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Conceptual design is a high-level cognitive activity that draws upon distinctive human
mental abilities. An early and fundamental part of the design process is problem formula-
tion, in which designers determine the structure of the problem space they will later
search. Although many tools have been developed to aid the later stages of design, few
tools exist that aid designers in the early stages. In this paper, we describe Problem For-
mulator, an interactive environment that focuses on this stage of the design process. This
tool has representations and operations that let designers create, visualize, explore, and
reflect on their formulations. Although this process remains entirely under the user’s con-
trol, these capabilities make the system well positioned to aid the early stages of concep-
tual design. [DOI: 10.1115/1.4024714]
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1 Background and Motivation

Design is one of the most complex cognitive activities in which
humans engage, involving sophisticated reasoning about specifi-
cations, functional devices, and how the latter satisfy the former.
As such, design has long been recognized as standing to benefit
from computational aids, and there have been many success sto-
ries in the general area of computer-aided design.

However, nearly all work in this arena has focused on later
stages of the design process, which involve determining the
detailed structure of designed artifacts or deciding on specific val-
ues for their parameters. In contrast, the earlier, and equally im-
portant, stage of conceptual design, or problem formulation, has
received relatively little attention. This phase plays a key role in
the design enterprise, since it focuses on how one formulates the
problem, which in turn constrains the alternatives considered dur-
ing later stages. Thus, helping users generate promising concep-
tual designs early on will increase their chances of finding useful
detailed designs later.

One reason is that design tasks, as typically stated by customers
or marketing departments, are incompletely and ambiguously
specified. To make them operational, designers must often add
requirements, clarify goals, identify trade-offs, and otherwise
refine the specifications they have been provided. In other cases,
to make the problem solvable they may even need to reject some
facets of the specification. These activities occur largely during
the conceptual period, although they may well incorporate feed-
back from later stages, especially when the designer encounters
problems that lead him to reconsider earlier choices.

There is also reason to believe that the formulation phase is the
primary locus of creativity in the design process, particularly for
nonroutine problems. Howard [1], in a review of both the design
and psychology literature, provides evidence for this claim and
identifies conceptual design and task analysis as the phases where
the most creative output is produced. Furthermore, Christiaans [2]
has discovered that the more time a designer spends formulating a

problem, the better able he is to achieve a creative result. The rea-
son for this relationship is straight-forward—alternative formula-
tions of the design task can lead to radically different artifacts in
the later stages. As a result, computational tools that encourage
exploring the space of possible formulations should substantially
increase the number and diversity of conceptual designs, which is
generally viewed as desirable.

In this paper, we report a software environment to aid problem
formulation during conceptual design. We start with an illustrative
example that clarifies the types of decisions that we aim to sup-
port. Next, we review some basic findings about human problem
solving that have informed our approach to this task. After this,
we describe an innovative interactive system that assists users in
conceptual design, then contrast it with earlier approaches to the
same problem. In closing, we discuss limitations of our frame-
work and suggest directions for additional research.

2 A Motivating Example

We can illustrate these ideas with an example of early concep-
tual design. Consider a task that involves designing a coffee
grinder.

Design a device to produce ground coffee that is safe, adjustable,
reusable, light weight, portable, cheap, and easy to manufacture.
These specifications are quite abstract, in that they place some
conditions on the final design but also leave many aspects
unstated. Moreover, the choices are far less constrained than those
that arise in later stages of design, since even the basic structure
of the solution is unspecified. The main challenge confronting the
designer is to transform this ill-structured problem into one or
more conceptual designs that respond to the task statement.

Presumably, the designer would start by translating the task
specification into explicit requirements. These requirements may
be functional, such as being adjustable or capable of producing
ground coffee, or structural, such as being cheap and light weight.
Next, he might decide that the primary function of grinding
coffee should be enabled by a physical artifact or device that pro-
duces some behavior that generates ground coffee as a result.
However, this statement of the design is no less abstract than the
specifications they address. Thus, the designer might decide to
elaborate on each of these elements in ways that provide addi-
tional details.

For example, he might choose to decompose the primary arti-
fact into three subartifacts, a container, a stand, and a grinder,
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with the latter being further subdivided into subartifacts for the
blade, shaft, and motor. Similarly, the designer might decompose
the primary function into a number of subfunctions, such as hold-
ing the beans and breaking them into smaller parts, each supported
by the subartifacts already created. He may also associate behav-
iors with these subdevices that clarify how each one enables some
associated function. More generally, he may organize his concep-
tual design in hierarchical terms, with elements at lower levels
providing details about how to achieve their parents.

It is important to mention that, during this elaborative process,
the designer need not fixate on a single abstract solution, and that
he may well note alternatives he wants to consider. For instance,
he might think of two distinct ways to break coffee beans into
smaller pieces, one that involves rotary grinding and another that
involves lateral chopping. The designer might then note subarti-
facts that would enable these alternative subfunctions, as well as
behaviors that describe this linkage. These disjunctive choices can
be interleaved with the conjunctive hierarchical decompositions,
effectively producing an AND-OR tree that characterizes the
formulation.

The designer’s formulation of the problem may also include
issues or challenges that he has noted. These may involve specific
problems that must be overcome, trade-offs that must be
addressed, and other factors that may inform choices arising dur-
ing the elaboration process. These are not, strictly speaking, part
of the conceptual design, but they can play crucial roles in its de-
velopment, and thus are worth considering as partners in the over-
all process.

Although much of the designer’s activity during this stage
involves refining artifacts, functions, and their behaviors, he may
also devote some effort to altering the specifications themselves.
These steps may focus on elaborating the requirements and goals
given in the task description, leading both to subrequirements and
subgoals that are organized hierarchically and that note alternative
decompositions. However, in some cases, the designer may also
retract elements stated explicitly in the specification because he
decides that they are inconsistent with other elements or the trade-
offs they introduce would be too difficult to achieve. Thus, con-
ceptual design involves more than determining how to satisfy
specifications; it may also involve reformulating the task along
different lines.

This example demonstrates that during the problem formulation
process a designer can regularly adjust his approach and use a va-
riety of strategies. He might start by performing a requirement
analysis, quickly shift to brainstorming artifacts that satisfy the
structural requirements, then perform a functional decomposition,
which in turn might prompt a further decomposition of the arti-
facts. When an impasse or dead end is encountered he might elab-
orate on or remove requirements before repeating the process.
Any ontology or interactive tool designed to support this activity
must be flexible enough to support these varying approaches.

Although all designers engage in early conceptual design and
thus make decisions of the sort just described, it seems clear that
some people are more effective at this stage than others, espe-
cially in terms of their ability to creatively generate many alterna-
tives. This suggests that many designers would benefit from
computational aids that help them encode, visualize, and analyze
their candidate formulations. In this paper, we introduce a compu-
tational system that interactively assists designers in these tasks.
This work differs from previous systems that attempt to automate
the design process; our system assists the designer, but ultimately
they are responsible for deciding if, and how, to respond. Before
we describe this system, we should review some basic findings
about problem solving that have informed it.

3 Background on Human Problem Solving

Design is naturally viewed as a problem solving activity, an
area that has received substantial attention in cognitive psychol-
ogy. The dominant theory of human problem solving, due to New-

ell and Simon [3], posits that this process involves heuristic
search through a “problem space,” a view that is well supported
by empirical studies. However, researchers in this tradition also
often distinguish between well-structured tasks and ill-structured
problems [4]. Tasks of the former type may require problem solv-
ing and heuristic search, but the problems themselves are unam-
biguous. In contrast, ill-structured tasks have a vague character
that humans must address before they can make progress.

Although designers certainly must address many well-
structured tasks, we are interested here in the early stages of con-
ceptual design, which arguably involve ill-structured tasks. These
early stages revolve around problem definition and formulation,
i.e., the activity of constructing a problem space rather than the
activity of searching such a space (which has been more widely
studied by cognitive science researchers). Most accounts of
human problem solving claim that such ill-structured tasks require
considerably more effort in this preliminary stage.

We can view problem formulation as closely related to the
“understanding” process that arises in word problems from
physics and algebra [5,6], and which even occurs in many classic
puzzles [7]. Both processes transform specifications, which are
sometimes ill-defined, into well-defined problem spaces that can
be searched for solutions. However, these spaces do not always
work out as desired, in which case the problem solver must revisit
his earlier formulation. Studies of cognition on insight problems
[8,9] suggest that their solution can require a change in the prob-
lem space being searched through mechanisms like elaboration,
constraint relaxation, and re-encoding.

Studies of design problem solving are generally consistent with
these observations. For example, Christiaan [10] presents evi-
dence that designers who spend more time on problem definition
produce better results. Fricke [11] found that the better designers
spend more time on problem formulation and engage in
“structured questioning” related to technical functions and attrib-
utes. Both Christiaans [12] and Atman [13] found that successful
designers set their priorities early and consciously build an
“image” of the problem. Valkenburg and Dorst [14] found that a
more successful design team considered more framings of prob-
lems than an unsuccessful team.

Empirical studies of design also reveal issues that can arise dur-
ing problem formulation. Gero [15] claims that designers interpret
requirements by producing interpreted representations that they
augment with implicit requirements taken from their own experi-
ences, leading them to view the same problem differently. In
some cases, this generates useful problem spaces, but Fricke [16]
observed that poor designers introduced fictitious constraints and
incorrect requirements that hindered their efforts to find solutions.
On a related note, Harfield [17] asserts that naive designers often
assume everything is fixed, whereas experts more commonly
question requirements.

Although the distinction between problem formulation and
problem solving has proved very useful, the former need not
always precede the latter. Several researchers have reported evi-
dence for the “co-evolution” of problem spaces and their solutions
[18–20]. The general finding is that designers detect partial struc-
tures in a problem space that they use to structure their search for
solutions within that space. This lets them generate initial designs,
which in turn leads to restructuring of the problem space or refine-
ments of the problem. In other words, problem solving can pro-
vide feedback that leads to improved problem formulations.

In summary, the literature on human problem solving, both in
design and more generally, contains relatively few studies of
problem formulation, but those which exist tell a reasonably con-
sistent story. Problem solving can occur only after the designer
has determined which space to search, which in turn depends on a
process of task understanding and problem formulation. This ac-
tivity plays a key role during the early stages of conceptual
design, but many designers, especially novices, encounter diffi-
culty in generating useful formulations, and even some experts do
not formulate tasks as broadly as possible. Taken together, these
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results buttress our claim that designers can benefit from computa-
tional aids that support problem formulation. We note that this
gap in the literature does not mean an approach that focuses on
problem formulation for improving design is justified; however,
we do believe that the problem formulation phase merits further
exploration.

4 An Interactive System for Conceptual Design

To support a designer in constructing problem formulations, we
have developed Problem Formulator, an interactive design assist-
ant. This tool focuses on the early stages of the design process and
lets the designer easily input information about their conceptual
designs, store this content for later review, and display it for the
user’s inspection. Before describing Problem Formulator’s repre-
sentations and operations, we should first review how we envision
the system operating.

Let us return to the scenario of designing a device to grind cof-
fee. Suppose the designer identifies some requirements for the de-
vice and enters them into the system. After providing the
requirements, he thinks of functions and artifacts that would
achieve them, which he also enters and links to relevant require-
ments. Next he generates some behaviors that characterize how
the device operates and links them to related functions and arti-
facts. Suppose he also identifies some issues with his current
design, which he also enters so that he can address them later. At
the end of this process, the system informs the designer that some
requirements have no links to any functions or artifacts, suggest-
ing the design is incomplete. This prompts the user to take action
to complete his formulation.

This example suggests that any interactive system for aiding con-
ceptual design should incorporate a number of components, including

• an internal representation for encoding problem formulations;
• a graphical or textual notation for displaying a given problem

formulation to the user;
• operations for creating requirements, functions, artifacts,

behaviors, and issues;
• mechanisms for creating relations between pairs of entities;
• operations for editing and deleting entities and links; and
• a reasoning system for identifying problems with a design,

such as incompleteness.

We believe any system that aims to aid designers in the concep-
tual design process should meet these six requirements. Thus, we
have organized the subsections that follow in terms of how the
Problem Formulator supports each of these capabilities. In some
cases, we also discuss alternative approaches that we considered
and rejected when developing the system.

4.1 Representation. Before our system can successfully aid
the conceptual design process, it must be able to represent the
types of information that designers generate. We can divide this
content into two broad categories, entities and the relations
between them. One complication is that often designers consider
alternatives, imagining multiple internally consistent solutions to
a problem that are sometimes called protosolutions [17]. The
Problem Formulator must represent these disjunctive protosolu-
tions in an efficient manner. To this end, the system relies on the
problem map [21–23] ontology shown in Fig. 1 for representing
conceptual designs. Because this paper focuses specifically on the
tool and the ontology has been thoroughly described in previous

papers, we will only focus on aspects of the ontology relevant to
our tool and describe these aspects in the context of a running
example. For a more detailed discussion of why we prefer this
representation over the function-behavior-structure and structure-
behavior-function ontologies, see the work of Dinar et al. [22]. To
summarize this discussion, problem maps are more expressive
than previous ontologies in three respects: they can model require-
ments, disjunctive hierarchical structure among elements in each
category (e.g., among requirements), and metacognitive issues
that designers may consider during the design process.

The problem map framework organizes entities into five main
categories:

• Requirements, which encode the problem specification and
goals for the design;

• Functions, which describe what the designed system will do;
• Artifacts, which describe structural aspects of the design;
• Behaviors, which describe how the artifact interacts with the

world; and,
• Issues, which note metalevel comments about the design.

To illustrate these five categories, let us refer back to the task of
designing a coffee grinder. If we focus on the single requirement
of developing a device that grinds coffee, then our designer might
naturally posit an abstract device or artifact that achieves this pur-
pose. Furthermore, he might consider a function that this artifact
carries out that achieve the requirement, namely grinding coffee.
He might also note that this function must be governed by some
behavior that transforms power input into the device into its grind-
ing ability. Finally, he might wonder if power transformation will
produce excessive heat that will have to be dealt with.

This type of conceptual thinking is easily represented in the
problem map ontology, which was created for this purpose. In this
case, there would be one entity for each of the five categories:

• produce ground coffee—a requirement
• grinding coffee—a function
• coffee grinder device—an artifact
• power transformation—a behavior
• will power transformation produce excessive heat?—an issue

Problem Formulator stores such content in a relational database
that reflects the problem map ontology.

Fig. 1 The problem map ontology

Fig. 2 An abstract coffee grinder design in Problem Formulator
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Once the system has stored this information internally, the
graphical interface can display it to the user. To distinguish among
the five entity types, Problem Formulator presents them in sepa-
rate columns that together make up a table. Figure 2 shows a
screen shot of the display for the abstract coffee grinder example.

The ability to represent individual entities, although essential to
the conceptual design process, is fairly trivial; the real power
comes from the ability to link these entities in interesting ways.
Designers may entertain many such relationships, but we maintain
they are usefully divided into intragroup and intergroup relations.
The former consist of alternative sets of parent–child links
between entities of the same type that specify different ways to
refine the parent. The latter consists of links between pairs of enti-
ties with different types that describe how they interact.

Referring to our running example of the coffee grinder, imagine
that our designer decides to decompose the grinding device into
two subartifacts: a container and a grinder, where the grinder fur-
ther decomposes into a blade and a motor.1 The designer might
then decide to include an alternative decomposition: a container
and a crusher. We maintain that consideration of such alternatives
is a central source of creativity in design.

The problem map framework lets Problem Formulator repre-
sent these parent–child relationships and their disjunctive charac-
ter. Problem maps interleave entities and their decompositions in
an AND-OR hierarchy that captures these connections. Essentially,
each decomposition specifies a possible refinement (OR), but each
such decomposition denotes a set of entities that must be achieved
together (AND). In this case, Problem Formulator’s graphical inter-
face would display the functional decompositions as seven entities
grouped into three sets, as Fig. 3 depicts.

The disjunctive character of decompositions makes them more
challenging to visualize. Early versions of Problem Formulator
showed all of the alternative decompositions at the same time, as
shown in Fig. 4. However, this made the interface very cluttered,
made it difficult to distinguish between alternative expansions,
and appeared to discourage users from thinking disjunctively.
Pilot studies suggested that designers tend to focus on only one
protosolution at a time, and the current graphical interface reflects
this idea.

The visual metaphor that we have chosen to display these rela-
tionships in the current version is similar, in many respects, to the
file/folder structure available on many operating systems, in

which parents contain their children. However, the structure dif-
fers when dealing with alternative expansions because file/folder
systems are not disjunctive. When expanding an entity (similar to
opening a folder), Problem Formulator presents the user with a di-
alog box that gives alternative decompositions from which he can
select. Thus, at any moment the graphical interface shows only
one consistent cut through the hierarchy of decompositions.

Returning to our example, the designer might imagine alterna-
tive decompositions that realize high-level entities he has created.
The designer may at one time view the problem formulation at the
most abstract level (Fig. 5(a)), in another he may view the first
decomposition (Fig. 5(b)), and in a third situation he may view an
alternative decomposition (Fig. 5(c)). We believe that the con-
struction of disjunctive parent–child relationships is one of the
most important aspects of conceptual design, as it produces multi-
ple protosolutions (internally consistent nondisjunctive designs)
that might be carried to fruition.

Equally important are relations between entities of different
types. These let the designer specify how requirements are satis-
fied, fulfilled, and managed, how functions are realized and con-
trolled, and how issues are connected with other entities.
Continuing with our example, suppose that the designer has just
entered entities of different types and wants to link them. Further,
suppose that he believes that the grind coffee function satisfies the
requirement of grinding coffee, the coffee grinder device realizes
the grind coffee function, the power transformation behavior con-
trols the grind coffee function, the coffee grinder device fulfills
the grinding coffee requirement, and the issue with whether the
power transformation generates excessive heat must be linked
with the suspect behavior.

Within the problem map framework, we can model this situa-
tion using a single intergroup link for each relationship that the
designer wishes to represent. The problem map ontology assumes
seven link types:

• artifacts realize functions
• functions satisfy requirements
• behaviors control functions
• behaviors manage requirements
• artifacts fulfill requirements
• artifacts parameterize behaviors
• issues are related to any entity type

Fig. 5 Disjunctive decomposition of the coffee grinder device in the latest version of Problem
Formulator

Fig. 3 Decomposition of the coffee grinder device artifact

Fig. 4 Disjunctive decomposition of the coffee grinder device
artifact in an earlier version of Problem Formulator

1Although we chose to decompose an artifact in this example, the designer might
similarly decompose any of five entity types.
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Therefore, the situation just discussed would be encoded with five
links:

• grind coffee satisfies device that grinds coffee
• coffee grinder device realizes grind coffee
• power transformation controls grind coffee
• coffee grinder device fulfills must produce ground coffee
• will power transformation produce excessive heat? is related

to power transformation.

Problem Formulator’s graphical interface displays these links via
highlighting of entities. When the designer mouses over an entity,
the system highlights both it and all other entities that are con-
nected to it, as Fig. 6 illustrates. The interface does not differenti-
ate between different link types because only one type of relation
is possible between any two types of entity. Thus, by mousing
over the power transformation behavior, the user can inspect the
associated links to the grind coffee function and to the issue of
whether it will produce excessive heat. This somewhat ethereal
approach to visualization, which reduces the clutter that results
from drawing relations as lines but it still lets the designer access
the desired information.

To summarize, a designer may need to represent many kinds of
information during the conceptual design process. Problem For-
mulator divides this information into two categories: entities and
relations between them. To aid a user, the system utilizes the
problem map ontology to encode this content in a relational data-
base and presents it graphically in a five-column tabular display.
Problem Formulator can store multiple sets of children for each
entity, but the interface lets the user inspect only one expansion of
an entity at a time. In addition, when the user mouses over an en-
tity, it highlights connected entities to denote intergroup relations.
We believe that this internal structure and the associated graphical
interface will help designers to organize their thoughts and to
generate more insightful conceptual designs.

4.2 Operations and Mechanisms. In Sec. 4.1, we discussed
how Problem Formulator uses the problem map framework to rep-
resent and display content that designers create during conceptual
design. However, presumably the user does not begin with an
existing problem formulation; he starts the task with a blank slate.

Thus, we now turn to the operations that Problem Formulator pro-
vides to let its users create problem maps and the mechanisms it
offers for letting them explore and reflect on these formulations.
As before, we illustrate each operation with an example from the
task of designing a coffee grinder.

Naturally, the most basic operation needed to construct a prob-
lem map involves creating new entities, which can later be elabo-
rated and linked. Continuing with the coffee grinder example,
suppose the designer wants to construct the abstract problem map
shown previously in Fig. 2. In this situation, he would add five
entities, one for each group, and any associated attributes of those
entities. We considered having a graphical operation for adding enti-
ties, by dragging blank entities from a sidebar into the problem for-
mulation, but decided against it because there was no intuitive way
for the user to specify entity attributes. Problem Formulator instead
uses a simple dialog box for each entity type (see the dialog for
requirements in Fig. 7) that lets users specify any optional or required
attributes. In our pilot studies, this approach seemed to be effective.

Once a designer has interactively populated the problem map
with some initial entities, he can begin to link them. For example,
suppose he wants to decompose the power transformation behav-
ior in two alternative ways: in terms of either electromotive force
or pneumatic force. Let us assume the designer has already added
the behavior for the first decomposition (electromotive force) and
wants to state that it is a sub-behavior of power transformation.

As things stand, the power transformation behavior has no
decompositions, so the user must create the new decomposition and
the first parent–child link. We might have performed this operation
with another dialog box in which the user specifies the parent-child
relationship, but in a pilot study with a previous version of the tool
(which used a dialog box) subjects commented on how slow and te-
dious this approach was. Therefore, Problem Formulator adopts a
more intuitive approach in which the user links a child entity like
electromotive force into the parent entity. If the parent currently
has no expanded decomposition, the system responds by creating a
new decomposition and adding the child to it. The user can then
add a second child to the same decomposition by dragging it into
the parent while the previous decomposition is still expanded.

Now suppose that, having established a first decomposition, the
designer decides to add the second decomposition, pneumatic
force. Using the same graphical approach, he can collapse the

Fig. 6 Power transformation and its connected entities are highlighted when moused over

Fig. 7 The dialog that pops up after clicking the add require-
ment button

Fig. 8 The dialog that pops up after double clicking on a node
with available decompositions

Fig. 9 The designer dragging the grind coffee function into the
must produce ground coffee requirement to create a link
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power transformation behavior (currently expanded) back to a
more abstract level. The user accomplishes this by a simple inter-
face action such as double clicking on the entity, thus collapsing
and hiding its children. He then creates the pneumatic force
behavior, after which he drags it into the parent entity. Since the
parent would be collapsed, Problem Formulator responds by creat-
ing a new decomposition and adds the child entity to it. As before,
the user can then add more children by dragging them into the par-
ent while the decomposition is expanded.

After creating multiple decompositions, the designer might want
to switch between them. Because Problem Formulator already uti-
lizes graphical operations to create links, we decided to use similar
operations to switch between decompositions. In particular, the sys-
tem lets the designer collapse an entity with a simple interface
action (e.g., double clicking) and re-expand it with the same action,
at which point it presents him with alternative decompositions
which he can select from (see Fig. 8). By requiring the user to col-
lapse and re-expand entities to select among decompositions, we
maintain our commitment to showing only one expansion at a time
while still making it easy to switch between alternative designs. We
believe this is a useful feature of any conceptual design assistant.

Once the user has added entities to some of the groups, he
might then decide to link entities of different types to indicate
how they are related. Returning to the coffee grinder, suppose that
the designer has an abstract problem map with only one entity in
each group (shown in Fig. 2) and that he wants to link the grind
coffee function with the requirement for a device that grinds cof-
fee. Although we could have made the user create such links
through a dialog box, we decided that a graphical operation would
be more intuitive, so we incorporated one into Problem Formula-
tor; subjects from our pilot studies subsequently had no problems
with this approach. To link two entities, the user drags one of
them (in this case, the function) into the other (in this case, the
requirement), as shown in Fig. 9. This action is the same for all
link types because Problem Formulator automatically determines
the link type for any pair of entities.

After the designer has created some entities and linked them, he
may decide to edit or delete some elements. For example, he
might determine that the requirement “device to grind coffee”
might be better stated as “device to produce ground coffee.” To

support such basic changes, we decided to incorporate a context
menu, with the Problem Formulator user opening the context
menu on the relevant entity (by an action such as right clicking)
and selecting “edit.” This action reopens the dialog shown during
entity creation, letting the designer revise any of the attributes. If
he wants to delete an entity, then he opens the context menu and
selects “delete,” as shown in Fig. 10.

In addition to editing and deleting entities, the designer might
decide to remove some relations he has established. Following the
conventions already introduced, he can easily remove parent–-
child links by dragging a child entity out of the parent, much like
moving a file out of a folder. If a decomposition contains no more
children, then Problem Formulator automatically deletes it and
returns the parent to the collapsed state. Similarly, the user can
easily eliminate intergroup relations by opening the context menu
and selecting the option to delete the intended link. Using Problem
Formulator for the coffee grinder task, the designer might produce
a problem map similar to the one shown in Fig. 11.

Once the designer has used the Problem Formulator interface to
produce a problem map, he can also take advantage of mecha-
nisms for exploring and reflecting on his creation. The first of
these lets the user view connections between entities of different
types. Viewing such intergroup relations may be problematic
because one of them may be hidden under a collapsed parent. To
deal with such situations, Problem Formulator highlights the con-
nected entity and its parents in successively lighter shades (Fig.
12). Thus, when a linked entity is hidden, its parent will appear in
a lighter shade of highlighting, informing the user that one of its
children is connected to the entity currently being moused. To
find the connected entity, the user single clicks on the entity he is
mousing over, causing all highlighting to freeze, then expands the
lightly shaded parent. In response, all of the parent’s decomposi-
tions will appear, but only the one containing the connected entity
will be shaded. The designer can follow this highlighting until he
finds the connected entity.

Problem Formulator also aids designers by providing a basic
search mechanism. One can easily imagine a situation in which

Fig. 10 The context menu that pops up when the designer right clicks on an entity

Fig. 11 The electromotive force, induction, and mechanical
work behaviors and their parent entities highlighted in succes-
sively lighter shades when a connected entity has been moused
over

Fig. 12 The do not operate when unsealed requirement and its
parent entities highlighted in successively lighter shades by
the search mechanism
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the user remembers creating an entity but, having encoded multi-
ple disjunctions, is unsure what entities he must expand to find it.
In such cases, he can start to type the entity’s name in the search
bar and the interface will automatically complete its name and
highlight the entity in the graphical display (Fig. 13). If the entity
is not currently visible, then its parents will be highlighted in suc-
cessively lighter shades. As the designer expands entities that are
lightly shaded, the highlighting will continue to appear in alterna-
tive decomposition’s dialogs, making it easy for the user to track
down the missing entity. When done, he clears the search term
and Problem Formulator removes the highlighting.

A final Problem Formulator feature, fundamentally different
from the others, aids designers in reflecting on their problem for-
mulation throughout the conceptual design process. This mecha-
nism uses metalevel knowledge to detect incompleteness in a
problem map. The system incorporates three generic rules2 to this
end:

• no entity should be entirely unconnected;
• every requirement should be satisfied by a function or ful-

filled by an artifact; and
• every function should be realized by an artifact.

After each user interaction, Problem Formulator invokes a logical
reasoning module that applies these rules to the current problem
map. Upon finding an entity that violates one or more rules, the
system highlights the entity in red, thus informing the user that he
may want to attend to it (see Fig. 14), much as in Kassoff’s [24]
work on highlighting inconsistencies in logical spreadsheets.
Once the user corrects the problem, the annotation vanishes.
This highlighting, while unobtrusive, lets the designer quickly
focus on and repair those aspects of the problem map that are
incomplete.

In summary, Problem Formulator includes interactive opera-
tions and mechanisms that let its users construct, explore, and
reflect on problem maps. These include operations for adding enti-
ties, creating parent–child links, relating entities of different types,
and editing or deleting entities and links. Mechanisms for explora-
tion and reflection let the user view links at different levels of
abstraction, search for entities in the abstraction hierarchy, and
identify incomplete problem formulations using meta-level rea-
soning. The latter has potential to support the design process in
additional ways, the most obvious being the enumeration of all
protosolutions entailed by a problem formulation.

4.3 System Architecture. We have implemented Problem
Formulator in a manner that lets users access it from the World
Wide Web. We had two reasons for this choice. First, making the
software available on the Web makes it more accessible; users
can run it from any location and on any device that operates with
a modern Web browser (no additional software needs to be in-
stalled on the user’s computer). Second, all entities and links that
the user enters are stored in the cloud, where they are backed up
and easily retrieved for future use, regardless of location or
device. To provide Problem Formulator with these features, we
utilized CakePHP—a model-view-controller (MVC) frame-
work—along with a combination of PHP, JavaScript, MYSQL,
HTML, CSS, and Answer Set Prolog. We chose CakePHP because
the MVC framework makes the software more modular and easier
to develop and maintain. We chose Answer Set Prolog to support
logical reasoning because it is fast, flexible, and reliable.

Figure 15 shows the four components that make up Problem
Formulator: the stored problem formulation, the controller, the
view, and the inference backend. The system encodes problem
formulations internally in the problem map ontology, which, as
explained earlier, consists of different entities and relations among
them. Problem Formulator stores this content in the relational
database structure shown in Fig. 16. The view determines how it
displays information stored in the problem map to the user. There
are views for all basic functions, such as adding and deleting enti-
ties and links, as well as ones for the user’s active projects. The
controller determines what information from the problem map is
available in each view. There are controllers for creating and

Fig. 13 The grind coffee entity is highlighted with red by Prob-
lem Formulator because it is currently unrealized by any arti-
fact, implying that the user should connect it

Fig. 14 A screen shot of the Problem Formulator tool with the completed coffee grinder example

2Although these rules are reasonably simple, one can imagine more sophisticated
variants that could provide even more useful suggestions to designers, but the latter
would remain responsible for deciding whether, and how, to respond.
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manipulating problem formulations, entities, and links; these pro-
vide a layer of abstraction between the problem map model and
the view that ensures data integrity. Finally, the inference backend
incorporates logical reasoning methods that let Problem Formula-
tor identify incomplete problem formulations.

The designer connects to Problem Formulator through a Web
browser, which displays their problem maps. When a user takes
action in their browser, the changes to the problem map are sent
to the server where they are stored in the database. Meanwhile,
the interface is dynamically updated using Javascript, so the
user never has to refresh their browser. If Problem Formulator
generates any feedback for the user, then it is sent to the web
browser, which dynamically updates the problem map with the
feedback.

5 Comparison to Other Interactive Aids

There has been relatively little research on interactive tools that
aid the early stages of conceptual design, with most work focusing
on later stages in the design process. However, there have been
some efforts on related topics, which we review here.

For example, there has been a substantial body of work, both
commercial and open source, on interactive software for concept
mapping [25], but this has not focused on engineering design. As
a result, these systems do not take advantage of the structures that
arise in design domains, such as the distinction between require-
ments, functions, artifacts, and behaviors. In addition, they gener-
ally lack the ability to represent disjunctive choices of any kind.

A different area of research that does focus on engineering
design concerns interactive software for sketching. Systems in
this paradigm [26,27] provide a flexible means for users to con-
struct, store, and visualize sketches of designed artifacts. How-
ever, they offer no support for situations in which the user does
not yet know what to sketch, which we maintain is crucial to early
conceptual design. This relates to their emphasis on artifacts
rather than on requirements, functions, or behaviors.

A third related research theme, on ideation tools [28–30], aims
to help designers overcome impasses they encounter during their
design activities. These toolkits attempt to stimulate their user via
various ideation techniques that are supposed to overcome mental
blockages. Such methods are certainly relevant to early concep-
tual design, but the software systems in which they are embedded
typically lack any graphical interface for creating or visualizing
explicit problem formulations.

A fourth area connected to our research involves systems for
product life-cycle management [31,32], which stores information
about products and lets multiple users access and update this con-
tent. Although one might use such systems for conceptual design,
they are seldom used for this task [33], presumably because they
are inefficient for this purpose. Additionally, even though these
systems incorporate version control, they are not ideal for record-
ing the intense cognitive processes on which designers rely during
early phases of design.

Another system similar to ours is FunctionCAD [34], which
uses the functional basis ontology [35] to allow users to model the
functional aspects of their designs. Our system builds on these
ideas to allow designers to model additional aspects of their
designs (i.e., requirements, artifacts, behaviors, and issues), to rep-
resent disjunctive hierarchical decompositions of entities in each
category, and to model connections between entities in different
categories. Unlike our work, research in this area has placed a
great emphasis on the development of a common database of
functional information, which can be used for a wide range of pur-
poses, such as automated concept generation [36]. We have
instead focused on how to support users in the absence of domain
knowledge. The goals are different, but complementary; one could

Fig. 16 Database schema for Problem Formulator

Fig. 15 System diagram for Problem Formulator
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imagine a system that aids users by providing knowledge about
the domain and supports them in creating and reflecting on con-
ceptual designs.

Finally, the closest relative to our approach is SBFAuthor [37],
an interactive environment for constructing problem formulations
stated in the structure-behavior-function ontology. This system
lets users create and visualize the structures, behaviors, and func-
tions of a conceptual design, and its authors even discuss using
model checking to identify incompleteness in a given formulation,
although they did not appear to implement this idea. However,
SBFAuthor lacks the ability to represent disjunctions and it does
not include either requirements or issues, all of which we view as
central to conceptual design. Nevertheless, this work has similar
aims to ours and has influenced the development of our approach.

In conclusion, although there exist a wide range of computa-
tional tools available for use by designers, there are few that focus
on aiding early conceptual design, and even fewer that provide
interactive support for the construction of problem formulations dur-
ing this crucial stage. To our knowledge, Problem Formulator is the
only system that addresses all of the major issues by providing the
ability to represent and visualize the entities and relations that arise
during conceptual design, as well as operations for interactively con-
structing, exploring, and reflecting on problem formulations.

6 Directions for Future Work

Although Problem Formulator system shows considerable
promise for aiding early conceptual design, it also has clear limi-
tations that we should remedy in future research. One drawback
is that the graphical interface does not provide the user with in-
formation about how well their problem formulation fares along
dimensions related to creativity. Examples include the total num-
ber of protosolutions that can be derived from the problem map
and the diversity of those alternatives. Calculating such measures
and incorporating them into the display (e.g., using color coding)
would tell users which areas of their conceptual design have
been fleshed out sufficiently and which would benefit from
additional effort. Experts might well ignore some of these cues
when they are confident that they have covered enough territory,
but novices could gain substantially from such attentional
assistance.

Another area for improvement involves adding the ability to
ground the problem map in protosolutions, each of which is a con-
sistent set of functions, artifacts, behaviors, and specifications.
The great strength of the problem map notation is that it can
encode many different designs in an efficient, implicit manner,
but in some cases the user may desire to inspect the particular
alternatives that his problem map represents. For this reason, we
plan to extend Problem Formulator to itemize all such protosolu-
tions for inspection by the user. In some cases, the user may desire
to see not a complete design but rather a subdesign that corre-
sponds to a particular node in the problem map. We also intend to
explore methods for grouping protosolutions and displaying them
in a taxonomic hierarchy, with more similar candidates being
closer to each other.

A third limitation is that the current system can make only a
few suggestions to users. Problem Formulator can use meta-level
checking rules to detect incompleteness in the current problem
map (e.g., due to functions not enabled by artifacts), but it only
highlights the nodes involved. An improved system would incor-
porate generative variants of these meta-level rules that, whenever
they note an incomplete situation, augment the problem map with
an issue and even introduce a “skolem” node that the user can edit
to resolve the problem. More advanced versions could utilize
meta-level rules that recommend more sophisticated activities.
For instance, the system might encode a strategy of breadth-first
expansion of alternatives that it could invoke when it observes the
user pursuing a depth-first strategy of drilling down into details.
One can imagine a variety of such high-level strategies that could
encourage more creative designs.

Naturally, we should also evaluate both the basic Problem For-
mulator system and its extensions with human subjects. Studies
should include both novice and expert designers, as well as ones
identified in advance as being more or less creative. In general,
we expect novices and less creative individuals to receive the
greatest benefit, but we also expect others to appreciate many of
its features. We should also extend Problem Formulator to record
the details of user interactions for use in later analysis. These may
reveal insights about the strategies that distinguish more produc-
tive designers from others, which in turn we can incorporate into
more advanced versions of the system.

7 Concluding Remarks

In this paper, we presented an innovative computational
approach to assisting the early stages of conceptual design. We
linked this activity to problem formulation, as opposed to problem
solving, since it produces the problem space to be searched during
later phases. We described Problem Formulator, a web-based sys-
tem that provides users with a graphical interface through which
they can create and visualize a problem map.

Such a problem map comprises a set of entities, including require-
ments, functions, artifacts, behaviors, and issues, as well as relations
between them. Entities may be organized in a hierarchy, with lower
levels providing more details about the conceptual design. A problem
map may also include multiple expansions that reflect alternatives
the user wants to consider. Together, these decisions imply a set of
protosolutions, each corresponding to a consistent conceptual design.

Problem Formulator system incorporates operations for creating
new entities, for deleting ones no longer desired, and for linking
pairs of entities through a variety of relations. The interface lets
users visualize the current problem map in a tabular format, with
one column for each entity type. Hierarchical expansions are
shown within embedded boxes that the user can collapse when he
desires a more abstract view. Problem Formulator also includes
checking rules that let it detect and highlight incomplete facets of
the problem map that require user attention.

We found that Problem Formulator differs radically from ear-
lier systems that support concept mapping, sketching, and idea-
tion, in that it provides a structured representation well suited for
engineering design, supports disjunctive alternatives that encode
multiple protosolutions, and incorporates a graphical interface for
entering and visualizing design content. We do not claim that
these features make Problem Formulator superior to existing
tools; instead, we claim that they are features that would be valua-
ble to any system that assists users in creating and reflecting on
their conceptual designs. Finally, we noted that the current version
of Problem Formulator has clear limitations, but also that it sug-
gests a number of natural avenues for extension. As such, the
Problem Formulator offers a promising approach to aiding prob-
lem formulation during the key stage of early conceptual design.
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