
Mahmoud Dinar
Mechanical and Aerospace Engineering,

Arizona State University,

Tempe, AZ 85287

e-mail: mdinar@asu.edu

Andreea Danielescu
School of Computing, Informatics and

Decision Systems Engineering,

Arizona State University,

Tempe, AZ 85821

Christopher MacLellan
Human-Computer Interaction Institute,

Carnegie Mellon University,

Pittsburgh, PA 15124

e-mail: cmaclell@cs.cmu.edu

Jami J. Shah
Mechanical and Aerospace Engineering,

Arizona State University,

Tempe, AZ 85287

e-mail: jami.shah@asu.edu

Pat Langley
Department of Computer Science,

University of Auckland,

Private Bag 92019,

Auckland 1142, New Zealand

e-mail: patrick.w.langley@gmail.com

Problem Map: An Ontological
Framework for a Computational
Study of Problem Formulation
in Engineering Design
Studies of design cognition often face two challenges. One is a lack of formal cognitive
models of design processes that have the appropriate granularity: fine enough to distin-
guish differences among individuals and coarse enough to detect patterns of similar
actions. The other is the inadequacies in automating the recourse-intensive analyses of
data collected from large samples of designers. To overcome these barriers, we have
developed the problem map (P-maps) ontological framework. It can be used to explain
design thinking through changes in state models that are represented in terms of require-
ments, functions, artifacts, behaviors, and issues. The different ways these entities can be
combined, in addition to disjunctive relations and hierarchies, support detailed modeling
and analysis of design problem formulation. A node–link representation of P-maps ena-
bles one to visualize how a designer formulates a problem or to compare how different
designers formulate the same problem. Descriptive statistics and time series of entities
provide more detailed comparisons. Answer set programming (ASP), a predicate logic
formalism, is used to formalize and trace strategies that designers adopt. Data mining
techniques (association rule and sequence mining) are used to search for patterns among
large number of designers. Potential uses of P-maps are computer-assisted collection of
large data sets for design research, development of a test for the problem formulation
skill, and a tutoring system. [DOI: 10.1115/1.4030076]

1 Introduction

Many studies of design cognition have employed protocol anal-
ysis [1], which is both resource consuming and ambiguous in that
the same data can lead to different analyses by different research-
ers [2,3]. One remedy to this problem is to use a common model-
ing framework. Different frameworks have been proposed to
study design thinking, which will be discussed and evaluated with
respect to our research objective; to show differences in problem
formulation among designers.

Characteristics of design problems have consequences for
choosing an appropriate formalism for studying design thinking.
Design problems are ill-defined (with vague or incomplete goals),
ill-structured (with conflicting goals, evident or explicit dependen-
cies), and dynamic (with changing requirements). Therefore, a
representation of the design space in early stages of conceptual
design, when the problem is formulated, should accommodate
incomplete, conflicting, and changing problem definitions. At this
stage, designers often reframe the problem space [4] and construct
multiple representations of the problem [5]. In addition, a repre-
sentation of problem definition should be able to include elements
of the solution space, since the problem and solution spaces
co-evolve during design [6].

These reasons motivated creating a framework to study prob-
lem formulation with a higher level of detail, and an appropriate
formalism for understanding the differences among designers in
problem formulation, in addition to improving the process of data
collection and analysis. This paper presents the P-maps ontologi-
cal framework. We show how P-maps can be used to represent

and analyze problem formulation in different ways. In the rest of
this paper, first the literature is reviewed to see the types of differ-
ences that P-maps should capture, and how P-maps should bridge
the gaps in existing frameworks. P-maps is then introduced and
compared to other design frameworks or modeling formalisms.
Different applications of P-maps are then shown for encoding and
visualizing differences among designers, tracing adoption of strat-
egies, and discovering common patterns using data mining techni-
ques. The paper concludes with potential uses of the framework in
the future.

This paper focuses on describing the modeling abilities of the
framework and its potential for improving data analysis. Our pre-
vious paper [7] is devoted to an interactive web-based user inter-
face which helps us in collecting, coding, and representing
problem formulation data with P-maps. Attention should be paid
to the method of the study. With the current number of subjects in
our samples, claims are premature. However, the main benefit of
using a web-based data collection tool lies in the scalability of fur-
ther analyses, as programs are written once, and used with rela-
tively cheap computation for larger data sets. Some of the
examples in describing the ontology, its formal representation, or
possible analyses come from the web-tool data, but some of them
are based on previously collected protocols. The P-maps frame-
work models, represents, and supports analyses of problem formu-
lation data regardless of the data collection mode.

2 Related Work

Review of the design literature reveals a few studies that have
focused on representing the problem and the solution spaces, as
well as some on the process of problem formulation. This section
starts with a review of problem formulation in design to highlight
the types of data fragments that are present in designers’ problem

Contributed by the Design Engineering Division of ASME for publication in the
JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received September 13, 2013; final manuscript received February 16, 2015;
published online April 24, 2015. Editor: Bahram Ravani.

Journal of Computing and Information Science in Engineering SEPTEMBER 2015, Vol. 15 / 031007-1
Copyright VC 2015 by ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



formulation, and the differences that should be looked for among
designers. The review extends to representations that aim at mod-
eling early conceptual design and points out the gaps in these
frameworks that should be addressed. In addition, formalisms and
models pertinent to a computational study of design problem for-
mulation are reviewed.

2.1 Problem Formulation in Design. Past research has
shown a few characteristics of problem formulation, mainly
through protocol studies. Designers prefer to treat problems as ill-
defined [8,9]. Atman et al. [10] state that senior undergrad design
students produce higher quality designs by gathering more infor-
mation early, considering more alternative solutions, and moving
more frequently between design steps. Eisentraut [11], however,
maintains that such behavior relates to different styles of problem
solving, which are independent of the situation of the design
episode.

It is well known that, unlike well-defined problems, design
problems continue to evolve throughout the problem solving pro-
cess. Cross and Cross [9] claim that creative designers, holding
experience of previous solutions at the back of their minds, use
first principles as stimuli to build bridges between problem and
solution space through key concepts. Harfield [12] claims that
designers need “protosolutions” to compare the goal and the prob-
lem state, and that naive designers make fixed assumptions while
creative designers question requirements. Valkenburg and Dorst
[4] suggest that a more successful design team frames a design
problem more frequently than an unsuccessful one.

In addition, strategies that are adopted in problem formulation
have also been studied. Such studies focus on how creative and
experienced designers approach design problems differently from
noncreative and novice designers. For example, Ball et al. [13]
have found that experts lean on experiential abstract knowledge,
while novices map the source problem and solution to a target
problem. Ho [14] states that expert designers decompose a prob-
lem explicitly and directly approach the goal state, while novices
decompose a problem implicitly and eliminate a problem when
they fail to handle it. Differences among designers do not remain
at such coarse levels of creativity and experience. Kruger and
Cross [15] categorize designers into problem-driven and solution-
driven. Gero and Mc Neill [16] classify the different strategies
that designers adopt into micro strategies (analysis, proposition,
and making explicit references), and macro strategies (top-down,
bottom-up, decomposition, opportunistic, and backtracking).

Furthermore, in addition to the observations that describe the
design process, there are some prescriptive models of engineering
design that offer different methods and checklists for every step of
the design process. The systematic approach of Pahl and Beitz
[17] introduced a checklist for developing requirements with a list
of examples for geometry, material, ergonomics, assembly, etc.,
spanning the product life-cycle. Requirements are not only speci-
fied individually, but also lead to other requirements, often in a
parent–child relation. Developing an objective tree is a common
method of eliciting new requirements and determining how they
should be synthesized.

Another well-established aspect of problem formulation is the
development of function decompositions. Similar to objective
trees, function trees are developed to find out what different parts
of the design should do to achieve its main purpose. Functions are
decomposed into subfunctions until referring to a specific solution
becomes inevitable. Many researchers have contributed to a
vocabulary for these abstract subfunctions, called function bases.
Hirtz et al. [18] combined different function bases to reach a
unified vocabulary for a standardized development of function
trees. Function decomposition is necessary but not sufficient for
describing problem formulation.

2.2 Representation Frameworks in Design. A few research-
ers have developed models for representing the structure of design

problems. Maher et al. [19] link problem definition states to solu-
tions in an abstract way. Goldschmidt [20] captures the indeter-
ministic nature of design by providing multiple representations of
figural–conceptual modes. In her node–link representation, she
equates states and operators in problem solving with nodes, and
their sequences with links. Goldschmidt and Tatsa [21] used
linkographs to show that intensive interlinking breeds more crea-
tive designs. In characterizing the differences between design and
nondesign problems, Goel and Pirolli [22] came up with a task-
operator-phase model, inspired by information-processing theory
of human problem solving [23].

An established framework in representing design thinking is
function–behavior–structure [24]. Function–behavior–structure
(F–B–S) has been used in modeling the design process [24], as a
coding schema in protocol analysis [16,25], and for design auto-
mation [26]. Gero [24] identified activities in the design process
in terms of transformations from one of the three domains of func-
tion, behavior, or structure to another, considering a difference
between expected and actual behavior. For example, transforming
a function to an expected behavior is considered formulation or
specification. Gero and Kannengieser [27] took into account the
dynamic character of design by considering the notion of situated-
ness. Even though F–B–S has been used as a predefined coding
schema in protocol analysis [25], it has not been used as a compu-
tational framework for searching for strategies because, as Gero
and Kannengieser contend [28], F–B–S is a high-level model.

Independetly, Goel et al. [29] have developed the
structure–behavior–function (S–B–F) modeling language for a tel-
eological description of complex systems. In this language, struc-
ture, behavior, and function are represented in terms of
components and their connections, transitions among a sequence
of states and pre- and postconditions, respectively. The syntax is
similar to notations that are used to represent production rules.
The model is a top-down description scheme, in which each frag-
ment of the model is defined by a lower level fragment. At the
top, there is an instance of S–B–F, while at the bottom there are
building block fragments such as strings and integers.

Besides developing modeling frameworks that can be used
commonly in studying different aspects of design cognition,
others have tried to employ standard modeling languages. W€olkl
and Shea [30] have used SYSML in modeling conceptual design.
They follow the prescribed systematic engineering approach by
Pahl and Beitz [17]. They propose creating new specifications
with requirement diagram, describing functions with use case dia-
gram and activity diagram, and allocating working principles with
block diagram. Using such a standard language makes it easier to
integrate the often nongeometrical data of conceptual design with
later stages of product development. However, W€olkl and Shea
[30] concede that the representation is not compact from usability
viewpoint, and multiple (and separate) diagrams are required to
represent different aspects of the designs. This makes it less likely
to see the problem in context, or boost creative ideas which often
arise from seeing the interconnections of concepts [31].

2.3 Computational Modeling Formalisms. Section 2.1
reviewed some of the representation models in engineering
design. There are inspiring formalisms in computer science that
should be mentioned for two reasons: Such formalisms have been
used for representing knowledge, and thus (design) thinking (rep-
resentation aspect); they will be pertinent to automating analyses
of design thinking data (computation aspect). Concept map [32] is
a representation model which has been used in education as means
of providing students with an easy and intuitive way to document
and explain taught lessons. Novak and Ca~nas [33] have proposed
the use of concept maps to identify changes in students’ under-
standing over time. Additionally, concept maps have been used to
understand the differences between the knowledge of experts and
novices. The main advantage is the ability to accommodate fine
levels of granularity. Even though concept maps have nodes and

031007-2 / Vol. 15, SEPTEMBER 2015 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



labeled links and can represent hierarchies, they are still relatively
unstructured. There is no standard way or ontology and one can
label data fragments in any way. This becomes a major shortcom-
ing, especially when one wants to compare different instances of
the problem formulation over time or to compare models of differ-
ent designers. Figure 1 exemplifies a concept map of a problem
formulation process of designing a water sampling device.

Semantic networks [34] are a type of graphical network that
relate conceptual nodes with binary links. They have been used to
represent the meaning of sentences in natural language process-
ing. Nodes are used for representing concepts and links for the
types of relationships among them. This is a graphical representa-
tion of some static situation, e.g., a person’s mental state. Con-
cepts are usually organized in a taxonomic hierarchy and often
rely on the use of inheritance [35]. Semantic networks struggle to
represent disjunction [35], which is important in representing
design problem formulation.

To summarize, we reviewed previous studies in understanding
problem formulation. Some of the representations that have been
developed for studying design thinking and modeling design proc-
esses were also reviewed. In addition, we reviewed a few formal-
isms that might be used in representing or building a
computational model of design thinking. Studies of problem for-
mulation have been fragmented, and representation models that
have been proposed in studying design cognition, though have led
to interesting findings, do not have the necessary level of detail
for studying problem formulation. Therefore, there was a need for
a new modeling framework that was fine-grained, and incorpo-
rated formalisms that facilitated showing differences among
designers’ problem formulation with a potential for automating
analyses of data collected from a large number of participants.

3 The P-Maps Framework

This section presents the P-maps data model, describes the pro-
cedure that led to the creation of the framework, and justifies the
modeling characteristics that the framework should possess. It
also shows the different aspects that differentiate P-maps from
other data modeling frameworks that were reviewed in the
literature.

3.1 Developing the Ontological Framework. To develop
the P-maps framework, three steps were taken. First, two protocol

studies were conducted in the exploratory phase of this research.
In the first study [36], data fragments were organized into differ-
ent categories to highlight contrasts between an expert designer
and novice designers. In the second study [37], a state model was
defined as a list of instances of different categories and their rela-
tions in the order they were added. A sequence of these states
revealed temporal changes in designers’ formulations and facili-
tated comparing formulations of different designers for the same
problem. The design problem in both studies was designing an
inexpensive, reusable water sampling device.

In the second step, an exhaustive list of relevant entities in
problem formulation was created. Entities that appeared to be sim-
ilar concepts in different terminologies were merged. For exam-
ple, in early stages of an engineering design process, the term
requirement can be used with no trepidations instead of specifica-
tions, demands, customer needs, goals, objectives, or constraints.
All of these terms have slight differences which can be either
safely ignored, or accommodated with the definition of proper
attributes for the entity, e.g., goals can be defined as requirements
that one prefers to maximize or minimize (e.g., life or weight).
The addition of a target attribute for the requirement entity
accommodates goals.

Third, the P-maps framework emerged from synthesizing the
two taxonomies explained above, with respect to a set of desired
features in order to reach the main research objective, i.e., to show
differences among designers’ problem formulation. These criteria
and their justification are shown in Table 1.

3.2 P-Maps Data Model. The P-maps framework has incor-
porated five types of entities to model the early stages of concep-
tual design, i.e., problem formulation. These five types are
requirement, function, artifact, behavior, and issue. Each type
consists of entities whose instances can be a part of disjunctive
hierarchies. Entities can have optional attributes. The entities in
the five groups can be organized into hierarchies with
parent–child and preceding–succeeding relations. In the artifact
group, the solution principle entity, an abstract concept of a solu-
tion, can be combined with physical embodiments, tangible com-
ponents such as gears and motors. All groups except the issue
group are inter-related with bidirectional relations, while the issue
group can have a relation to any combination of the rest of the

Fig. 1 A part of a concept map used in formulating a design problem

Journal of Computing and Information Science in Engineering SEPTEMBER 2015, Vol. 15 / 031007-3

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



entities. Figure 2 shows an abstract model of the five groups of
P-maps and the relations that can arise among them.

In P-maps, requirements are the entities that describe the speci-
fications of the design problem. A design problem is usually given
as a design brief or problem statement. The design problem is for-
mulated with additional requirements elicited by the designer. The
problem is specified by a set of design goals and requirements.
The source attribute can identify why a requirement is defined; it
can have specific values such as “safety,” “aesthetics,”
“ergonomics,” “use_environment,” and “affordance.” It can also
specify whether a requirement is explicitly “given” in the problem
statement or is implicit and “derived” by the designer. In the P-
maps vocabulary, requirements are binary. Goals can be defined
with a target range. There is usually a relation between the level
of satisfaction in using the solution and the degree to which the
goal is achieved in terms of a utility function. Another optional
attribute is importance or weight. The requirement hierarchy is
similar to an objective tree, especially with assigned weights.

Functions refer to what the design does and the actions that the
design will execute; examples are “rupture disk,” “carry
passenger,” or “amplify torque.” Functions are realized by arti-
facts and satisfy the requirements. In the function group, the hier-
archy is evident in functional decompositions. The P-maps model
incorporates disjunctive composition, making it possible to have
multiple functional decompositions using common subfunctions.

Artifacts realize functions and are the entities that describe the
physical components of the design or the concepts the design may
be using. In the artifact group, the hierarchy of physical embodi-
ments and solution principles is similar to product architecture.
The P-maps model also allows partial compositions of solution
principles and physical embodiments, since in reality, the designer
follows different parts of the subsolutions at different times corre-
sponding to different levels of abstraction.

Behaviors are the physical properties and laws that govern the
design. These entities include equations and physical effects, as
well as the parameters that are relevant to both artifacts and func-
tions. In the behavior group, a physical effect can be represented

as a hierarchy of physical laws, which in turn can be shown as a
hierarchy of parameters.

Issues are entities that describe the problems associated with
other entities in the design formulation. An issue is often an
expression of a point that the designer believes to be pivotal or
problematic in achieving a design objective. To name a few, an
issue can arise in realizing a function with a specific artifact or
behavior, in realizing conflicting design goals such as lower
weight and strength of a structure, or in accommodating different
components in a product architecture due to incompatible interfa-
ces. The designer gains insight in the discovery of key issues in
the design and the areas of the design that should be prioritized.
The hierarchy of issues may represent a problem solving strategy.
It may also entail the priorities that the designer gives to the issues
that should be addressed; such priorities may correspond to a
problem solving strategy. The issues may be categorized with an
optional attribute of type with values such as “question” (“will
this structure bear this load?”) and “concern” (“experience shows
that it is difficult to reach this fuel consumption rate with the
desired towing capacity and top speed”).

Besides hierarchies and partial orderings, which manifest intra-
group relations, intergroup relations are also defined; an underly-
ing property of ontology. This leads to an expressive and flexible
model that can show how different designers see the relations
among different aspects of a problem and the alternative ways
they relate. For example, alternative conceptual designs with com-
mon components or different function decompositions can be
shown with different branches of an artifact or function hierarchy
with nodes that have the same name for the common components
or functions, respectively. A specific name is assigned to the rela-
tion between any of the two entity groups. For example, an artifact
realizes a function, and a behavior manages a requirement. The
P-maps model does not make a distinction between explicitly
known relations (e.g., when a designer knows that the power equa-
tion of an electric motor manages the desired torque), and implicit
or qualitative guesses (e.g., when a designer knows that a parameter
manages a specific goal but does not yet know how exactly).

This section presented the P-maps framework and some of its
modeling abilities. The required modeling features of the frame-
work were also discussed. The P-maps framework can be com-
pared the frameworks which were reviewed in Sec. 2 with respect
to some of the required modeling features of Table 1. The com-
parison is listed in Table 2. Comparing some aspects requires
additional studies, e.g., unambiguity can be determined by inter-
rater agreement, as it was carried out for P-maps, see Sec. 5.1.
Section 4 focuses on the different types of analyses that P-maps
facilitate.

4 P-Maps Data Analysis Methodology

The graphical and textual formalisms of P-maps make it possi-
ble to capture, represent, and analyze problem formulation data in
different ways. In this section, we first present a graphical repre-
sentation of P-maps that provides a way to visualize a designer’s
progress in terms of successive states, which in turn serves as a
means to comparing different designers’ formulations. Second,
we explain how descriptive statistics of P-maps can be used for

Table 1 A list of desired modeling features considered while developing P-maps

Feature Justification

Problem and solution oriented Co-evolution of problem and solution spaces during problem formulation
Hierarchal Describing compositions and levels of abstraction
Sequential Showing precedence in one level of abstraction
Disjunctive Considering alternatives with common or independent fragments
Domain-independent Describing problems regardless of domain knowledge
Expressive Discerning differences in the formulations of different designers
Unambiguous Common understanding among different researchers and users
Flexible Reflecting unscripted and unpredictable moves in design thinking

Fig. 2 The entities and the relationships of the P-maps
framework

031007-4 / Vol. 15, SEPTEMBER 2015 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



quantitative analyses of problem formulation. Third, we show
how to use P-maps for testing hypotheses about strategies that
designers adopt during problem formulation. The section ends by
discussing potential for future work in hypothesis generation
using data mining techniques, devising a test for designers’ prob-
lem formulation skills, and creating a tutoring system.

The section exemplifies these approaches with data collected
from protocols [37], as well as the Problem Formulator web tool
[7]. The protocol data were collected from eight expert designers
working on the water sampling problem [37]. Each expert was
given an hour. Their protocols were manually encoded into P-
maps by two researchers through a process of arbitration. The
data collected with the Formulator web tool were from a class of
62 undergrad students of a mechanical design course working on
designing a machine to recycle aluminum drink cans. The students
learned about the web tool and the ontology through a practice
problem.

4.1 Comparing Formulation States Using Node–Link
Graphs. A node–link graphical representation of P-maps visually
shows the evolution of a designer’s problem formulation through
changes in states at different times. Figure 3 presents one design-
er’s problem formulation, based on coded protocols [37], at two
P-maps states of the same problem. The designer thinks about a
triggering function that leads to taking the sample by proposing a
flip-flop mechanism that is controlled by a ruptured diaphragm,
and then by contemplating the idea of having a scuba diver take

the sample which he later finds contradicting the requirement that
the device should be detachable, labeled “not self-contained”
from the transcript. P-maps can also be used to compare different
designers’ formulations. We have also used this representation to
compare two designers at the end states of P-maps. Comparing
successive states of one designer’s formulation or that of different
designers gives an overview of some differences among designers
in problem formulation.

4.2 Descriptive Statistics of P-Maps. P-maps can also be
used for a quantitative analysis of differences among designers’
problem formulation. This involves calculating descriptive statis-
tics of variables such as the number of instances of each entity,
their means and quartiles, and time series of the emergence of the
entities. The examples in the following paragraphs are from the
coded protocols of the eight expert designers [37]. For the first
analysis, the overall number of entities within the five groups
were plotted over a normalized timescale to eliminate differences
in the length of the design sessions. Each coded predicate equaled
one time step. Figure 4 shows the cumulative number of entities
for a designer who specified more problem-related aspects of the
design by continuously adding new requirements and functions
compared to a designer who focused on solution-related aspects,
especially in specifying behaviors.

To see whether or not the designers approached their design
sessions in a similar order, Fig. 5 shows box plots that clarify
when two of the designers defined their requirements, functions,

Table 2 Comparison of different modeling frameworks to P-maps

Covering problem and
solution aspects

Capturing hierarchical
structure

Representing
alternatives

Linking data
fragments

Content to view
size ratio

F–B–S Problem and solution No No No Compact
S–B–F Solution-oriented Yes Implicit Yes Large
Linkograph Solution-oriented No Explicit Yes Compact
SYSML Problem and solution Yes Implicit Yes Large
Concept map Problem and solution Yes Explicit Yes Large
P-maps Problem and solution Yes Explicit Yes Compact

Fig. 3 P-maps states representing changes in a designer’s problem formulation through time: (a) after 4 min and (b) after 8
min

Journal of Computing and Information Science in Engineering SEPTEMBER 2015, Vol. 15 / 031007-5

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



artifacts, behaviors, and issues. As mentioned previously, the
designer that defined requirements throughout the design process
was atypical and in fact, the other designers specified requirements
towards the beginning of their sessions. Additionally, most designers
specified most of their issues towards the end of their design sessions,
as they were reviewing the design space they had explored.

Although designers have different styles of problem solving
that are not dependent on the solution [11], there are some similar-
ities in the ways in which they move among the five groups of
entities. Figure 6 compares how two designers moved among the
five groups of entities. The iterations show that the process of
defining artifacts, behaviors, and functions was strongly inter-
twined. However, one designer (the top graph) develops an aspect
before moving to another aspect of the problem, while the other
designer (the bottom graph) quickly shifts attention to different
aspects of the problem. In general, the subject designers often
went back and forth quickly between defining their artifacts and
their functions. For those who also spent substantial effort identi-
fying behaviors, the behaviors were often intertwined with func-
tions and artifacts.

4.3 Formalizing and Tracing Strategies With ASP. P-maps
can be used to represent and formalize design strategies that
human designers adopt, by defining condition-action rules that
describe how states change during the development of P-maps.

Strategies can be formalized not only in how entities appear but
also with certain conditions where they apply. This section uses
three examples to describe the method of employing predicate
logic formalism and ASP [38] to formalize and trace problem for-
mulation strategies. The reasons for choosing ASP are:

• ease of analysis in a declarative syntax compared to proce-
dural programming

• simplicity of the logical formalism that makes encoded frag-
ments easily readable and close to natural language

• easy conversion of P-maps data from a conventional database
to an ASP representation

• ease of performing automated reasoning over the P-maps
predicates

Answer set programs consist of two main components: facts,
which are the ground literals over which the system reasons, and
rules, which are used to perform logical reasoning over the facts.
Predicates are represented with a name followed by braces which
contain the values of the attributes that define the predicate. Con-
sider an example of a design of an airplane seat that can be auto-
matically turned into a bed; two functional decompositions can be
expressed with these predicates1:

fnction(fn_support_sleeping).
fnction(fn_move_to_flat_position).
fnction(fn_support_weight).
parent_of(fn_supporting_sleep, fn_move_to_flat_position, hy_fn1).
parent_of(fn_support_sleeping, fn_support_weight, hy_fn1).
before(fn_move_to_flat_position, fn_support_weight, hy_fn1).
fnction(fn_move_to_vertical_position).
fnction(fn_hang_weight).
parent_of(fn_support_sleeping, fn_move_to_vertical_position,

hy_fn2).
parent_of(fn_support_sleeping, fn_hang_weight, hy_fn2).
before(fn_move_to_vertical_position, fn_hang_weight, hy_fn2).

Relations among entities are expressed in a similar way. For the
airplane seat example, the following relations describe an issue
with a proposed solution to fulfill a requirement:

fulfills(sl_pivoting_recliner, rq_support_250lb_weight).
issue(iu_support_weight_at_flat_position, “load on a cantilever

causes high bending stress”).
relates(iu_support_weight_at_flat_position,ph_bending_stress).
relates(iu_support_weight_at_flat_position, rq_support_250lb_

weight).
relates(iu_support_weight_at_flat_position, sl_pivoting_recliner).

Fig. 4 Differences in thinking about the problem; the designer
on the top continuously adds requirements, functions, and arti-
facts, while the designer on the bottom focuses on behaviors
(from Ref. [37])

Fig. 5 Comparison of box plots of the five entities for two
designers (from Ref. [37])

Fig. 6 A comparison of iterations among different entity types
for two designers

1The term function was a reserved word in the ASP solver that we employed, thus
fnction is used when representing predicates of functions.

031007-6 / Vol. 15, SEPTEMBER 2015 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



To show how strategies can be traced three examples are
explained. For the first example, consider a strategy where design-
ers abstract an aspect of a problem definition. When exploring the
design space, a designer can add more detail to an idea or generalize
that idea. The ability to abstract concepts is considered a key in crea-
tive idea generation [39]. To see whether a designer has employed an
abstraction strategy during an interval, one can examine the changes
in two state models at the beginning and the end of that interval, then
see if the designer added more specific details to a stated thought or
if he generalized those parts to more abstract concepts.

To explain the tracing mechanism let us introduce a definition
of states and operators in our framework. The definitions may
seem to be arbitrary considering the fact that it is difficult to
clearly define boundaries of mental states for human subjects.
Consider the simple case where any change such as the addition
of a new instance of an entity, specifying an attribute of an exist-
ing entity or relating two instances is an operator that alters the
current state into a new state. Strategies can be traced by compar-
ing two states in an interval during which one expects the strategy
to be employed. Going back to the example of the abstraction
strategy, we look for the states that include parent–child relations.
Then we locate the two states that contain the parent and the child.
If the state that has the parent occurs after the state that has the
child, it indicates that the designer followed an abstraction strat-
egy. The strategy may be employed with any entity, but we will
only show an example with requirements. Three operators in a
specific order define the strategy. Two are the addition of the
requirements and one relates the parent to the child in an instance
where the parent was added before the child. The states will be:

State at T1: requirement(rq1).
State at T2: requirement(rq2).
State at T3: parent_child(rq2,rq1,hy1).

where T1<T2<T3. Instances of strategies are traced using an
ASP solver program. In most ASP solvers, a predicate that ends
with a dot represents a fact, the head of a rule is separated from the
body by colon and dash, and variables are capitalized while instan-
ces are in lower case. The abstraction strategy that was previously
illustrated can be traced by using an ASP solver and applying the
following rule to all the predicates (facts) that are derived from a P-
maps mode (in its textual format in the form of logic predicates):

strategy(upward_abstraction,Entity_parent):- entity(Entity_parent,
T_parent),

entity(Entity_child,T_child), parent_of(Entity_parent,Entity_
child, T_parent_of),

T_parent>T_child.

The rule matches against a parent entity whose creation is later
than that of its child. For any entity that matches against the rule,
an answer is generated with a predicate “strategy(upward_
abstraction,Entity_parent).” Notice that “upward abstraction” is in
lower case and “Entity_parent” is in uppercase. As we noted in ear-
lier comments about the flexibility of P-maps, predicates can be
declared at any time and there is no restriction on the order of add-
ing new predicates in relation to others. This means that, in defining
a hierarchy, it is not necessary to add children to existing parents.

A more complex strategy to trace is if designers follow a unidir-
ectional process in building the problem space. One might assume
that requirements and functions precede artifacts, behaviors, and
issues if the designer follows a prescribed process such as Pahl
and Beitz’s systematic design approach [17]. One can then con-
sider that functions that satisfy requirements before artifacts and
behaviors for those requirements represent a unidirectional for-
ward process. To formally state the strategy in P-maps we should
look at each requirement to see if it is satisfied by a function
before being related to other entities. We should include all possi-
ble combinations of relations for this strategy (depending on what
relations exist between a requirement and other entities). We
show two combinations here:

strategy(forward_processing,Requirement): -satisfies(Fnction,
Requirement,T_satisfies),

fulfills(Artifact,Requirement,T_fulfills), manages(Behavior,
Requirement,T_manages),

relates(Issue,Requirement,T_related), T_satisfies<T_fulfills,
T_ satisfies <T_manages,

T_satisfies<T_related.
strategy(forward_processing,Requirement):- satisfies(Fnction,

Requirement,T_satisfies),
relates(Issue,Requirement,T_ related), T_satisfies<T_related.

The two strategies were traced for both data sets: protocols of
experts [37] and students’ data collected by the Formulator web
tool. The results are shown in Table 3. Making claims about dif-
ferences between novices and experts from this comparison is pre-
mature. However, two interesting observations can be taken for
future investigations: (1) experts frame problems more abstractly
than novices do; (2) the more balanced distribution of strategies
adopted by the students suggest that using a computer tool increases
the chances of getting higher hits on the occurrences of design strat-
egies, simply because of the limitations of protocol analysis meth-
ods in eliciting verbalized thoughts, as noted by Cross et al. [3]. In
addition, strategies with zero medians are good candidates for fur-
ther studies where we can compare two groups of participants, one
of which is deliberately prompted with adopting the strategy.

The approach to tracing formally declared strategies offers a top-
down approach to hypothesis testing. One can look in the literature
or use one’s intuition to form hypotheses about strategies that
designers adopt to test for their presence. One can also employ data
mining techniques to generate hypotheses from collected data.

4.4 Search for Patterns in Problem Formulation
Data. The fine granularity of P-maps makes it possible to extract
information about problem formulation in terms of different varia-
bles that describe a state at a time, or differences between two
states. These variables can be chosen to be independent of each
other. For example, hierarchy depth for an entity (i.e., the maxi-
mum number of levels of parent–child relations) is independent of
the frequency of that entity (the number of instances of that en-
tity). In other words, two designers may have specified 20 require-
ments in their P-maps, but one is in a wide hierarchy with two
levels while the other is in a deep hierarchy with four levels. Table
4 shows an example of a few P-maps variables that were com-
puted for a data set collected with the Formulator web tool [7].
Extracting some variables such as the number of implicit require-
ments (currently) involves human judgment of the data entered in
the tool, while variables such as the deepest entity or the number
of relations between artifacts and requirements can be automati-
cally found with querying the database of the tool.

Once a large number of P-maps are collected, data mining can
be used to search for patterns. One possible method is the mining
of association rules that have high enough scores of confidence
and lift [40], representing commonness and high correlation,
respectively. Apriori association rule mining [40] of the data set
example of Table 4 (which includes 14 more instances, a total of
20 P-maps) reveals some relations among the variables, examples
of which can be seen in Table 5. It should be emphasized that one

Table 3 Variations in adopting two strategies among students
and experts

Students Experts

Upward
abstraction

Forward
processing

Upward
abstraction

Forward
processing

Mean 2.9 1.1 6.1 0.13
Median 3 0 4.5 0
Standard deviation 2.7 2.5 3.6 0.35

Journal of Computing and Information Science in Engineering SEPTEMBER 2015, Vol. 15 / 031007-7

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



should be cautious with interpreting such rules and use them for
suggesting hypotheses, not proofs; the rules show concurrency,
not necessarily causality. In addition, generalization of such rules
to other problems may be incorrect. In the given example data set,
number of implicit requirements or function depth depend on the
choice of the exercised problem. One remedy is to use normalized
variables when applicable.

Another possible method is sequence mining. One can write a
sequence of the entities, attributes, and links that are added in P-
maps of each designer so that a sequence represents the order of
entities that the designer created. The sequences collected from
different design sessions can be searched for frequent subsequen-
ces with high measure of support; that is to see how frequently a
partial order of the entities appeared among different designers.
Table 6 shows results from the data set collected with the web
tool. The subsequences had a support measure more than 0.5, indi-
cating that they occurred among more than half of the students.

4.5 Potential Applications: Problem Formulation Skill
Test and Tutoring System. Possible future applications of the
P-maps framework are the development of a test of problem for-
mulation skill and tutoring for that skill. The test development
application not only includes collecting data to determine what
design problems, questions, and activities are better for identify-
ing differences in the designers’ skills but also extends to auto-
mating the process of assessing test takers’ responses. Once data
are collected for various activities, text processing techniques can be
used to classify the responses into different bins or categories based
on semantic distance. A union of all responses, especially if taken
from experts, can form a normative P-maps for each problem, ques-
tion, or activity as a basis for scoring test takers in the future. This
is similar to the process that was carried out for developing Shah’s
divergent thinking test [41], with the main difference that the latter
was developed with pen and paper, a resource intensive method.

Another future application extends the Formulator web tool
into a tutoring system. With more findings about how different

strategies (dynamic changes in P-maps states) and variables (static
snapshots of P-maps states) correlate with creativity, at each step
of problem formulation practice tasks, one can generate the
right feedback and hints which are common behaviors of tutoring
systems [42].

5 Discussion

This section discusses the modeling abilities of P-maps and
their limitations in capturing and analyzing problem formulation
data. A common measure of assessing a coding schema is finding
the inter-rater agreement. Even though P-maps have an acceptable
level of agreement among coders, most of the limitations in cap-
turing the data emerge if one uses P-maps as a coding schema to
encode protocols. This is a shortcoming of protocol analysis. Col-
lecting data with a computer tool that organizes data according to
P-maps ontology will overcome such limitations. We have devel-
oped a computer tool that serves this purpose [7]. We also discuss
the differences in the top-down vs. bottom-up approaches for
analyzing problem formulation data.

5.1 Assessing Unambiguity of the Framework With
Inter-Rater Agreement. A common method of determining
unambiguousness of an ontology is to find the inter-rater agree-
ment. Two statistical measures of agreement (taking into account
agreement occurring by chance) in assigning categorical ratings
are Cohen’s kappa [43] and Fleiss’ kappa [44]. Cohen’s kappa is
used for two raters while Fleiss’s kappa is for any fixed number of
raters. To measure the inter-rater agreement in coding protocols
within the P-maps ontology, segments of code were given to
trained raters who were asked to assign one of the seven catego-
ries {requirement, function, artifact, behavior, issue, hierarchy,
intergroup} in P-maps: the five entity groups, hierarchical relation,
and the intergroup relation. The required sample size was found to
be 51, based on Gwet [45] for an expected agreement of 70%
among the coders, and an expected 20% error in coding for each

Table 4 Example of a data set of P-maps variables

Implicit
requirements

Function
depth

Function artifact
relations

Deepest
entity

Requirement
percentage

Artifact
percentage

Dominant
fourth quartile

4 2 0 Function 0.52 0.11 Requirement
0 2 2 Requirement 0.47 0.32 Artifact
0 2 0 Function 0.19 0.26 Function
4 2 14 Artifact 0.21 0.31 Issue
1 1 6 Behavior 0.19 0.16 Issue
1 2 3 Function 0.26 0.26 Function

Table 5 Examples of association rules found in a data set of P-maps variables

Rule Confidence Lift

Implicit requirements¼ 0 ¼¼> function depth¼ 2 and dominant fourth quartile¼ artifact 0.5 2.1
Function artifact relations¼ 1 and requirement percent¼ ‘(0–0.196)’ ¼¼> implicit requirements¼ 0 1 2.1
Implicit requirements¼ 1 ¼¼> deepest entity¼ function 0.83 1.59

Table 6 Frequent subsequences with a support higher than 50%

Sequence Support

[‘requirement’, ‘fnction’] 0.59
[‘fnction’, ‘fnction’, ‘fnction’] 0.59
[‘requirement’, ‘requirement’, ‘requirement’] 0.62
[‘requirement’, ‘parent_of_requirement’, ‘requirement’] 0.51
[‘parent_of_requirement’, ‘requirement’, ‘requirement’, ‘parent_of_requirement’, ‘parent_of_requirement’, ‘requirement’, ‘requirement’,
‘parent_of_requirement’]

0.54

031007-8 / Vol. 15, SEPTEMBER 2015 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



rater. For the eight transcribed protocols of [37], six segments
were taken out of each protocol with systematic sampling.

Three coders who had previously used the web tool and were
familiar with the ontology coded the 48 selected segments.
Fleiss’s kappa for the three raters was 0.35, which is
fair–moderate agreement. A pairwise comparison with Cohen’s
kappa resulted in 0.41, 0.36, and 0.28 agreements between the
pairs. Coding the relations was inherently more difficult because
relations were vaguer to describe verbally and often related to
entities which happened distant to each other temporally. After
removing {hierarchy, intergroup} from the choices, the agreement
would become higher: Fleiss’s kappa 0.48 for the three raters;
Cohen’s kappa, 0.56, 0.47, and 0.43. In addition to the three new
coders, inter-rater agreement was measured between two of the
authors whose agreement was 0.64 which is substantial [46].
Excluding the relationships, the agreement would be 0.75 which
is nearly perfect [47].

5.2 Limitations of Coding Protocols With P-Maps. While
the P-maps models allowed us to represent a large part of the
problem formulation process the designers went through, there
were some things that could not be coded. One of these limitations
is that specific groundings, or protosolutions, the designer specified
cannot be identified using the P-maps model. Though the P-maps
model represents the space the designer could have explored, they
may not have necessarily explored all groundings in the space.

Another limitation is that the model is designed to be domain
independent. While this is a major strength of the model, this also
means that without domain knowledge, the different combinations of
possible designs that may be generated from the P-maps may contain
artifacts, or other entities that may not combine well or at all in real-
ity. This is a specific example of the limitation introduced in the pre-
vious paragraph. In order to allow for this information to be entered,
the P-maps model would need to allow the designer to specify when
two entities cannot be combined into one protosolution.

There is no way to specify whether the children of a parent are
both required or if they are disjunctive when interpreting the tran-
scriptions. For example, a device may either require a regular
valve or a one-way valve, or both may be required in different
parts of the device.

Finally, we found that designers will often specify information
about what does not need to be considered in the design space.
For example, one designer concluded that, since the device was
intended for freshwater use only, salt erosion, oxidation, or any
contamination of the materials could be safely ignored. There is
currently no clear way to code this information. On the other
hand, the model does allow for statement such as “the device
should be made out of materials that do not become contaminated
and that should be resistant to salt erosion or oxidation.”

5.3 Paths of Discovery: Top-Down Versus Bottom-Up
Approaches. P-maps offer a variety of analyses modes which we
should approach with caution. We presented two major types of
analysis which we will extend in our future work. In the top-down
approach, we have an idea about the patterns we want to look into
beforehand. We specifically are interested in understanding what
strategies designers use in early conceptual design, and how they
influence creative outcome. We can use outcome-based measures
to determine which designs are more creative. Then we can find
out which strategies correlate well with more creativity. We have
traced a few strategies in the encoded protocols which we did not
report here since their occurrences were insignificant in the proto-
cols. We believe that once we collect data in a computer tool
(with subjects who are familiarized with our ontology), they will add
more detail to their P-maps models than the ones we created from
protocols. Then we will find more traces of strategies that might
have been missed because of the absence of the tool and ontology.

In the bottom-up approach, we elicit quantitative information
from P-maps to correlate them to a measure of creative outcome.
The similarity of P-maps to graph networks (see Fig. 3) makes it

also possible to define graph-based measures such as cycles and
node degrees. Many P-maps variables have been defined but with
vector analysis, one may find a few of these variables to be line-
arly independent. There is not much known about design thinking
and problem formulation, and past studies mostly rely on limited
observations. Thus, there is potential to find new and surprising
results in data that is captured with respect to our ontology; how-
ever, as with conventional data mining, we are prone to finding
correlations that are meaningless in the context of design.

6 Conclusion

We are interested in understanding differences in designers
thinking, especially when they formulate problems at the early
stages of conceptual design. To that end, we have defined an onto-
logical framework that can represent design thinking with tempo-
ral states. Each state of the P-maps framework shows how
requirements, functions, artifacts, behaviors, and issues relate to
each other. P-maps support an unprecedented level of detail. They
allow multiple disjunctive relations among instances of the same
or different entities. They also have a common hierarchical struc-
ture with partial orderings.

We showed how we can use a graphical representation of
P-maps to understand the process of a designer’s problem formu-
lation, through changes in the states of a co-evolving
problem–solution space. We also compared different designers’
P-maps and discussed how we gained insight into their differences
by coding and analyzing collected protocols with the P-maps on-
tology as a predefined coding schema. Using ASP, we explained
how we can formalize and trace instances of strategies that
designers adopt. Finally, we explained how we can use data min-
ing methods in search for common patterns among sequences of
P-maps data fragments and in the association of variables that
define a P-maps state.

We discussed some limitations of the framework and argued
that some can be overcome if a computer tool is used for collect-
ing the data where there is no interpretation by a human coder,
and instead the user of the tool categorizes the piece of thought
into P-maps as he chooses. One interesting thread to follow will
involve two variables each of which has two levels: data modality
and the coder. Data can be entered in the Formulator tool or
expressed verbally. The coder can be an expert human judge or a
computer program.

We should add that we have built the web-based computer tool,
Problem Formulator, based on the P-maps framework to help us
collect problem formulation data on a large scale. We have col-
lected data from a class of student designers. Examples of differ-
ent types of possible analyses within the P-maps framework were
presented throughout the paper. Even though the collected data
forms too small a sample for drawing any significant conclusions,
the immediate payoff in using the tool has been the fact that data
collection has been much faster than protocol analysis. Future
work should also include more design problems with different lev-
els of required domain knowledge, and in different domains. One
aspect to study is to find variables and patterns that are independ-
ent of the design problem. We believe that P-maps open new ave-
nues for empirical research in design. The methods that were
mentioned in this paper, such as data mining and model tracing,
set the stage for radical changes in the field of design studies.

Acknowledgment

This study was supported by CMMI Grant No. 1002910 from
the National Science Foundation.

References
[1] Ericsson, K. A., and Simon, H. A., 1992, Protocol Analysis: Verbal Reports as

Data, MIT, Cambridge, MA.
[2] Cross, N., Dorst, K., and Roozenburg, N., 1992, “Research in Design

Thinking,” Proceedings of a Workshop Meeting Held at the Faculty of

Journal of Computing and Information Science in Engineering SEPTEMBER 2015, Vol. 15 / 031007-9

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms



Industrial Design Engineering Delft University of Technology, The Nether-
lands, May 29–31, 1991, Delft University Press, Delft, The Netherlands.

[3] Cross, N., Christiaans, H., and Dorst, K., 1996, Analysing Design Activity,
Wiley, Chichester, UK.

[4] Valkenburg, R., and Dorst, K., 1998, “The Reflective Practice of Design
Teams,” Des. Stud., 19(3), pp. 249–271.

[5] Coyne, R., 2005, “Wicked Problems Revisited,” Des. Stud., 26(1), pp. 5–17.
[6] Dorst, K., and Cross, N., 2001, “Creativity in the Design Process: Co-Evolution

of Problem–Solution,” Des. Stud., 22(5), pp. 425–437.
[7] Maclellan, C. J., Langley, P., Shah, J. J., and Dinar, M., 2013, “A Computa-

tional Aid for Problem Formulation in Early Conceptual Design,” ASME J.
Comput. Inf. Sci. Eng., 13(3), p. 031005.

[8] Thomas, J. C., and Carroll, J. M., 1979, “The Psychological Study of Design,”
Des. Stud., 1(1), pp. 5–11.

[9] Cross, N., and Cross, A. C., 1998, “Expertise in Engineering Design,” Res.
Eng. Des., 10(3), pp. 141–149.

[10] Atman, C. J., Chimka, J. R., Bursic, K. M., and Nachtmann, H. L., 1999, “A
Comparison of Freshman and Senior Engineering Design Processes,” Des.
Stud., 20(2), pp. 131–152.

[11] Eisentraut, R., 1999, “Styles of Problem Solving and Their Influence on the
Design Process,” Des. Stud., 20(5), pp. 431–437.

[12] Harfield, S., 2007, “On Design ‘Problematization’: Theorising Differences in
Designed Outcomes,” Des. Stud., 28(2), pp. 159–173.

[13] Ball, L. J., Ormerod, T. C., and Morley, N. J., 2004, “Spontaneous Analogising
in Engineering Design: A Comparative Analysis of Experts and Novices,” Des.
Stud., 25(5), pp. 495–508.

[14] Ho, C., 2001, “Some Phenomena of Problem Decomposition Strategy for
Design Thinking: Differences Between Novices and Experts,” Des. Stud.,
22(1), pp. 27–45.

[15] Kruger, C., and Cross, N., 2006, “Solution Driven Versus Problem Driven
Design: Strategies and Outcomes,” Des. Stud., 27(5), pp. 527–548.

[16] Gero, J. S., and Mc Neill, T., 1998, “An Approach to the Analysis of Design
Protocols,” Des. Stud., 19(1), pp. 21–61.

[17] Pahl, G., and Beitz, W., 1996, Engineering Design: A Systematic Approach,
Springer, London.

[18] Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., and Wood, K. L., 2002,
“A Functional Basis for Engineering Design: Reconciling and Evolving Previ-
ous Efforts,” Res. Eng. Des., 13(2), pp. 65–82.

[19] Maher, M. L., Poon, J., and Boulanger, S., 1996, “Formalising Design Explora-
tion as Co-Evolution: A Combined Gene Approach,” Advances in Formal
Design Methods for CAD: Proceedings of the IFIP WG5.2 Workshop on For-
mal Design Methods for Computer-Aided Design, J. S. Gero, and F. Sudweeks,
eds., June, Springer, pp. 3–30.

[20] Goldschmidt, G., 1997, “Capturing Indeterminism: Representation in the
Design Problem Space,” Des. Stud., 18(4), pp. 441–455.

[21] Goldschmidt, G., and Tatsa, D., 2005, “How Good are Good Ideas? Correlates
of Design Creativity,” Des. Stud., 26(6), pp. 593–611.

[22] Goel, V., and Pirolli, P., 1992, “The Structure of Design Problem Spaces,”
Cogn. Sci., 16(3), pp. 395–429.

[23] Newell, A., and Simon, H. A., 1972, Human Problem Solving, Prentice-Hall,
Upper Saddle River, NJ.

[24] Gero, J. S., 1990, “Design Prototypes: A Knowledge Representation Schema
for Design,” AI Mag., 11(4), pp. 26–36.

[25] Pourmohamadi, M., and Gero, J. S., 2011, “LINKOgrapher: An Analysis Tool
to Study Design Protocols Based on FBS Coding,” International Conference on
Engineering Design, Copenhagen, Denmark, pp. 1–10.

[26] Anthony, L., Regli, W. C., John, J. E., and Lombeyda, S. V., 2001, “An
Approach to Capturing Structure, Behavior, and Function of Artifacts in
Computer-Aided Design,” ASME J. Comput. Inf. Sci. Eng., 1(2), pp. 186–192.

[27] Gero, J. S., and Kannengiesser, U., 2004, “The Situated Function-Behaviour-
Structure Framework,” Des. Stud., 25(4), pp. 373–391.

[28] Gero, J. S., and Kannengiesser, U., 2007, “Locating Creativity in a Framework
of Designing for Innovation,” Trends in Computer Aided Innovation, N. Le�on-
Rovira, ed., Springer, Boston, pp. 57–66.

[29] Goel, A. K., Rugaber, S., and Vattam, S., 2009, “Structure, Behavior and Func-
tion of Complex Systems: The Structure, Behavior, and Function Modeling
Language,” Artif. Intell. Eng. Des. Anal. Manuf., 23(1), pp. 23–35.

[30] W€olkl, S., and Shea, K., 2009, “A Computational Product Model for Concep-
tual Design Using SysML,” ASME Paper No. DETC2009-87239.

[31] Boden, M. A., 2004, The Creative Mind: Myths and Mechanisms, Routledge,
London/New York.

[32] Novak, J. D., and Gowin, D. B., 1984, Learning How to Learn, Cambridge Uni-
versity, New York.

[33] Novak, J. D., and Ca~nas, A. J., 2008, “The Theory Underlying Concept Maps
and How to Construct and Use Them,” Florida Institute for Human and Machine
Cognition, Technical Report IHMC CmapTools 2006-01 Rev 01-2008.

[34] Quillian, R., 1966, “Semantic Memory,” Ph.D. thesis, Carnegie Institute of
Technology, Pittsburgh, PA.

[35] Lehmann, F., 1992, “Semantic Networks,” Comput. Math. Appl., 23(2–5), pp. 1–50.
[36] Dinar, M., Shah, J. J., Langley, P., Campana, E., and Hunt, G. R., 2011,

“Towards a Formal Representation Model of Problem Formulation in Design,”
ASME Paper No. DETC2011-48396.

[37] Danielescu, A., Dinar, M., Maclellan, C. J., Shah, J. J., and Langley, P., 2012,
“The Structure of Creative Design: What Problem Maps Can Tell us About Prob-
lem Formulation and Creative Designers,” ASME Paper No. DETC2012-70325.

[38] Gelfond, M., 2008, “Answer Sets,” Handbook of Knowledge Representation, F.
van Harmelen, V. Lifschitz, B. Porter, eds., Elsevier, Oxford, UK, pp. 285–316.

[39] Ward, T. B., Patterson, M. J., and Sifonis, C. M., 2004, “The Role of Specificity
and Abstraction in Creative Idea Generation,” Creat. Res. J., 16(1), pp. 1–9.

[40] Tan, P.-N., Steinbach, M., and Kumar, V., 2005, Introduction to Data Mining,
Pearson Addison Wesley, Boston.

[41] Shah, J. J., Millsap, R. E., Woodward, J., and Smith, S. M., 2012, “Applied
Tests of Design Skills—Part 1: Divergent Thinking,” ASME J. Mech. Des.,
134(2), p. 021005.

[42] Vanlehn, K., 2006, “The Behavior of Tutoring Systems,” Int. J. Artif. Intell.
Educ., 16(3), pp. 227–265.

[43] Cohen, J., 1960, “A Coefficient of Agreement for Nominal Scales,” Educ. Psy-
chol. Meas., 20(1), pp. 37–46.

[44] Fleiss, J. L., 1971, “Measuring Nominal Scale Agreement Among Many
Raters,” Psychol. Bull., 76(5), pp. 378–382.

[45] Gwet, K. L., 2008, “Variance Estimation of Nominal-Scale Inter-Rater Reliabil-
ity With Random Selection of Raters,” Psychometrika, 73(3), pp. 407–430.

[46] Landis, J. R., and Koch, G. G., 1977, “The Measurement of Observer Agree-
ment for Categorical Data,” Biometrics, 33(1), pp. 159–174.

[47] Fleiss, J. L., Levin, B., and Paik, M. C., 2003, Statistical Methods for Rates and
Proportions, 3rd ed., Wiley, Hoboken, NJ.

031007-10 / Vol. 15, SEPTEMBER 2015 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 04/24/2015 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1016/S0142-694X(98)00011-8
http://dx.doi.org/10.1016/j.destud.2004.06.005
http://dx.doi.org/10.1016/S0142-694X(01)00009-6
http://dx.doi.org/10.1115/1.4024714
http://dx.doi.org/10.1115/1.4024714
http://dx.doi.org/10.1016/0142-694X(79)90020-6
http://dx.doi.org/10.1007/BF01607156
http://dx.doi.org/10.1007/BF01607156
http://dx.doi.org/10.1016/S0142-694X(98)00031-3
http://dx.doi.org/10.1016/S0142-694X(98)00031-3
http://dx.doi.org/10.1016/S0142-694X(99)00016-2
http://dx.doi.org/10.1016/j.destud.2006.11.005
http://dx.doi.org/10.1016/j.destud.2004.05.004
http://dx.doi.org/10.1016/j.destud.2004.05.004
http://dx.doi.org/10.1016/S0142-694X(99)00030-7
http://dx.doi.org/10.1016/j.destud.2006.01.001
http://dx.doi.org/10.1016/S0142-694X(97)00015-X
http://dx.doi.org/10.1007/s00163-001-0008-3
http://dx.doi.org/10.1016/S0142-694X(97)00011-2
http://dx.doi.org/10.1016/j.destud.2005.02.004
http://dx.doi.org/10.1207/s15516709cog1603_3
http://dx.doi.org/10.1609/aimag.v11i4.854
http://dx.doi.org/10.1115/1.1385826
http://dx.doi.org/10.1016/j.destud.2003.10.010
http://dx.doi.org/10.1007/978-0-387-75456-7_6
http://dx.doi.org/10.1017/S0890060409000080
http://dx.doi.org/10.1115/DETC2009-87239
http://dx.doi.org/10.1017/CBO9781139173469
http://dx.doi.org/10.1016/0898-1221(92)90135-5
http://dx.doi.org/10.1115/DETC2011-48396
http://dx.doi.org/10.1115/DETC2012-70325
http://dx.doi.org/10.1207/s15326934crj1601_1
http://dx.doi.org/10.1115/1.4005594
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1037/h0031619
http://dx.doi.org/10.1007/s11336-007-9054-8
http://dx.doi.org/10.2307/2529310
http://dx.doi.org/10.1002/0471445428
http://dx.doi.org/10.1002/0471445428

	s1
	s2
	l
	s2A
	s2B
	s2C
	s3
	s3A
	s3B
	F1
	s4
	T1
	F2
	s4A
	s4B
	T2
	F3
	s4C
	F4
	F5
	F6
	FN1
	s4D
	T3
	s4E
	s5
	s5A
	T4
	T5
	T6
	s5B
	s5C
	s6
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47

