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ABSTRACT 
The main objective of our research is to understand the 

role of problem formulation in creative design ideation. To that 

end, we have used the web-based testbed of the Problem Map 

(P-map) computational framework which represents designers’ 

problem formulation in terms of a series of state models, where 

each state consists of six types of entities in addition to 

relations within and between different entity types. We gave two 

design problems to twenty five graduate students in an 

advanced product design course. We collected their problem 

formulation data in the P-map testbed and their ideation data 

through concept sketches. We conducted correlation analysis 

between variables extracted from the P-maps, and the ideation 

metrics. We also built regression models for each of the 

ideation metrics as the dependent variable, and the P-map 

variables as the independent variables. We used the data from 

the first problem to predict the ideation scores for the second 

problem. The predicted results were compared to the actual 

outcome reported by an independent panel of judges. Models of 

variety, average and max quality had more accurate 

predictions while average novelty, average and max quality had 

statistically more reliable models. 

1. INTRODUCTION 
Problem formulation is an important part of the design 

process which has major influences on the design outcome. Yet, 

this effect is not well understood [1]. The main objective of our 

research is to understand the role of problem formulation in 

creative design. To that end, we have developed the Problem 

Map (P-map) framework [2]. It is a computational framework 

which facilitates the representation and comparison of 

designers’ problem formulation, in the form of a series of state 

models. The states show data fragments under six entities 

(requirements, use scenarios, functions, artifacts, behaviors, and 

issues), a hierarchical structure within each category (entity 

type), and relations among the categories. A node-link 

representation similar to Concept maps [3] provides a 

convenient way to see a designer’s thinking process over time, 

in addition to comparing different designers approach towards 

formulating a problem [4]. The formalized and bounded 

structure of P-map (limited number of categories to choose, and 

defined relation types) also makes it possible to measure 

different characteristics of designers’ problem formulation, by 

extracting different types of variables, e.g., the total number of 

requirements, or the entity type that is mostly expressed in the 

last quarter of a designing session. 

In this paper, we investigate the relation between problem 

formulation, measured with the aforementioned P-map 

characteristic variables, and ideation, evaluated by the ideation 

effectiveness metrics [5]. With data collected from students of a 

design course working on two design problems, we conduct 

correlation analyses as well as building linear regression models 

to reveal patterns of creative designing. Using P-map data as 

independent variables and ideation metrics as dependent 

variables in the linear regression model built for the first 

problem, we also predict the outcomes of the second design 

problem given its P-map data. We evaluate the accuracy and the 

precision of our predictions compared to the actual assessments 
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made by an independent panel of judges. We also locate our 

results in discoveries from the literature to find similarities or 

differences. Therefore, we should review the literature first. 

2. REVIEW OF PAST WORK 

2.1. Relevant findings from empirical studies of 

conceptual design 
A detailed review of relevant findings from empirical 

studies of conceptual design is beyond the scope of this paper. A 

recent comprehensive review on empirical studies in designer 

thinking can be found at [6]. Here, we focus on a few strategies 

that designers adopt during the early stages of conceptual 

design: depth or breadth first exploration of the design space, 

role of abstraction, and order and direction in decomposing the 

design space. We should state that because of the well-received 

notion of the co-evolution of the problem and solution spaces 

[7,8], we take the liberty of not finding a clear distinction 

between problem and solution spaces; therefore, we 

interchangeably use the terms design space, and problem-

solution spaces. 

A few studies that have looked at the differences between 

expert and novice designers provide examples for the strategies 

that designers use. Ho [9] have found that expert designers 

approach directly the main goals and work backward for 

required knowledge. One can infer a depth-first exploration 

from this observation. Contrarily, Ball et al. [10] have 

conducted a protocol study where they have observed experts 

use more breadth-first search while novices use depth-first 

search in ideation. However, they also report that experts utilize 

a strategic knowledge about how to conduct the design process 

effectively when they face impasses, by switching from a 

predominantly breadth-first mode of problem solving to an 

opportunistic depth-first mode. In another  protocol study with 

three subjects Cai, Do, and Zimring [11] have found no relation 

between creative outcome and depth vs. breadth exploration of 

the design space. 

Another influencing strategic behavior in conceptual design 

is abstraction. Ward, Patterson, and Sifonis [12] have conducted 

experiments to investigate the role of abstraction in creative 

ideation. By actively instructing the participants to formulate 

the given task in either very specific or more abstract ways, they 

found that the latter instructions led to more novel ideas. Ball, 

Ormerod, and Morley [13] have found that experts lean on 

experiential abstract knowledge while novices rely on case-

driven analogies, mainly driven by surface-level cues. 

Problem decomposition is another designerly behavior that 

can affect conceptual design. Liikanen and Perttula [14] have 

analyzed the prevalence of explicit and implicit problem 

decomposition modes through a protocol study involving 16 

senior students of mechanical engineering. They have found 

that the subjects implicitly employ top–down problem 

decomposition while explicit decomposition is rarely used and 

often does not foster creativity. In contrast, Ho [9] have found 

that expert designers are more likely to utilize explicit problem 

decomposition, leading to more creative ideas. 

2.2. Relevant applications of search for patterns, 

modeling, and prediction 
We have already explained how our P-map framework 

benefits from a node-link representation inspired by concept 

maps.  We have found the work of Oxman on Think maps [15] 

to be similar to ours in using concept maps. However, it does 

not exploit the computational framework in search for patterns 

in the way we do, perhaps because the objective of the 

framework is strictly comparing students’ maps to that of a 

teacher or a norm. While we have applied P-maps for similar 

purposes [16], we find more ways in benefiting from such a 

computational framework, one of which we present in this 

paper. 

One of the established works in using a simpler 

computational framework compared to concept maps, has been 

the linkography of Goldschmidt [17] where she has used a 

node-link representation for capturing the problem space at the 

fuzzy front end of product design. States in the problem space 

are described as nodes and operators as links among them. The 

result is a network that resembles a semantic network, but the 

structure of a state is not clearly specified; each state represents 

the problem space at a time with one node. In contrast, our P-

map representation shows each state at a time with a network of 

nodes of different types, adding more specificity and clarity to 

the representation of the problem space, and in turn facilitating 

a finer-grained means for comparing different designers’ 

approaches to the formulation of a problem [4]. 

Cai, Do, and Zimring [11] have developed an extension of 

linkography in addition to a distance graph to investigate design 

patterns among designers of different expertise levels and 

exposure to different stimuli. They modify the definition of 

links based on lateral transformation and vertical transformation 

to represent both the breadth and the depth of the problem space 

explored in design. In lateral transformation the movement is 

from one idea to an alternative. In a vertical transformation the 

move is from one idea to a more detailed or elaborated version 

of the same idea. They report that the more creative the design 

is, the higher number of alternatives and more chucks and webs 

are displayed in their representation, the extended linkograph. 

A different application of linkography in finding patterns in 

conceptual design, Kan and Gero [18] conduct protocol studies 

to acquire information from linkographs. They define two 

methods to abstract information from the linkographs: one 

based on clustering, and one based on Shannon's entropy 

measure. They state that cluster analysis is able to group the 

linkographs into meaningful clusters, while entropy measures 

the opportunities for idea development. 

There have also been efforts in combining the different 

representations and search methods that we described above. An 

example is Hao et al. [19] where they extend previous research 

on concept map assessment, to develop an evaluation metric in 

order to predict individuals' problem-solving performance. They 
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propose their EntropyAvg novelty metric based on the 

Shannon’s entropy in information theory. They have conducted 

a controlled experiment where they find a strong correlation 

between individuals' problem-solving performance and their 

EntropyAvg measure. 

3. DATA COLLECTION 

3.1. Subjects 
Twenty five graduate students in an advanced product 

design course were the subjects of this study. Since the students 

had different educational backgrounds, we had them take the 

Divergent Thinking skill test [20] to have a gauge of conceptual 

design skill level among our sample subjects. The results 

suggest a distribution similar to that of 2000 students who had 

previously taken the test; hence an appropriate representation of 

individuals’ conceptual design skill levels from the sample at 

hand; see Figure 1. In addition to conceptual design skills, the 

course syllabus consisted of guidelines for embodiment design 

(form synthesis, material selection, failure modes), GD&T, 

model-based design (behavior models such as Modelica, 

kinematics), and optimization and utility theory. The course 

prepared the students for taking on two design projects which 

were assigned in the second half of the semester. The projects 

are explained in the following section. 
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Figure 1. Distribution of the Divergent Thinking test [6] 

scores among the students in this study compared to a norm 

population 

3.2. Design problems 
Two design problems were given to the students. The first 

design problem—D1—was to design the shot buddy (a design 

problem from [21]); a device which could return shot 

basketballs to the shooter, whether the basket was made or 

missed. The device must be able to automatically adjust the 

return angle based on the position of the shooter when the ball 

is shot. The shooter may be initially located anywhere within a 

25' semicircle with respect to the basket. It must also accurately 

and quickly return balls to the shooter and not block the 

shooters access to the basket. Ideally, the return speed would be 

adjustable to accommodate different skill levels. The device 

should be user friendly for kids ages 10-18, easy to setup and 

applicable to a wide variety of basket types. The device should 

be affordable for the average family. 

The second design problem—D2—was to design an 

autonomous surveillance vehicle to automatically and 

periodically tour the perimeter of two structures, stopping as 

close as possible to the start point, see Figure 2. 

 

 
Figure 2. The settings for the D2 challenge problem 

3.3. Characteristics of the data set 
For each of the two assigned design problems, different 

types of data were collected corresponding to different steps of 

the design process. This study involves two steps: problem 

formulation, and ideation. For problem formulation, students 

were asked to express their thoughts within the P-map 

framework, using the Problem Formulator web-based tool [22]. 

The input data in the tool was short phrases of text put under 

one of the six entities. These fragments could then be put in a 

hierarchy within each category, or be related to fragments of 

other categories. Examples from the data collected for the shot 

buddy problem (D1) include requirement “withstand impacts 

from the basketball”, use scenario “outdoor environment” 

which has the children entities “rain/moisture” and “sunlight”, 

function “collect ball” which is related to behavior “impact 

force”, artifact “funnel”, and issue “Is there a minimum 

distance from the net the shooter needs to be able to shoot?”. 

Different measures can be defined and computed for the 

collected data. In this paper, we utilize two ways of measuring 

the problem formulation data. The first one is basically different 

types of counts of the final state of the P-map; we call these P-

map state counts. An example of a P-map state count is the total 

number of expressed functions. A variety of state count 

variables can be defined, but in order to avoid the curse of 

dimensionality, we limit ourselves to the counts of each entity 

(six variables), in addition to counts of isolated entities (entities 

in each category that are not part of a hierarchy, i.e., entities 

with no parents and children; six variables), and counts of 

disconnected entities (entities that are not related to other 

categories; six variables). 

The second type of P-map variables count traces of specific 

series of actions which constitute certain problem formulation 

strategies. An example of a strategy is the tendency to abstract 
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ideas. When thinking about an aspect of the problem, a designer 

can either explore details or sub-types of an aspect, or a more 

general idea about that aspect. The latter ability, abstraction, is 

considered to influence creative idea generation [12]. Table 1 

summarizes five different strategies, whose traces were counted 

for the collected P-map data.

Table 1. List of formulation strategies traced in P-maps 

Strategy Definition Conditions 

Abstraction The designer refers to a more 

abstract aspect of the problem or 

solution 

 Entity parent added at time t1 

 Entity child added at time t2 

 t1>t2 

Entity depth 

prevalence 

The designer develops details of 

an aspect of the design before 

looking for its relations to other 

categories 

 Entity parent of type A added at time t1 

 Entity child of type A added at time t2 

 Entity of type B added at time t3 

 Entity of type B related to parent entity of type A at time t4 

 t4>t2 

Order 

req_use 

The designer follows a specific 

order adding use scenarios after 

all related requirements 

 A requirement is added at time t1 

 A use scenario is related to the requirement at time t2 

 Entity of other type added at time t3 and related to the requirement at time t4 

 t2<t3<t4 

Order 

req_fun 

The designer follows a specific 

order adding functions after all 

related requirements 

 A requirement is added at time t1 

 A function is related to the requirement at time t2 

 Entity of other type added at time t3 and related to the requirement at time t4 

 t2<t3<t4 

Conflict 

identification 

The designer identifies an issue 

about conflicting requirements 
 Requirement R1 is added at time t1 

 Requirement R2 is added at time t2 

 Issue I1 is added at time t3 

 I1 is related to R1 and R2 

To evaluate the outcome of the ideation step, sketches were 

collected from the students and scored with respect to the 

measures of ideation effectiveness [5]: quantity, variety, average 

and max novelty, average and max quality. For each design 

problem, a few high level functions were chosen and judges 

would identify the solution concepts for each function within 

each sketch. For the D1 problem, the functions were control-

move, collect, store-guide, locate, aim, and return; wheels, 

funnel, rail, optical sensor, revolving barrel, and spring cannon 

are examples of each function respectively. For the D2 problem, 

the functions were move, start, control direction, steer, and stop; 

propeller, power switch, cam, rudder, and anchor are examples 

of each function respectively. To reduce bias, different judges 

evaluated the sketches for the D1 and D2 problems. 

4. RESULTS AND ANALYSES 
To investigate the relation between problem formulation 

and ideation, first we conducted correlation analysis between 

the P-map variables and the ideation metrics. Second, we built 

regression models with each of the ideation metrics as the 

dependent variable and the P-map variables as the regressors 

(independent variables). Third, with the models based on the 

D1 problem, we predicted the ideation scores for D2. The 

prediction results were compared to the actual metrics that were 

computed from the assessment of conceptual design sketches by 

an independent panel of judges. 

4.1. Correlation analysis 
A correlation study was conducted to find significant 

correlations between P-map variables and ideation metrics for 

problems D1 and D2. For the twenty five data points that were 

collected from the students (one record per student for each set 

of formulation input and ideation output) correlation 

coefficients of magnitude 0.34 (less than -0.34 and more than 

0.34) were statistically significant, with 95% confidence. The 

significant correlations between problem formulation measures 

and ideation metrics for the D1 and D2 problems are shown in 

Table 2. Correlations that have a similar trend in both problems 

are shown Table 3. 

The results for problem D1 show a positive correlation 

between quantity and the number of raised issues, isolated 

artifacts, and isolated issues. One can infer that leaving artifacts 

and issues in a flat list, i.e., not focusing on the architecture of 

the final product or organizing the issues lead to generating 

more ideas. There is also a high correlation between all five 

strategies except for entity depth prevalence and quantity; 

breadth expansion breeds quantity. 

Having more issues in a flat list has a moderate positive 

correlation with variety as well. In addition, the more 

abstraction and conflict identification happened, the more likely 

it was for the students to come up with different types of 

concept solutions. Correlation results for both average and max 

novelty show that the more the use scenarios were left 

unorganized, the less the possibility of having original ideas. 
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Additionally, higher rates of entity depth expansion led to more 

novel ideas; in other words, the more the students developed an 

entity before searching for (or being reminded of) related 

entities in other categories, the more likely it was to propose 

novel solutions. Finally, students came up with solutions of 

higher quality when they did consider the relations between 

issues and other entity types. Best quality of solutions occurred 

when students did not fail in recognizing the relations between 

elicited requirements and other entity types, and when they 

identified conflicting requirements. 

Table 2. Significant correlations between problem 

formulation measures and ideation outcome for D1 and D2 

Ideation 

metric 

D1 D2 

Quantity  Isolated artifacts 

0.34 

 Abstraction 0.40 

 Conflict 

identification 0.43 

 Function 0.38 

 Disconnected artifact 

-0.40 

 Entity depth 

prevalence 0.53 

Variety  Abstraction 0.40 

 Conflict 

identification 0.42 

 Order req_use 0.35 

Avg. 

novelty 
 Entity depth 

prevalence 0.42 

 Disconnected 

function -0.41 

 Conflict 

identification 0.42 

Max 

novelty 
 Isolated use scenario 

-0.35 

 Entity depth 

prevalence 0.40 

 Disconnected 

function -0.38 

 Disconnected artifact 

-0.37 

Avg. 

quality 
 Disconnected issues 

-0.35 

 Behavior 0.38 

 Isolated use scenario 

-0.35 

Max 

quality 
 Disconnected 

requirements -0.48 

 Conflict 

identification 0.40 

 

The results for the D2 problem show a few different 

significant correlations. The total number of identified functions 

has a moderate positive correlation with variety. The degree to 

which students made abstractions and found conflicts also have 

substantial correlations to variety too. An interesting difference 

between the correlations for the two problems is that entity 

depth prevalence is positively correlated with average and max 

novelty. As we will discuss later, the progression of class over 

time, and the more constrained nature of the second problem 

resulted in an overall lower variability in the novelty of the 

students. It is plausible to infer that a more constrained problem 

requires more focus on each category of entities prior to the 

designer’s shifting attention towards a different category, i.e., 

within-group depth exploration breeds novelty in more 

constrained problems. However, this does not contradict with 

the observation that the more the students failed in organizing 

the entities within each category and recognizing the relations to 

entities in other categories, the worse their ideas were in terms 

of novelty and quality. 

Table 3. Similar formulation-ideation correlations between 

D1 and D2 

Ideation Measure D1 D2 

Quantity Issues 

Isolated issues 

Order req_use 

Order req_fun 

0.45 

0.45 

0.67 

0.67 

0.36 

0.36 

0.64 

0.57 

Variety Issues 

Isolated issues 

0.40 

0.40 

0.43 

0.43 

Avg. novelty Isolated use scenarios -0.35 -0.37 

4.2. Regression analysis 
To have an understanding of how different variables in the 

problem formulation together influence ideation metrics, we 

conducted regression analysis. First, a model was built with P-

map state variables as the input variables, and each of the 

corresponding ideation metrics as the output. Separately, a 

model was built for the number of times different strategies 

were utilized during problem formulation with respect to the 

ideation results. Table 4 and Table 5 show the coefficients of 

regression for the P-map state variable counts and counts 

occurrences of strategies respectively.  

Significant regressors are shown in bold in Table 4 and 

Table 5. Since this study is in its early stages, the criterion for 

choosing significant regressors was set not to be too strict. For 

P-map state counts, a p value below 0.2 was considered 

significant; for P-map strategies counts, the bound was set at 

0.1. If there were no p values below the set limit, the lowest p 

value was considered significant (those regressors are starred in 

the tables). Additionally, regressors that have the same sign in 

the models for the two problems are italicized. This comparison 

shows if both problems provide models that can have the same 

sense with respect to some variables, i.e., if some parts of the 

models are generalizable and insensitive to the problem. Among 

the P-map state counts models, average quality has the highest 

number of variables with similar signs for D1 and D2 (13) while 

max quality and variety have 4 and 5 similar variables. One can 

infer that average quality is easier to predict for new problems. 

4.3. Prediction results 
In order to test how accurate the regression models were in 

predicting new observations for new problems, data for one 

problem was taken as a training set and for the other as a test 

set. We predicted the ideation metrics for the D2 problem based 

on the regression models of the D1 problem. The structure of 

the collected data for both problems was the same. For problem 

formulation, P-map state counts and occurrences of strategies 

were obtained from the Formulator tool. Concept sketches were 

assessed by a panel of judges different from the one which 

assessed sketches of problem D1. For each student, the problem 

formulation data from D2 was fed into the three models build 

based on D1. We recorded the difference between the actual 
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ideation scores, and the predicted outcomes from the three 

models. Table 6 summarizes how accurately the models for D1 

predicted each of the ideation metrics for D2. Since the ideation 

metrics have normalized scores (on a scale of 1-10), we counted 

the number of observations which were predicted within 1 or 2 

units (10% or 20% margin of error). It can be seen that 

predictions of variety, average and max quality were highly 

accurate in models based on state counts and strategies. The 

strategies counts model is slightly more accurate in predicting 

quantity, average novelty, and average quality (within 10% 

margin of error). 

Table 4. Comparison of coefficients of regression for the two design problems for the P-map state counts full models; italic: 

same sign in D1 and D2; bold: statistically significant with P < 0.2; starred: lowest P value above 0.2 
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Constant 4.72 1.85 5.33 3.42 5.64 2.74 7.71 4.17 5.74 3.53 7.57 4.00 

requirement 0.30
* 0.12 0.17 -0.27 -0.02 -0.05 0.09 -0.18 -0.03 0.15 0.09 -0.14 

use scenario -0.26 0.14 0.07 0.86 0.31 -0.11 0.32 0.18 0.02 -0.29 -0.18 0.07 

function -0.05 -0.02 0.01 0.00 0.20 0.03 0.22 0.08 -0.05 -0.02 -0.10 0.14
* 

artifact 0.12 -0.08 0.01 0.27 0.10 0.16 0.04 0.25 -0.06 -0.05 -0.03 0.05 

behavior -2.26 0.59 -2.55 0.56 -1.08 -0.52
* -2.09 -0.40 0.19 0.27 -0.07 0.32 

issue 0.62 -0.54
* 

1.35 -0.42 0.60 0.04 0.92
* -0.13 0.21

* 
0.43

* 0.05 0.23 

isolated requirement -0.07 -0.11 -0.03 0.08 -0.05 0.05 -0.07 0.05 -0.03 -0.01 -0.04 0.05 

isolated use scenario -0.60 0.21 -1.02 -0.34 -0.58 -0.11 -0.94 -0.08 0.07 0.08 -0.10 -0.01 

isolated function -0.05 -0.08 0.01 -0.17 0.04 -0.01 0.01 -0.06 -0.01 0.03 0.04 -0.11 

isolated artifact 0.07 0.27 0.23 -0.09 -0.09 0.01 -0.04 0.01 0.11 0.07 0.11 0.03 

isolated behavior 1.66 -0.60 1.60 -0.28 0.59 0.40 1.35 0.20 -0.23 -0.40 0.04 -0.37 

disconnected requirement -0.37 -0.18 -0.24 0.25 -0.01 0.05 -0.14 0.16 0.01 -0.11 -0.11 0.11 

disconnected use scenario 0.20 -0.21 0.11 -0.95 -0.13 0.04 -0.08 -0.30 0.03 0.29 0.19 0.03 

disconnected function 0.18 0.04 0.12 0.16 -0.07 0.02 0.00 0.04 -0.01 -0.09 0.04 -0.07 

disconnected artifact -0.27 0.35 -0.39 -0.05 -0.36 -0.09 -0.40 -0.14 0.05 0.26 0.15 0.13 

disconnected behavior 0.66 -0.13 1.12 -0.57 0.74 -0.04 1.01 -0.08 0.14 0.10 0.10 -0.15 

disconnected issue -0.26 0.95 -1.12 0.84 -0.75 0.11 -1.05 0.37 -0.43 -0.48 -0.36 0.12 

 

Table 5. Comparison of coefficients of regression for the two design problems for the P-map strategies counts models; italic: 

same sign in D1 and D2; bold: statistically significant with P < 0.1; starred: lowest P value above 0.1 
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Constant 2.31 3.38 3.03 5.70 4.42 3.47 5.62 5.04 5.02 4.23 6.08 5.87 

Abstraction 0.73 0.04 0.80 -0.09 -0.02 -0.02 0.26 -0.06 -0.05 0.11
* 0.14 0.09 

Entity depth prevalence 0.18 0.14 0.31 0.10 0.38 0.10 0.47 0.14 0.05 0.01 0.12
* -0.04 

Order req_use 3.67 -0.20 4.66 -1.67 1.06 -0.81 1.77 -0.87 0.49
* -0.26 0.62 0.40 

Order req_fun -1.65 1.46
* 

-2.42 1.70
* -0.67 0.48 -1.05 0.23 -0.25 0.55 -0.31 -0.23 

Conflict identification -0.82 -2.06 -1.02 -1.23 -0.74 -2.29 -0.94 -2.80 0.04 0.25 -0.23 1.15
* 
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Table 6. Accuracy of predicting D2 ideation based on the 

model built with D1; percentage of accurately predicted 

scores within 10% and 20% margin of error 

Ideation metric State counts Strategies counts 

20% 

error 

10% 

error 

20% 

error 

10% 

error 

Quantity 52 32 60 48 

Variety 88 64 76 60 

Avg. novelty 76 40 64 48 

Max novelty 56 40 60 32 

Avg. quality 92 72 96 64 

Max quality 92 68 92 76 

5. DISCUSSION 
This section discusses some of the challenges that we have 

faced in providing a model that can predict ideation outcome 

from the characteristics of designers’ problem formulation. We 

also show some statistical measures that we have used to test 

the reliability of the predicting linear regression models. 

Additionally, we examine components of the linear models as 

well as the correlation coefficients that were presented in 

section 4.1 in order to see if we can find an agreement between 

our observations and previous findings in the literature. 

5.1. Challenges in data collection 
We faced three major problems in the way that data was 

collected. The first challenge related to the difficulties that we 

experienced in using the data collection tool, the web-based 

Problem Formulator [22]. Similar to any software tool there is a 

learning curve. Prior to working on the two problems which we 

used in this study, the students learned about the tool and its 

underlying ontology in an hour long workshop, in addition to 

working on a different practice design problem. Yet, we saw 

that some students still misused the tool in entering fragments 

under the wrong categories. Another common mistake was to 

mistake conjunctive relations with disjunctive relations (which 

mean alternatives) under a parent node. A part of our ongoing 

work is to embed a pre-verification system in the tool where 

users will be prompted to correct their entries, or a more 

appropriate category is suggested by the tool. 

Another challenge in this study was the limitations of 

selecting appropriate design problems. Even though the ideation 

metrics have a normalized scoring schema with respect to either 

a historical pool from previous designs for the same problem, or 

the sample of designers’ concepts at hand, it is difficult to find 

two problems which lead to ideation outcomes of the same 

distribution of scores. Some problems, by the inherent 

constraints that they have, lead to less ideas with less variety in 

the proposed solutions, which in turn lowers the chance of 

having high scores of novelty. Figure 3 shows the changes in the 

variety scores of the students for the D1 and D2 problems. Even 

though the median remains fairly the same in both problems, the 

distribution is much narrower in the variety scores of D2 

compared to D1. Figure 4 shows how average novelty goes 

down from D1 to D2, mainly because the second problem was 

more constrained since the students were asked to build a 

working prototype to compete with other students. It is 

plausible to assume that the students became more conservative 

in proposing their designs merely due to the fact that they were 

subconsciously searching for a design that worked. 
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Figure 3. Decreasing variability in variety scores from D1 to 

D2 
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Figure 4. Decreasing mean and variability of average 

novelty scores from D1 to D2 

The challenge in problem selection is coupled with the 

nature of a progressing class of students throughout a semester 

in further lowering the variation in outcomes. As the class 

progressed, through multiple assignments and design projects, 

the students design skills improved, resulting in a convergence 

in some of the ideation metrics from D1 to D2. An alternative 

interpretation of Figure 4 is that it was less likely to come up 

with a novel idea when students’ level of competence had 

become close. 

5.2. Reliability of the results 
In order to inspect how reliable the results were, we 

conducted statistical tests. We have already mentioned in 

section 4.1 that the correlation coefficients above 0.34 were 

considered statistically significant for 25 observations with 95% 

confidence (p<0.05). For the regression models, two statistical 
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tests were used. One was the test of the hypotheses that the 

coefficients were 0, i.e., the input variable did not have a linear 

effect on the output. For this test, the ratio of the coefficient 

over its standard error, the T statistic, is compared to a Students’ 

t distribution for the same number of observations, and p values 

are derived. We explained earlier in section 4.2 how we 

determined which p values to consider. 

The other statistic that we checked for each model was the 

R-squared value. The R-squared of the regression is the degree 

to which the variation in the output variable is accounted for by 

the independent variables. The R-squared is often used to 

examine how accurate the predictability of the model is. Table 7 

shows the R-squared values for each of the regression models 

which were derived for the six corresponding ideation metrics. 

The test of significance of the model predictability suggests that 

the prediction results of the P-map state count model is more 

reliable than the strategies counts model. The results also 

suggest that average novelty and max quality lead to more 

reliable predictions in both problems. 

Table 7. Test of prediction reliability with R-squared 

Predicted 

variable 

State counts Strategies counts 
D1 D2 D1 D2 

Quantity 65% 75% 64% 33% 

Variety 56% 57% 32% 8% 

Avg. novelty 78% 65% 30% 25% 

Max novelty 66% 72% 24% 35% 

Avg. quality 72% 62% 7% 9% 

Max quality 87% 71% 19% 7% 

The choice of the significant regressors for problem D1 

(highlighted in Table 4) was a basis for a preliminary feature 

selection task. We removed the insignificant regressors and used 

the P-map state counts reduced model of D1 to predict D2 

scores as well. We examined the distribution of the residuals 

(the difference between the actual ideation scores, and the 

predicted outcomes) for the prediction which were made with 

the D1 models. A good model fit, i.e., good predictability of the 

model would be manifested in a normal distribution with mean 

zero and a low standard deviation, preferably within 10% of the 

unit of the metric. Figure 5 through Figure 8 show the 

distributions of the residuals for four of the ideation metrics 

which we predicted for D2 in all three regression models based 

on D1 (full state counts, strategies, and reduced models). 

The reduced state count regression model is the best 

predictor of variety, with the closest mean to zero and the 

lowest standard deviation. Compared to quantity, predictions of 

variety (which has the same unit is quantity) in all three models 

seem to be more accurate. The majority of differences in the 

actual and predicted variety scores fall close to zero. 

Results of predicting average novelty show that the full 

state counts model has the closest mean to zero; though, the 

residuals are more spread out compared to the reduced state 

count model. Another difference between the full model and the 

other two models is that they undershoot the results, predicting 

lower variety on average than the actual outcome. The model 

based on the occurrences of the strategies has the narrowest 

spread similarly to the previous metrics. 
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Figure 5. Prediction accuracy of D2 variety from models 

built based on D1 
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Figure 6. Prediction accuracy of D2 average novelty from 

models built based on D1 

Finally, average and max quality are predicted in an 

accurate yet imprecise fashion. The distribution of the residuals 

in Figure 7 and Figure 8suggest that quality scores are the 

easiest to get a rough estimate of among all the ideation 

outcome metrics. All three models result in a mean around zero 

with nearly identical standard deviations. However, unlike the 

other metrics, none of the regression models lead to a predictor 

that one can use with offsetting for an error from the mean. 
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Figure 7. Prediction accuracy of D2 average quality from 

models built based on D1 
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Figure 8. Prediction accuracy of D2 max quality from 

models built based on D1 

We have found abstraction to positively influence the 

quantity and the variety of ideas, though for one of the two 

assigned design problems. Our linear regression models also 

showed a positive but not statistically significant influence on 

max novelty and max quality (p 0.52 and coefficient of 0.26 for 

max novelty; p 0.33 and coefficient of 0.14 for max quality).  

The literature shows that abstraction generally improves novelty 

[12], and experts utilize abstraction more frequently than 

novices do [13]. 

Finally, we have found that following specific orders in 

decomposing different aspects of the problem breeds the 

quantity of ideas. We reported quite contrasting observations in 

the literature where one study has found decomposition does 

not affect creativity [14] while the other shows that the opposite 

among expert designers [9]. 

We should also add that some of the studies that we 

reviewed in this paper suggest promising alignment between 

qualitative results with results obtained from quantitative 

analyses that utilize computational frameworks [11,18]. We 

believe that using computational methods with data collected on 

a large scale, coupled with text analysis methods and formal 

ontologies might help us to reach new findings while avoiding 

tedious and resource-consuming qualitative research methods. 

6. CONCLUSION AND FUTURE WORK 
We have used the Problem Map (P-map) computational 

framework to investigate the relation between problem 

formulation and ideation in engineering design problems at the 

early conceptual design stages. Our P-map framework provides 

the means for extracting different types of information from 

data fragments that is collected with the web-based Problem 

Formulator tool. Specifically, two types of variables have been 

elicited: [final] state counts of six types of entities in addition to 

the counts of entities that are not related to other entities within 

each group and between the six groups; counts of traces of 

strategies which defined with specific series of actions. 

We have collected data from twenty five students of a 

product design course, working on two design problems. 

Problem formulation data is found in P-maps. Ideation data is in 

the form of concept sketches which has been turned into the 

ideation effectiveness metrics: quantity, variety, average and 

max novelty, average and max quality. 

We have conducted correlations and linear regression 

studies to examine the relationship between problem 

formulation and ideation. Common correlation results between 

the two assigned design problems show that the more issues 

specified in an unorganized way, the higher the quantity and 

variety of the ideas. By contrast, when use scenarios are not 

organized in a hierarchical form, there is a slight drop in 

average novelty. Additionally, developing use scenarios and 

functions after related requirements significantly influences 

quantity. 

We have built three regression models for each of the 

ideation metrics: one with all the P-map state count variables, 

one with the counts of defined strategies, and one with the P-

map state count variables that are significant contributors to the 

initial model (the reduced model). We have built models based 

on the data from the first problem in order to predict the 

ideation outcome of the second problem. Our prediction results 

show that the reduced model is the more accurate in its 

predictions.  However, a test of significance of for model fit 

suggests that the prediction results of the full P-map state count 

model is the most reliable among the three regression models. 

Additionally, we have found average novelty, average quality, 

and max quality to have more reliable predictor models. 

We have faced challenges in evaluating text-based data 

fragments collected with the Formulator tool, as well as finding 

appropriate design problems and human subjects that represent 
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enough variability in the distribution of the ideation outcomes. 

In the future we plan on collecting more data from more 

subjects working on different problems in a more controlled 

experimental setting. Our computation framework facilitates an 

easily scalable study for a large number of data records, since 

the data structure is predefined. Once an analysis code or a 

query is written, it can be used to extract information from the 

database of the web-based tool at nearly no addition 

computational cost for a large number of records (different 

students, problems, and episodes). The way towards higher rate 

of discoveries might lie in employing computational 

frameworks for data collection on a large scale, guarded with 

formal ontologies to assist advanced text and natural language 

processing, while avoiding resource-consuming research 

methods such as protocol analysis. 
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