (1994). Human/computer interactive elucidation of reaction mechanisms: Application

to catalyzed hydrogenolysis of ethane. Catalysis Letters, 28, 79–87.
Wagstaff, K. L., Castano, R.,, Chien, S., Ivanov, A. B., Titus, T. N. (2005). An onboard data analysis method

to track the seasonal polar caps on Mars. Proceedings of the International Symposium on Artificial
Intelligence, Robotics, and Automation in Space (pp. 265–272). Munich, Germany.

Weiss, G. (Ed.) (1999). Multiagent systems: A modern approach to distributed artificial intelligence. Cam-
bridge, MA: MIT Press.

Wu, T., & Tegmark, M. (2019). Toward an artificial intelligence physicist for unsupervised learning. Physical
Review E, 100, 033311.

Yamauchi, B., & Langley, P. (1997). Place recognition in dynamic environments. Journal of Robotic Sys-
tems, 14, 107–120.

Yamauchi, B., Schultz, A., & Adams, W. (1998). Mobile robot exploration and map-building with continu-
ous localization. Proceedings of the 1998 IEEE International Conference on Robotics and Automation
(pp. 3715–3720). Leuven, Belgium.

Zelazny, R. (November, 1975). Home is the Hangman. Analog Science Fiction/Science Fact. New York:
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