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Abstract

This paper poses the challenge of developing and evaluating
integrated systems for computational scientific discovery. We
note some distinguishing characteristics of discovery tasks,
examine eight component abilities, review previous successes
at partial integration, and consider hurdles the Al research
community must leap to transform the vision for integrated
discovery into reality. In closing, we discuss promising sci-
entific domains in which to test such computational artifacts.

Introduction

The scientific enterprise is one of humanity’s most impres-
sive achievements and scientific discovery is the engine that
drives it forward. The Al community has long recognized
the latter’s importance, as reflected by active research in
the area for over four decades. Simon (1966) introduced
the idea of automating the discovery process and the first
notable successes emerged during the 1970s, with systems
like DENDRAL (Lindsay et al., 1980) and Bacon (Lang-
ley, 1981). Progress continued through the 1980s and 1990s,
with researchers addressing an ever broader range of scien-
tific problems in fields as diverse as astrophysics, biology,
chemistry, ecology, particle physics, and the social sciences.
By the turn of the century, there were numerous cases in
which computer-enabled discoveries had led to publication
in the refereed scientific literature (Langley, 2000).

Computational scientific discovery has become even more
active in recent years, with researchers from applied math-
ematics, physics, mechanical engineering, and other disci-
plines joining the Al scientists who launched the movement.
Early approaches relied primarily on symbolic processing
and search through spaces of discrete structures, while many
later efforts have turned to statistical techniques and neural
networks that carry out parametric search. What these two
groups have in common is their commitment to develop-
ing general mechanisms that reproduce the full depth and
breadth of human discovery. Recurring interest in this topic
has been reflected by at least 12 symposia and workshops
since 1989 and by multiple edited volumes (Shrager and
Langley, 1990; DZeroski and Todorovski, 2007; Addis et al.,
2019) that have reported progress in the area.
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However, despite this continuing activity and steady pro-
gress, research has focused almost exclusively on the indi-
vidual components of discovery, with little attention to their
coordination. A fuller understanding of science must await
Al systems that integrate these elements, as must computa-
tional artifacts that pursue autonomous long-term research.
For example, consider an agent that controls an experimen-
tal laboratory with access to an unfamiliar set of substances.
The system should group items into categories, identify laws
about their behavior, and devise deeper models that explain
the observations. Or imagine an undersea robot on a mission
to study deep-sea trenches, where it encounters new rock
formations and unfamiliar organisms. The agent should cat-
egorize landforms and species, find laws about their interac-
tions, and propose explanations for them, even if it can only
observe passively. Such scenarios require integrated discov-
ery systems and the time has come for Al to develop them.

In this paper, we address the challenges that this vision
poses for the field. We begin by reviewing characteristics of
scientific discovery that differentiate it from machine learn-
ing and data mining. After this, we examine eight compo-
nent abilities that play roles in the discovery process, includ-
ing systems that illustrate them, as we should understand the
elements before considering their combination. Next we re-
count some partial integrations that can serve as role models
for future work. Finally, we analyze specific hurdles the re-
search community must overcome to develop complete dis-
covery systems, along with scientific fields and testbeds that
can help drive development and evaluation of such artifacts.

Characteristics of Scientific Discovery

The scientific enterprise is diverse in that it studies many
distinct types of phenomena and accounts for them in many
different ways, yet there are common features to them all
that are worth recounting. We can define the discovery task
in generic, domain-independent terms:

e Given: Scientific data to be described or explained

e Given: Knowledge about the scientific domain

e Given: A space of candidate categories, laws, or models
e Find: Candidates that describe or explain the observations

This formulation is similar to that for data mining (Fayyad
et al., 1996), which is often associated with ‘knowledge dis-
covery’, but there are some critical differences.



The most important distinction is that scientific discovery,
whether by humans or by machines, produces results that
are stated in established scientific formalisms. These range
widely across disciplines, from qualitative models in biol-
ogy to reaction pathways in chemistry to differential equa-
tions in physics. But in each case, the outcomes of discovery
are stated in a familiar and interpretable notation that scien-
tists use to communicate with colleagues in publications and
presentations. This contrasts with the data-mining paradigm,
which encodes results in formalisms like decision trees or
Bayesian networks, inventions of computer scientists. This
is a crucial point in that science concerns not just prediction,
but also explanation in understandable terms and communi-
cation of findings to others in their communities.

Another key difference is that data mining emphasizes in-
duction over large data sets and is often concerned with tech-
niques that process them efficiently. In contrast, scientific
fields often have access to only small or moderately sized
samples. There are exceptions, like astronomy, that have al-
ways been data rich, but in most disciplines sample collec-
tion is difficult and expensive. Scientists must extract what
they can from this content, often drawing on domain exper-
tise to constrain their decisions. Moreover, some discovery
problems do not involve induction at all, but rather abduc-
tion of explanations for observed phenomena, which relies
even more on background knowledge. Taken together, these
characteristics raise different challenges for computational
scientific discovery than those for data mining.

However, one feature held in common by the two para-
digms is their need to search through a space of possible
laws and models, however these are specified. Often this
space is so large that exhaustive techniques are impracti-
cal and one must resort to some form of heuristic guid-
ance. This can take different forms, from symbolic rules to
numeric evaluation functions to regularization terms. What
they share is an ability to guide search toward reasonable
candidates in large model spaces that would otherwise be
overwhelming. Given recent excitement about ‘generative
ATI’, we should note that these search spaces are inherently
generative. They are defined not by an explicit set of candi-
dates, but rather by a starting point and a set of ‘operators’
that produce new candidates, as in work on planning and
game playing. Simon (1966) first proposed this approach to
replicating scientific discovery and nearly five decades of re-
search has repeatedly confirmed its usefulness.

Components of Scientific Discovery

Before we discuss integrated approaches to computational
scientific discovery, we should first examine its components.
This section discusses eight distinct facets of discovery, in
each case describing the resulting structures, their formula-
tion of the discovery task as a search problem, and sample
systems that illustrate the field’s accomplishments.

Forming Taxonomies

Taxonomies provide the most basic form of scientific knowl-
edge. They define categories or types of entities, associate
specific entities with those classes, and organize these types

into an IS-A hierarchy. Taxonomies play prominent roles
in every scientific discipline, including astronomy, biology,
chemistry, medicine, and particle physics. Scientists use
these hierarchies for a number of purposes. These include
classifying new entities or events into existing categories,
predicting the features or behavior of new entities, and de-
scribing higher-level knowledge in which types participate.
Thus, taxonomies provide fundamental support for the over-
all scientific process, which is reflected by current interest in
tools for developing and using formal ontologies.

We can specify the problem of taxonomy formation in
terms of inputs and outputs. Given a set of observed entities
with descriptions and a space of possible taxonomic hier-
archies, find a set of categories and entities associated with
them, descriptions for each of these classes, and a taxonomy
that organizes categories in a hierarchy. The construction of
taxonomies is an unsupervised discovery task, closely re-
lated to clustering, that we can view as search through a
space of candidate taxonomies. This requires specifying a
direction in which to build the taxonomy (e.g., ‘agglomer-
ative’ or ‘divisive’), criteria for assigning entities to cate-
gories (e.g., a similarity or distance metric), and a strategy
for characterizing categories (e.g., general to specific, sta-
tistical summarization). Most methods carry out batch pro-
cessing, but incremental approaches are also possible.

There has been a long line of work on automated taxon-
omy formation, although researchers have seldom described
it as computational discovery. For instance, an early ap-
plication of computers in biology — numerical taxonomy —
was used widely to organize species into hierarchies based
on similarity of their phenotypes (Sokal and Sneath, 1963).
Most techniques carried out greedy search guided by a sim-
ilarity metric. Cheeseman et al. (1988) reported a differ-
ent approach, using expectation maximization to group stars
into classes based on infrared spectra. The related field of
computational phylogenetics (Warnow, 2018) reconstructs
evolutionary trees from descriptions of organisms, some-
times their genomes, but employs similar search methods.

Finding Qualitative Laws

A second variety of scientific knowledge — qualitative laws
— uses known classes to specify relations among entities or
their attributes, along with conditions under which they hold.
Such regularities may connect numeric variables but they do
not include equations or parameters. These sometimes have
causal interpretations but they may also describe simple as-
sociations. Like taxonomies, qualitative laws occur through-
out the sciences, including astronomy, chemistry, thermody-
namics, and ecology. They may describe either static rela-
tions or ones that involve change over time. Scientific re-
searchers use such laws to describe the behavior of known
classes of entities, predict these entities’ behavior, and pro-
vide context for quantitative relations. Qualitative laws ap-
pear early in a discipline’s history but only after formation
of taxonomies, which provide the terms for stating them.
Again, we can specify the problem of qualitative law dis-
covery in abstract terms. Given a set of observed entities,
their features, and relations among them, and given a space
of possible rules or generalized relations, find a set of quali-



tative laws that describe the observations and conditions un-
der which the laws hold. Because many qualitative laws can
be stated as rules, this problem is closely related to rule in-
duction! and it is naturally posed as heuristic search through
a space of qualitative relations. This requires an initial set
of hypotheses or relations from which to start, operators for
generating or modifying hypotheses, heuristics for evaluat-
ing the quality of candidates, and a termination criterion for
when to halt. A common approach is to search for one rela-
tionship at a time, in each case using greedy search to find
features or other relations that can predict it.

The AI literature contains many examples of qualitative
discovery, although not all of them are described as such.
For instance, King et al. (1996) reported the use of induc-
tive logic programming to discover relations that determine
mutagenicity from 230 nitro compounds. Their results were
interpretable statements (e.g., a chemical is mutagenic if it
has an aliphatic carbon atom attached by a single carbon
bond in a six-member aromatic ring). Lee et al.’s (1998) RL
system induced a set of logical rules from labeled training
cases and domain constraints, with applications to recog-
nizing carcinogens, diagnosing respiratory syndromes, and
predicting crystal formation. These used techniques simi-
lar to those in data mining, but they operated over small
data sets to produce interpretable results constrained by do-
main knowledge. Other systems, like Langley et al.’s (1987)
Glauber, discover laws like acids react with alkalis to form
salts in a very different, unsupervised manner.

Inducing Numeric Laws

A third type of knowledge — numeric or quantitative laws
— moves beyond qualitative relations to specify mathemati-
cal functions over entities’ attributes, parameters associated
with them, and the conditions under which they hold. As
with qualitative laws, these may be either causal relations
or simple associations. Classic examples come from astron-
omy (e.g., Kepler’s laws), chemistry (e.g., law of combin-
ing weights), physics (e.g., Coulomb’s law), and thermo-
dynamics (e.g., Black’s law of specific heat). These are the
poster children of science and they often appear in textbooks
and popular treatments. Researchers use quantitative laws in
much the same ways as qualitative ones, but with more pre-
cision. They are generally found after discovery of qualita-
tive relations, which provide context for them.

As with other tasks, we can specify this problem of ‘equa-
tion discovery’ (Todorovski, 2011) in terms of its inputs and
outputs. Given a set of observed entities with numeric de-
scriptors and a space of possible functional forms with asso-
ciated parameters, find one or more equations that describe
the observations, optionally along with conditions. This is
similar to regression in statistics, but it considers a much
wider range of functional forms, including ones found in
the history of science. We can view equation discovery as
heuristic search through a space of such forms. This re-
quires specifying a starting structure, operators that gener-
ate or modify equations, heuristics that evaluate the quality

"Thus, we should acknowledge there are some cases in which
methods associated with data mining can aid scientific discovery.

of candidates, and a termination criterion for halting. One
can organize this process in different ways, with search from
simple forms to more complex ones being a common ap-
proach. Exhaustive search is possible in special cases, but
many settings rely on heuristics to make search tractable.
The induction of equations and numeric laws has always
been the most active subarea of computational scientific dis-
covery. An influential early system, Langley’s (1981) Bacon,
carried out heuristic search through a space of algebraic vari-
able combinations to find one with a constant value. This
simple approach was able to rediscover a variety of laws
from the history of science, but other researchers developed
more sophisticated schemes, some of them applied to novel
data sets. For instance, DZeroski and Todorovski’s (1995)
LaGrange discovered differential equations from multivari-
ate time series, combining discrete search through a space of
terms with gradient descent to estimate parameters. Schmidt
and Lipson’s (2009) Eureqa used genetic search in a space of
differential equations, while Brunton et al. (2016) combined
symbolic term generation with sparse regression to estimate
parameters. More recently, Cranmer et al. (2020) adapted
neural network technology to find interpretable equations.

Formulating Structural Models

The early stages of any scientific field focus on descriptions
that summarize observations, but mature sciences go further
to provide explanations of phenomena linked to theoretical
constructs. One class of explanations takes the form of struc-
tural models, which specify observed entities and their asso-
ciated descriptors, constituents that compose those entities,
relations among the constituents, and optional numeric an-
notations. These may refer to classes of entities and compo-
nents, which can give them considerable generality. A col-
lection of models relies on assumptions about how to derive
observed features from inferred constituents, which may ap-
pear repeatedly. Examples include chemical structures, gene
sequences, minerals in geological deposits, and stellar com-
positions. Scientists use structural models to explain why
observed entities have measured characteristics, why some
entities occur in nature but others do not, and how to create
entities from their components. Such accounts go past de-
scription to provide a deeper understanding of phenomena.

Again, we can specify the problem of structural model-
ing in abstract terms. Given a set of observed entities with
descriptors and a space of possible structures, find a set of
models that explain the observed entities, possibly includ-
ing unobserved entities and relations. This task typically in-
volves abductive inference rather than induction from data.
We can view this task as heuristic search through a space
of structural models. This requires one to specify an initial
set of models from which to start, operators for generating
or revising current candidates, heuristics for evaluating can-
didate quality, and a termination criterion for when to stop.
A classic approach begins with an empty set and adds new
models or new elements to explain more observations, halt-
ing when all phenomena are handled. Naturally, the details
differ depending on the class of structural accounts under
consideration, although Valdés-Pérez et al. (1993) have pre-
sented a framework that covers many variants.



Discovery researchers have implemented a variety of Al
systems that generate structural models. For example, DEN-
DRAL (Lindsay et al., 1980) inferred the chemical struc-
ture of organic molecules from their component formulae
(e.g., C6HSOH) and mass spectrograms. The system carried
out heuristic search to infer these models, using substan-
tial chemical knowledge as a guide. Zytkow and Fischer’s
(1991) GELL-MANN system postulated hidden structures
in particle physics. Given a collection of known particles
and their quantum properties, it produced a ‘bag’ of com-
ponents for each particle and associated property values, in-
cluding those for hypothesized quarks. We can also view
early methods for reconstructing genomes as discovering
structural models. They found subsequences that were re-
peated across fragments, detected and corrected errors, and
joined overlapping fragments into contiguous regions. There
are many other examples, but these clarify the range of ap-
proaches that the community has explored.

Inferring Causal Models

A second type of scientific explanation involves causal mod-
els. Such an account specifies a set of variables or events,
at least some observable, a set of causal links that connect
them, and assumptions about how to combine influences.
That is, a causal model is a collection of law-like elements,
qualitative or quantitative, that involve reasoning chains. We
can define causality in abstract terms; we say that variable X
causally influences variable Y if a change in X’s value re-
sults in a change to Y’s value provided other variables are
held constant. This definition does not state that X is the only
causal influence on Y or specify the functional form of the
relation, but such information can be useful even when in-
fluences are probabilistic rather than deterministic. Abstract
causal models appear in many disciplines, but they are espe-
cially common in biology, medicine, and the social sciences.

The task of inferring causal models involves finding one
or more such explanations when provided with cooccurring
values for variables one wants to relate. Unsurprisingly, we
can also view causal model discovery as search through a
space of model structures. This requires specifying an ini-
tial model from which to start (e.g., an empty model or fully
connected graph), operators for revising a candidate model
(e.g., adding or removing a causal link), heuristics for decid-
ing which operator to apply (e.g., ability to explain observed
variations), and a termination criterion for when to halt. The
experimental control of some variables is a powerful aid for
inferring causal relations, but it is certainly not essential. As
Simon (1954) has shown, there are some conditions under
which correlational data are sufficient.

There has been considerable Al research on causal model
inference, but it has not always been linked to the literature
on computational scientific discovery. Glymour et al. (1987)
reported an early system, TETRAD, that found structural
equation models, including latent variables, from nonexper-
imental data in the social sciences. More recent work from
the group (Xie et al., 2020) has extended the framework be-
yond linear causal relations. Another application of causal
model discovery, in biology, involves inferring gene regula-
tory networks from cooccurring expression levels. The liter-

ature on this topic has used different causal formalisms, in-
cluding Boolean networks (Ldhdesmiki et al., 2003), qual-
itative constraints (Zupan et al. 2003), Bayesian networks
(Friedman et al., 2000), and structural equation models (Bay
et al., 2003). Many efforts have focused on finding qualita-
tive models, but there has also been work on quantitative
causal discovery (e.g., Runge et al., 2023).

Discovering Process Models

A final form of scientific knowledge — process models —
comprise a set of dynamic entities and descriptors, a set of
processes in which they participate, and connections among
these processes. Taken together, the processes and their in-
teractions explain observations about dynamic changes in
the entities’ descriptors. Some models are purely qualitative,
specifying only process chains, but they can include numeric
annotations. They can also refer to entities’ constituents and
thus build on structural accounts. Examples from science
include metabolic pathways, nuclear reaction chains, geo-
logical process models, and ecological networks. Scientists
use such accounts to clarify how some variables influence
others, explain why observed variables change as they do
over time, and estimate the values of unobserved terms from
these observations. Process models have a causal interpreta-
tion but organize their content in higher-level terms.

As before, we can specify the problem of process mod-
eling in terms of inputs and outputs. Given a set of entities
described at different points in time and a space of possi-
ble process models, find a set of interacting processes that
explain this behavior, possibly including unobserved but in-
ferred entities. As with structural discovery, this task in-
volves abductive inference rather than induction, but we can
still formulate it as heuristic search through a space of candi-
dates. This requires an initial model from which to start, op-
erators that generate or revise current models, heuristics that
evaluate candidate quality, and a termination criterion. Both
an effective search organization and informative heuristics
are crucial to making this tractable. A common approach
begins with an empty model that has no elements, then adds
or removes processes based on their ability to account for
observations, halting once they have all been explained.

Researchers have developed a number of systems that in-
fer process models to explain observations. For example,
Valdés-Pérez’ (1994) MECHEM generated chemical reac-
tion pathways to explain how given inputs produced outputs.
The system used constrained exhaustive search through a
space of pathways, favoring candidates with fewer species
and steps. Anderson et al.’s (2014) ACE carried out cosmo-
genic dating in geology. Given nucleotide densities for rocks
from a landform, it generated process models for how the
landform was produced, weighing arguments for and against
each generated explanation. Bohan et al. (2011) used abduc-
tive reasoning to interpret data on populations of inverte-
brates, using knowledge about size, cooccurrence, and pre-
dation to infer a food web that related 45 distinct species.
Finally, Atanasova et al. (2008) report induction of a pro-
cess model for multivariate time series from a lake ecosys-
tem that it found by combining search through a space of
discrete structures and parameter estimation.



Experimentation and Observation

Scientific discovery cannot occur without data, yet most
work in the area has assumed that it is readily available for
processing. However, an integrated discovery system should
close the loop between analyzing data and collecting it, so
we should also discuss the latter. The generic task involves
deciding which variables to measure and which studies to
run or which observations to make. Traditional accounts
of scientific method focus on experimental disciplines like
physics and chemistry, where researchers can alter indepen-
dent variables to see the effects on dependent terms. In a
field’s early stages, it is reasonable to carry out methodical
studies that vary one factor at a time, but more mature sci-
ences often use hypothesis-driven experiments designed to
differentiate among candidate models. This is more common
in arenas like biology that form complex explanations.

A similar issue arises even in disciplines like astronomy
and ecology, in which experimental control is not an option.
Despite this limitation, a scientist can still decide where to
look (e.g., where to point a telescope) and select locations
at which to collect samples (e.g., what area and depth of
a lake). As with experimental settings, random sampling is
more appropriate when little is known about the domain un-
der study, but the process can become increasingly focused
over time as the researcher acquires more knowledge. The
latter alternative has much in common with methods for ‘ac-
tive learning’, which requests labels on training cases in in-
formative regions, although scientific data are typically un-
supervised in character. The two types of data collection are
often associated with the induction of descriptive laws and
construction of explanatory models, respectively.

Measuring and Identifying Variables

Of course, neither a human scientist or a discovery system
can run experiments or record observations without some
means to obtain values for dependent and independent vari-
ables. Thus, another activity that supports the discovery pro-
cess involves the design and construction of measuring de-
vices. These can range from simple objects (e.g., rulers) that
quantify an attribute’s value (e.g., length) to complex arti-
facts (e.g., scales and voltmeters) that use known laws to de-
rive such values. Such tools typically produce quantitative
results on an interval or ratio scale, but they sometimes give
nominal or ordinal values (e.g., present, greater than). New
measurement devices have repeatedly led to revolutions in
science because they provide entirely new sources of data.

The literature on computational scientific discovery has
not tackled the design of measuring instruments from phys-
ical components, but there has been work on creation of
virtual measuring devices. A classic example was the SKI-
CAT project (Fayyad et al., 1993), which used an induced
decision tree to distinguish stars from galaxies in astronom-
ical surveys based on features derived by image processing.
More recent instances have used convolutional neural net-
works to learn classifiers from images in biology (Sarvaman-
gala and Kulkarni, 2022), materials science (Nasim et al.,
2023), and other disciplines. These are not interpretable, but
their outputs support distributional analyses, which a higher-
level system can use to test models and theories.

A more interesting approach embeds the invention and es-
timation of variables within the discovery process. An early
instance was Bacon’s identification of intrinsic properties
like index of refraction and specific heat, which arose during
its induction of numeric laws from experimental data (Brad-
shaw et al., 1980). More recent examples have used the sta-
tistical extraction of ‘reduced order models’ for dynamical
systems to summarize regularities in low-dimensional man-
ifolds. These are often no more interpretable than the learned
classifiers used to recognize objects in images, but they pro-
vide values for a small set of numeric attributes. Champion
et al. (2019) and Chen et al. (2022) have reported systems
that combine such variable identification with the discovery
of interepretable equations that relate them.

Previous Integration Efforts

Despite the literature’s overwhelming emphasis on the com-
ponents of scientific discovery, there have been a few efforts
to integrate them into larger-scale systems that we should
review briefly. None of these have combined all of the ele-
ments that we discussed in earlier sections, but they can nev-
ertheless serve as role models for future work in the area.

For instance, Nordhausen and Langley (1993) reported
IDS, an integrated discovery system that created a taxonomy
from observed qualitative states of an environment, induced
qualitative laws about temporal relations among these states,
and found numeric relations both within and between the
states. Each layer of description provided context for later
discoveries, constraining them and providing structures for
attaching new findings. IDS rediscovered a number of cat-
egories and laws, both qualitative and quantitative, about
chemical reactions, as well as contextualized versions of
Black’s heat law and conservation of momentum.

There have also been efforts to integrate induction of
empirical laws with hypothesizing structural models. We
have already mentioned an early discovery system, Lindsey
et al.’s (1980) DENDRAL, which inferred structures of or-
ganic molecules from mass spectra constrained by rules of
chemical fragmentation. The team combined this with Meta-
DENDRAL, which induced these fragmentation laws from
structure-spectra pairs. A more recent system, Jumper et al.’s
(2021) AlphaFold, uses a neural network to infer the struc-
ture of proteins from their sequences, but also learns network
parameters from sequences and their structural descriptions.
The two projects differ in how they represent domain exper-
tise, how they use this content, and how they acquire it, but
they combine similar facets of discovery.

The field has also seen research on integrating law dis-
covery with experimentation. For instance, Langley’s (1981)
Bacon carried out systematic studies that altered one vari-
able at a time, which let it find numeric relations at differ-
ent levels of abstraction. This knowledge-lean experimenta-
tion strategy led to the ideal gas law, Coloumb’s law, and
other discoveries from the history of science. Zytkow et al.
(1990) went further and integrated his Fahrenheit system
with a portable electrochemistry laboratory on which it ran
controlled experiments. The system used these data not only
to find numeric laws in the domain, but to identify maxima
and minima that it incorporated into higher-level equations.



Fahrenheit carried out further experiments to test these laws,
closing the loop between induction and data collection.

In contrast, Kulkarni and Simon’s (1990) Kekada em-
ployed a more knowledge-rich approach, devising experi-
ments to test hypotheses and explain anomalies. This strat-
egy led it to rediscover a process model of the urea cycle,
following closely in the footsteps of the biochemist Hans
Krebs. More recently, King et al. (2009) reported another
robotic scientist — Adam — that supported discovery in yeast
biology. This devised auxotrophic growth studies with gene
knockouts, ran experiments using a robotic manipulator, and
revised its causal model for how genes affect phenotypes.
Thus, it closed the loop between experiment design, data
collection, and model construction, improving its account
of metabolic regulation. In follow-on work, Williams et al.
(2015), implemented another system — Eve — that evaluated
drugs’ abilities to treat rare diseases. Such ‘self-driving lab-
oratories’ have also received attention in materials science.

Building Integrated Discovery Systems

The examples above clarify the benefits of integrated discov-
ery for extended scientific research but, despite substantial
progress on individual components, they remain uncommon
and we need more comprehensive efforts along these lines.
Some challenges to integration are common to any attempt
to combine separate abilities into a single computational ar-
tifact, but others follow from the distinctive character of the
discovery process. In this section, we consider each of them
in turn, along with some promising responses.

Diversity of Scientific Content

The first hurdle involves the diversity of content that in-
tegrated discovery systems must support. We have already
noted that taxonomies, qualitative laws, and numeric equa-
tions encode different types of scientific knowledge, and that
models provide deeper explanatory accounts. The modules
of a fully integrated discovery system would need to accept
outputs from, and provide inputs to, other components. Ex-
isting artifacts sidestep this issue, relying on developers to
encode their inputs to achieve similar effects. For instance,
methods for inducing qualitative laws assume an existing
taxonomy (e.g., types of chemicals) and techniques that find
numeric equations often assume qualitative relations (e.g.,
chemical reactions). Thus, a key requirement for integration
is to make the context used by each module explicit, so that
other components can use it to constrain search.
Fortunately, the history of science suggests a natural way
to address this issue. Taxonomy formation has generally pre-
ceded law discovery precisely because the former generates
context that constrains the latter. Similarly, law induction
provides the background needed to drive the ensuing forma-
tion of causal and process models. Integrated discovery sys-
tems can follow a similar strategy by arranging their mod-
ules in the same sequence, which will ensure that the out-
puts of preceding components have the same form as the in-
puts of successors. This does not prohibit later stages from
providing feedback to earlier ones, but the majority of infor-
mation will flow in one direction. Most successful work on
integrated discovery to date has adopted this insight.

On-Line Revision of Scientific Models

A second challenge concerns the on-line character of sci-
ence and the need to revise structures in light of new evi-
dence. This contrasts sharply with the batch processing that
dominates both work on data mining and on the individual
components of discovery. However, the history of science
contains many examples in which widely adopted accounts
(e.g., the caloric and phlogiston theories) were later rejected
in favor of alternatives or subsumed by more general frame-
works. To support this ability, integrated discovery systems
must move beyond the construction of taxonomies, laws,
and models from scratch to enable their revision, especially
as new observations become available. This would be sim-
ilar to classic approaches for model revision in supervised
learning (e.g., Ourston and Mooney, 1990).

There has been some work on discovery along these lines
(e.g., Alberdi and Sleeman, 1997; Todorovski et al., 2003),
but it has been rare. The issue becomes more complex for
integrated discovery systems in that changes to some knowl-
edge elements (e.g., in a taxonomy) can require adjustments
to structures that depend on them (e.g., in qualitative or nu-
meric laws). However, the cumulative approach to integrated
discovery outlined above suggests a solution here as well.
Because the results from some modules provide formal de-
scriptions of context for others, when the former’s elements
are revised, we can identify which elements of the latter are
affected. This will require storing dependencies among con-
stituents of a scientific account and updating them accord-
ingly, but we can use well-established methods like truth
maintenance systems (Doyle, 1979) for this purpose.

Interaction with Human Scientists

A final point is that autonomous discovery is not the only
target; we also want systems that interact and collaborate
with human scientists. Work in this area has been uncom-
mon, but the literature contains examples of this approach to
forming taxonomies (Alberdi and Sleeman, 1997), inferring
causal models (Swanson and Smalheiser, 1997), and finding
process explanations (Valdés-Pérez, 1994; Bridewell et al.,
2006). In each case, developers identified facets of discovery
that could be automated and others better left under human
control. Some systems let users specify constraints on the
space of models, some let them identify model elements to
revise, and others gave them a chance to provide high-level
guidance during search. All benefited from the use of modu-
lar, interpretable formalisms for scientific laws and models.

Extending this idea to integrated discovery raises a third
challenge. We can borrow from prior work on interactive
discovery at the component level, but we must also ad-
dress the higher level. The first step in designing an inter-
active system is a cognitive task analysis (Newell and Si-
mon, 1972), which identifies the structures and processes
that arise in pursuing a task. However, earlier portions of this
paper have provided just such an analysis. For each compo-
nent of an integrated discovery system, we can then choose
whether it should be automated, fully or partially, or instead
reserved for humans. We can base these decisions on factors
like the difficulty of automating each subtask, the effort it



would require a person, and human scientists’ preferences.
Moreover, we can revisit the allocation of components later
as techniques for automated discovery improve over time.

Evaluating Integrated Discovery Systems

A parallel set of challenges concern the evaluation of in-
tegrated systems for scientific discovery. For instance, we
must identify or devise testbeds that researchers can use to
develop and demonstrate such integrations. The most im-
pressive results would come from entirely new data sources,
say collected by undersea drones in deep-ocean trenches or
robots that explore underground caverns. These could drive
the discovery of taxonomies, laws, and models that describe
and explain observations, but the process would not start
from scratch, as systems would benefit from existing knowl-
edge in geology, biology, and ecology. Nevertheless, collect-
ing and managing such data would be daunting and require
long-term funding and coordination.

A more practical scenario would involve the creation and
use of simulated environments that operate according to
known principles. These would provide synthetic but real-
istic data for integrated discovery systems, whether they ob-
serve passively or carry out controlled experiments. The lat-
ter might involve a simulated chemistry laboratory that lets a
discovery agent reproduce a century of progress in the field.
This would follow in the footsteps of early discovery work
that was inspired by the history of science (Langley et al.,
1987; Kulkarni and Simon, 1990). Wang et al. (2022) report
a simulation environment that obeys laws of thermodynam-
ics, electricity, and chemistry, which could be adapted to this
end, but the community would benefit from multiple options.

We should also consider natural domains that could sup-
port research on integrated discovery and still be tractable.
Some promising candidates include:

e Astronomy, which regularly receives new sources of data
as the power and resolution of its instruments increases.
This offers opportunities to detect novel object classes,
find new qualitative and quantitative relations, and create
explanatory models for unexpected phenomena.

e Materials science, a largely empirical field that frequent-
ly encounters new substances with surprising behaviors.
These could support the discovery of new descriptive
summaries, which in turn could lead to deeper accounts
in terms of structures and processes.

o [ntestinal microflora, which comprise miniature ecosys-
tems with changing populations. Efficient gene sequenc-
ing has enabled estimation of relative organism abun-
dances that could support discovery of empirical laws and
models that explain the observed dynamics.

One reason these topics may be tractable is that they could
build on available knowledge. In each case, an integrated
discovery system would benefit from existing taxonomies,
laws, and models that it could extend and revise in response
to new observations, constraining its search substantially.
However, even with suitable testbeds, we must still iden-
tify ways to identify success, detect failures, and measure
progress. For natural data sets, this will be challenging be-
cause we must draw upon measures like predictive accuracy,

which has led to problems in mainstream machine learning.
Synthetic data sets from simulated environments, especially
ones based on mature fields like chemistry, would let us
compare discovered knowledge to known targets. Thus, we
can measure not only the number of constituents in laws or
models the system gets correct, but how many observations
or experiments it needs to find them. This will be especially
important for explanatory models with linked components,
where factors like simplicity and coherence are central. That
does not mean we should ignore predictive accuracy, but
multiple evaluation criteria are better than only one.

Closing Remarks

In the preceding pages, we promoted the idea of integrated
systems for scientific discovery that carry out extended re-
search programs. We argued that achieving this aim will re-
quire combining different facets of discovery, an idea that
has received little attention in an otherwise active field. In
response, we reviewed six components of discovery — form-
ing taxonomies, inducing qualitative laws, finding numeric
equations, formulating structural models, inferring causal
accounts, and creating process explanations. In each case,
we defined the computational problem, clarified the results
produced, and reviewed example systems. We also exam-
ined data collection and measurement, which are not discov-
ery per se, but which are essential to the overall endeavor.
Our treatment omitted some topics, such as problem formu-
lation (Phillips et al., 2017), extracting hypotheses from lit-
erature (Swanson and Smalheiser, 1997), and writing scien-
tific papers (Gil, 2022), but it was reasonably complete.

After this, we reviewed systems that integrate some as-
pects of scientific discovery and that can serve as role mod-
els for future efforts in the area. Next we discussed three dis-
tinct challenges that we must overcome to design and imple-
ment integrated discovery systems. These included the need
for modules that accept results from others and use them as
context to constrain search, on-line processing that supports
revision in response to new data, and interaction with human
scientists for components that have not been automated. In
addition, we noted the necessity of testbeds, either natural
or synthetic, for development and demonstration purposes,
along with methodology and metrics for evaluating progress.
Of course, we must also obtain funding to support research
and find publication venues to communicate results, both of
which can be challenging for integration efforts.

The integrated approach to computational scientific dis-
covery that we have proposed has a spirit similar to research
from the earliest days of artificial intelligence. The objective
is not incremental improvement of performance on a nar-
rowly defined task, but rather the audacious demonstration
of capabilities that, to date, only human scientists have ex-
hibited. Our challenge has much in common with Kitano’s
(2016) proposal to develop an Al system that wins a Nobel
Prize in science. The vision also shares features with another
recent call for joining discovery methods with robotic agents
that explore unknown environments (Langley, 2021). Nev-
ertheless, the development of integrated discovery systems
raises enough challenges on its own to keep the Al research
community occupied for many years to come.
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