
To appear in Proceedings of the Fifth International Workshop on Principles of Diagnosis (1994). New Paltz, NY.Theory Revision in Fault HierarchiesPat Langley�, George Drastal, R. Bharat Rao and Russell GreinerLearning Systems Department, Siemens Corporate Research755 College Road East, Princeton, NJ 08540 USAAbstractThe fault hierarchy representation is widelyused in expert systems for the diagnosis ofcomplex mechanical devices. On the assump-tion that an appropriate bias for a knowledgerepresentation language is also an appropri-ate bias for learning in this domain, we havedeveloped a theory revision method that op-erates directly on a fault hierarchy. This taskpresents several challenges: A typical train-ing instance is missing most feature values,and the pattern of missing features is signif-icant, rather than merely an e�ect of noise.Moreover, the accuracy of a candidate theoryis measured by considering both the sequenceof tests required to arrive at a diagnosis andits agreement with the diagnostic endpointsprovided by an expert. This paper �rst de-scribes the � algorithm for theory revisionof fault hierarchies that was designed to ad-dress these challenges, then discusses its ap-plication in knowledge base maintenance andreports on experiments that use � to revisea �elded diagnostic system.1 Knowledge Maintenance andMachine LearningOver the past decade, large-scale expert systems havefound widespread use. However, developers have foundthat the cost of maintaining a knowledge base, overits lifetime, can be as high as the initial cost of itsdevelopment. One response is to use machine learn-ing to correct the knowledge base as problems emerge.Unfortunately, standard induction methods seem ill-suited to this task, as they are designed to use train-ing data to construct a knowledge base from scratch,and the rate at which training data is generated by�eld users is typically too low to support regenerationof the knowledge base each time a revision is needed.�Current address: Robotics Laboratory, Computer Sci-ence Department, Stanford University, Stanford, CA 94305

As domain knowledge is available (in the form of theknowledge base), it makes sense to take advantage ofthis information (even if imperfect) to bias the induc-tion process. Techniques for theory revision are suitedfor the task of knowledge maintenance, since they usetraining data to improve an initial domain theory.In this paper, we report research on theory revisionthat has been driven by our experience with ctx, a�elded expert system (now undergoing beta testing by65 �eld service engineers in the U.S.) that diagnosesfaults in the high-voltage generator of a computerizedtomography (CT) scanner manufactured by SiemensMedical Systems. Although initial feedback indicatesthat ctx reduces both the number of repeat visits by�eld service engineers and the number of times theymust consult a domain expert, users have reportederrors in the knowledge base. In addition, we knowthat bug reports will accrue as the failure distributiondrifts, due both to aging of the devices and device up-grades. These events create a need for periodic updat-ing of the knowledge base to maintain an acceptableperformance level. Our goal is to develop a theoryrevision system that can correct these errors in a cost-e�ective manner, by minimizing the need for manualrevision by a knowledge engineer.The task raises two problems that previous research intheory revision has not addressed. First, the diagnos-tic knowledge base takes the form of a fault hierarchy ,which di�ers from the standard Horn clause represen-tation used in most theory revision work. As domainexperts and users seem comfortable with the repre-sentational bias provided by a fault hierarchy, we arereluctant to change to a di�erent formalism. Second,most work on induction has assumed that all (or atleast most) features appear in training and test cases.However, the selective nature of the diagnostic pro-cess means that only a few of the many possible fea-ture values are speci�ed in any instance, and the set offeatures present is correlated with the diagnosis itself(Rao, Greiner, & Hancock, 1994). We must deal withboth issues as part of a practical approach to knowl-edge base maintenance.In the next section, we explain the structure of faulthierarchies, examine the procedure by which ctx uses

Theory Revision in Fault Hierarchies 2
Connections

AirBlower FanAssembly TempSensor

FanMotorFanFuse

CoolingTube

Figure 1: A partial fault hierarchy for the cooling subsystem of the X-ray tube in a computerized tomographyscanner. Test and repair information is omitted.such hierarchies to diagnose faults, and introduce the� algorithm, which revises an initial fault hierarchy inresponse to logs of diagnostic sessions. In Section 3 wepresent some hypotheses about the learning system'sbehavior, consider the experimental approach we havetaken to test them, and report the results of our exper-iments. In the �nal section, we compare � with otherapproaches to theory revision, outline some directionsfor future work, and review the contributions of ourresearch.2 Theory Revision for DiagnosticExpert Systems2.1 Representation of Diagnostic KnowledgeOne representational formalism that has been used indiagnostic expert systems is the fault hierarchy . Thisstructure is a directed acyclic graph (DAG) in whichnodes correspond to possible faults in the device, andeach child node corresponds to a possible cause of itsparent node. Note that a node represents a functionalfailure, which need not correspond to a physically dis-tinct component but rather to a set of components thatis causally linked to that function. Figure 1 shows theportion of the ctx fault hierarchy that deals with theX-ray tube cooling subsystem in a CT scanner. Thishierarchy states that a malfunction in CoolingTubecan be caused by either a fault in the AirBlower, theFanAssembly, or the TempSensor. Similarly, a mal-function in the FanAssembly can be caused by a blownFanFuse, loose Connections, or a faulty FanMotor.Each node N has an associated \node test", writtenTN , for determining the presence of its speci�ed fault.Each such node test is a Boolean combination of aset of primitive tests (e.g., temperature > 80 ^ loose-connection = true). In each situation, the node testwill return either `true' or `false', which (respectively)con�rms or discon�rms the presence of the speci�edfault. We will refer to a test result that con�rmsnode N as \T N" and to one that discon�rms N as

\T N". (Hence, T FanFuse means the test associatedwith the \FanFuse" node, TFanFuse, was con�rmed,and T FanFuse means this test was discon�rmed.) Inaddition to a test, each terminal node N in the faulthierarchy speci�es the repair RN intended to correctits associated fault. For example, the `FanFuse' nodein Figure 1 has an attached \replace the fan fuse" re-pair (denoted RFanFuse) that will, when appropriate,eliminate the higher-level faults in the fan assemblyand tube cooling functions.1Typically, nodes higher in the fault hierarchy repre-sent faults in larger modules or subsystems of a de-vice, which can be caused by any of the more localizedfaults below them. Thus, elimination of a high-levelfault, N , implies the elimination of all faults that fallbelow N in the hierarchy (unless one can reach thelower nodes through another path2). The fault hier-archy used in the �elded ctx system contains approx-imately 580 fault nodes and 400 di�erent tests thatrecommend one of 150 alternative repairs.2.2 Diagnosis Using a Fault HierarchyThe ctx system is implemented in TestBench,3 adiagnostic shell that evaluates a fault hierarchy bydepth-�rst traversal of the DAG, beginning at a rootnode R, where T R is an initial (i.e., presenting) symp-tom, which is known to be true. On reaching the nodeN , TestBench invokes (or directs the user to carryout) the test TN associated with N . If the test resultcon�rms that fault N is present in the device, Test-Bench examines N 's children to determine which ofthese more speci�c faults is responsible for the prob-lem, beginning with the leftmost child. Alternatively,if the test result discon�rms N , TestBench consid-1Figure 1 does not explicitly show either the tests orthe repairs associated with the nodes.2This can occur when N has multiple parents, produc-ing a hierarchy that is an arbitrary directed acyclic graphrather than a tree like the one in Figure 1.3TestBench is a trademark of Carnegie Group, Inc.

Theory Revision in Fault Hierarchies 3ers the sibling fault node to N 's immediate right. Thediagnostic process halts when TestBench either con-�rms a terminal node (and returns the associated re-pair), or when TestBench discon�rms all childrenof a con�rmed fault, in which case it gives up (andreturns \No-Diagnosis"). Thus, diagnosis takes theform of depth-�rst search with no backtracking.For example, suppose we suspect that a fault may existin the cooling system, under the \CoolingTube" nodeof the fault hierarchy is shown in Figure 1. Test-Bench would �rst test for this fault, in this case ask-ing the engineer to see if the X-ray tube is overheat-ing. If true, this test con�rms the fault and the sys-tem tentatively hypothesizes that the fault resides inthe AirBlower, since this is the leftmost child of theCoolingTube node. If the test associated with thisnode returns false, then the AirBlower fault is discon-�rmed and TestBench then hypothesizes the nextfault in this set of children, FanAssembly. If the testTFanAssembly (switching the fan on and noting if itdoes not rotate) succeeds, TestBench con�rms theFanAssembly fault and then considers the �rst of itschildren, FanFuse. If checking the fuses reveals nofailure there, TestBench discon�rms this hypothesisand considers its sibling, Connections. If its test suc-ceeds, TestBench suggests a repair (RConnections =\replacing the connector") and the diagnostic processhalts.Note that any diagnostic session actually correspondsto a path through the fault hierarchy, with con-�rmed tests leading downward and discon�rmed testsleading to the right. For instance, the second ofthe scenarios we described above produces the pathh T CoolingTube ; T AirBlower; T FanAssembly ; T FanFuse ;T Connections i, which indicates an alternation betweenmovements downward and to the right through thefault hierarchy in Figure 1. The left to right orderingof sibling faults is a natural way to encode the prefer-ences of an expert test engineer who is faced with thechoice of alternate fault hypotheses to pursue. Noticealso that TestBench has performed only 5 of the 7tests of this fault hierarchy.A set of these diagnostic sessions, augmented with thecorrect repair and possibly other test values providedby the human expert, form the \labeled training in-stances" used by the � theory revision system, de-scribed below.2.3 The � Theory Revision AlgorithmTo revise an incorrect fault hierarchy, we considered�rst translating the initial fault hierarchy into anequivalent representation, such as Horn clauses or adecision tree, then using an existing induction methodto modify this structure, and �nally translating the re-sult back into a revised fault hierarchy. However, werejected this approach for two reasons. First, a minorrevision in the search space of either Horn clauses ordecision trees may correspond to a large step in the

space of fault hierarchies | a step that may not pre-serve the original causal structure. Since any proposedrevision will be subject to approval by domain experts,the allowable transformations should minimize viola-tions of the causal structure in order to be comprehen-sible to them. Second, traditional induction methodstypically assume that most feature values are presentin the training data and that the hidden feature valuesare uncorrelated with the class. As noted earlier, ourlearning task clearly violates this assumption. There-fore, we have developed �, a theory revision systemthat operates directly with fault hierarchies and han-dles training data with missing features.The � system uses four types of transformations tomove through the space of fault hierarchies, each map-ping one hierarchy H to a slightly di�erent hierarchy:� AddP;C;i(H) adds a link to H, by creating a newconnection from node P to node C, making Cthe ith child of parent P ; this creates a new paththrough which TestBench can reach C.� DeleteP;C(H) deletes a link from H, by removingthe existing connection between a parent node Pand one of its children C; this eliminates one ofthe paths to C.� MoveP1;P2;C;i(H) moves one of H's node, by re-moving a node C from its parent P1 and makingit the ith child of P2; this is equivalent to deletingthe link from P1 to C and adding a link from P2to C.� SwitchP;C1;C2(H) switches two of H's nodes, bytaking two nodes, C1 and C2, with a common par-ent P and interchanging their positions; this altersthe order in which TestBench considers C1 andC2 after con�rming P . Notice this is equivalentto (at most) two Move transformations.For each transformation, � 2 fAdd; Delete; Move;Switch g, we let �(H) represent the hierarchy formedby applying � toH. For example, using the hierarchiesshown in Figure 2, SwitchS;A;B(KBI) = KBT ; noticealso that MoveS;S;A;2(KBI) = KBT .The � system places some restrictions on the appli-cation of these transformations. In particular, it for-bids deletions of links that would completely discon-nect one or more nodes from the hierarchy, and itdisallows transformations that would introduce loopsby making a node its own descendant. Nevertheless,there is a very large space of possible structures thatthe transformations can generate from the initial faulthierarchy.4 For example, given a complete fault hier-archy with depth d and b branches at each level, thereare O(b2d) possible transformations.4Note that these transformations only alter the struc-ture of the hierarchy; they do not modify the primitive testsassociated with each node, which for now we assume to becorrect. Section 4.2 explains why this is not a restriction.

Theory Revision in Fault Hierarchies 4The � algorithm employs a simple hill-climbing strat-egy to search this space, using the given initial faulthierarchy as its starting point. On each cycle, �applies each of the transformations f�g to the cur-rent hierarchy H in all legal ways to generate a setNeighbors(H) = f�(H)g of revised hierarchies, eachdi�ering from H by a single modi�cation. It thenuses a given set of labeled training examples S = fsjg(described above) to evaluate the empirical accuracyof H and each H 0 2 Neighbors(H): That is, Test-Bench uses the performance component described inSection 2.2 to execute each hierarchy Hi on a train-ing example sj , which either returns some repair orfails, returning \No-Diagnosis". � gives Hi a scoreof 1 if its repair on sj corresponds to the correct repair(which labeled the example), and a score of 0 other-wise. Hi's empirical accuracy is then the average ofthese scores over the set S.5The system then selects the most accurate knowledgebase from Neighbors(H), which we denote H�. If H�is more accurate than the current hierarchy H, then� replaces H with H� and iterates: seeking a neigh-bor H�� 2 Neighbors(H�) with a yet higher accuracyscore, and so forth. Otherwise, if none of H's neigh-bors has a better score than H, � halts and returns Has the best of the fault hierarchies it has encountered.We overlay a bias in favor of minimal change upon thissimple scheme as follows. Transformations are applied�rst to leaf nodes of the DAG before they are triedat successively higher levels, and ties in the evalua-tion function are broken by choosing the earlier revi-sion. As typical fault hierarchies contain fewer initialsymptoms than diagnostic endpoints, and relativelyfew nodes have multiple parents, nodes towards theleaves are traversed less frequently than nodes nearerthe root, which means changes to the lower nodes(closer to the leafs) will a�ect fewer instances thanchanges to the upper nodes. This bias implementsa preference for retaining as much as possible of theoriginal fault hierarchy, which is reasonable since weexpect that any serious errors in the hierarchy wouldelicit a correspondingly large number of bug reports.Similarly, we apply a preference ordering to the fourtransformations that reects the behavior of humandomain experts in the task of theory revision, basedon our observations.3 Experimental Evaluation of the �MethodFor the users of � to consider the system successful, itmust revise �elded knowledge bases (such as ctx) toreduce the number of subsequent bug reports. How-ever, as we do not yet have access to these reports, wehave resorted to other techniques to obtain a prelimi-5This is actually a simpli�ed description of the process;Section 3.2 discusses some other complications. Also, Sec-tion 4.2 suggests a more e�cient implementation.

nary evaluation. In this section, we report some initialexperimental studies using a data set that was synthe-sized by introducing plausible errors into a particularknowledge base which, for purposes of the study, weassume to be correct. The rest of this section presentsthe dependent measures and independent variables ofinterest, along with some hypotheses about �'s learn-ing behavior. We then describe the nature of the train-ing and test sets used in our studies. Finally, we reportthe outcome of our experiments and compare these re-sults to our hypotheses.3.1 Experimental Variables and HypothesesThree main factors should inuence the behavior of �.The �rst is the number of training cases the learningsystem has observed. Although � is nonincremental,we can still generate `learning curves' by measuring theperformance of the revised fault hierarchy after every ntraining instances. This will give us information aboutthe rate of learning and its asymptotic performance.A second central factor is the target fault hierarchy.We will not vary this term in our experiments, asour main aim is to evaluate �'s ability to acquirethe correct TestBench hierarchy for the ctx do-main. For the purpose of these experiments, we as-sume that the �elded knowledge base is the target,and furthermore that its structure is representative ofTestBench fault hierarchies for other applications.6Our experiments were performed using a connectedsubgraph of the full fault hierarchy which includes 63unique tests that are organized into 66 failure nodes,with 39 possible repairs reachable through 41 alterna-tive paths. This size is typical of a connected subgraphin the ctx fault hierarchy.The distance between the initial and target hierarchy isthe third important factor. We generate an initial faulthierarchy by applying inverses of the learning transfor-mations from Section 2.3 to the target hierarchy, vary-ing the distance by introducing di�erent numbers ofsuch `bugs'. Figure 2 gives a simple example in whichthe switch operator transforms the target hierarchyinto an initial one. In this case, the distance is one,but use of multiple transformations can produce ini-tial hierarchies more distant from the target.7 Basedon inspection of the development history of the ctxsystem, we have selected ten bugs that appear typ-ical, including four examples of node movement andtwo cases each of switching nodes, adding a link, anddeleting a link. We combine these to generate di�erentexperimental starting points.6In a companion corpus of experiments, we used a dif-ferent target fault hierarchy, taken from a di�erent �eldedapplication. Those results are not reported here as theyare essentially the same as the ones described below.7Because di�erent sets of transformations can producethe same fault hierarchy, we compare the mutated hierar-chy with the target to compute the minimum distance; weuse this measure of distance in our experiments.

Theory Revision in Fault Hierarchies 5
A

C D

B

E

S

A

C D

B

E

S

Initial Knowledge Base: KB ITarget Knowledge Base: KB TFigure 2: The learning transformations from � can generate an initial TestBench hierarchy from the targethierarchy. Here switching nodes transforms the target fault hierarchy, KBT , which tests A before B, into the\initial" hierarchy, KBI which performs these tests in the reverse order.The goal of � is to revise the initial fault hierarchyin ways that improve its ability to propose correct re-pairs. This suggests diagnostic accuracy as the natu-ral performance measure in our studies. However, wewould also like � to carry out an e�cient search ofthe space of revisions, which suggests the number ofrevision steps during learning as a second dependentmeasure.These independent and dependent variables suggestthree hypotheses about the behavior of �, each ofwhich seems desirable for a theory revision system.First, the accuracy of the revised knowledge baseshould increase monotonically with the number oftraining instances, as with most induction techniques.More important, the number of training cases requiredto reach asymptotic accuracy should grow only linearlywith the distance between the initial and target hier-archies. Finally, the number of revision steps that �takes during learning should scale well (e.g., linearly)with the distance between the initial and target hier-archies, given a su�cient number of training instances.3.2 Generation of Training and Test DataAlthough we must use arti�cial data to evaluate �, wewould like our instances to realistically simulate bugreports from the �eld. Here we assume that a �eldengineer performs diagnostic tests as speci�ed by theinitial TestBench hierarchy and, if the suggested re-pair does not solve the problem, the engineer consultsthe domain expert, who recommends additional teststhat lead to the correct repair. We will assume thatthe expert's suggestions are always correct.Hence, a bug report includes a transcript of the testvalues elicited by following the initial hierarchy, anyadditional test values given by the expert, and the cor-rect diagnosis. Transcripts of cases that were correctlydiagnosed by the initial hierarchy are also used by thelearning system. Note that in both cases, the traininginstance includes only some of many possible tests, andthe ones included are determined by both the initialhierarchy and the expert. This feature distinguishesour work from other research on theory revision.

To generate data of this form, we consult the tar-get TestBench hierarchy, which here plays the roleof the domain expert. The �rst step in generatinga training instance involves randomly selecting somepath through the target hierarchy. This provides a se-quence of tests and their associated values, along withthe correct repair. For example, consider again thetarget hierarchy in Figure 2, which contains three suchpaths: h T A; T C i h T A; T C ; T D i, and h T A; T B ; T E i.Note that these paths specify the tests that the correctTestBench hierarchy would generate. For a givensituation, however, the initial hierarchy may proposeirrelevant tests (i.e., tests whose values are not neededby the target hierarchy) and omit relevant ones (i.e.,tests whose values are needed by the target hierarchy).For each irrelevant test value requested by the initialhierarchy, � inserts a random value into the trainingcase, and for each omitted relevant test, � inserts thevalue corresponding to the correct path, to simulateadvice given by the expert.For example, consider the �rst path above, h T A; T C i.When using the problematic initial hierarchy KBI ,shown on the right of Figure 2, TestBench wouldconsider the node B (and possibly E) before con-sidering A and C. Notice however that the tar-get hierarchy KBT only provides test values forTA and TC , but not for either TB nor TE . Wetherefore consider all possible values of TB and TEconsistent with the performance element's traversalof the initial hierarchy; viz., i1:h T B ; T E ; T A; T C i,i2:h T B; T E ; T A; T C i, and i3:h T B; T A; T C i. Thesetraining instances cause the performance element toreturn diagnosis E, No-Diagnosis, and C, respec-tively. Case i1 simulates a bug report in which theexpert system's advice leads to an incorrect diagnosis.8Case i2 simulates a report of the expert system fail-ing to arrive at a diagnosis because the con�rming testT B is a red herring. Case i3 leads to the correct di-agnosis, though an unnecessary test TB is ordered. �8It is easy to imagine how T E could con�rm a fault in Eeven though E is not actually faulty. If E were dependenton C, then TE alone might never have been intended todiscriminate E from C, unless TE were preceded by a testto �rst rule out C.

Theory Revision in Fault Hierarchies 6
number of training examples

te
s
t
s
e
t
a
c
c
u
ra

c
y

0 50 100 150

4
0

6
0

8
0

1
0
0

Dist %incorrect 95% conf intervals
 1 17.4 (0.97,0.22,0.19,0.12)
 2 31.8 (1.48,0.37,0.43,0.25)
 3 49.9 (8.91,1.82,1.19,1.20)
 4 49.3 (6.09,2.32,1.55,1.07)
 5 52.1 (11.97,1.53,1.43,1.18)Figure 3: Diagnostic accuracy of the revised hierarchy as a function of the number of training instances, for eachdistance between the initial and target hierarchies.will stochastically select one of these (augmented withthe correct repair and the other relevant tests), with aprobability that depends on the unspeci�ed tests thathad to be performed, and return some speci�c value.The above description explains our approach to gener-ating a training case from an individual path throughthe target hierarchy. To generate an entire training set,we must also use some distribution of paths. Here, weassume paths are uniformly distributed, and we selectthem randomly with replacement. For the target hi-erarchy in Figure 2, we would select each path with 13probability independently. Since in general a hierar-chy is a DAG rather than a tree, this strategy producessome repairs more frequently than others. This seemsa plausible assumption in the absence of an actual faultdistribution.In generating test data, many of the same issues ariseas for training instances. We randomly select a pathfrom the target hierarchy and, for each test along thispath, we include the value needed to continue towardthe selected repair. However, instead of inserting ran-dom values for only those tests that the initial hi-erarchy would request, we insert random values forall tests not along the correct path. For example,one possible test case from the above path would beh T A; T B; T C ; T D; T E i. This scheme ensures that anyrevised hierarchy can access any test during the di-agnostic process. Naturally, we assume the test casesfollow the same distribution as the training instances.93.3 Experimental ResultsUsing the framework described above, we carried outan experiment designed to test our hypotheses. Wevaried the number of training instances available to �9Since we know the distribution of synthetic data inthese experiments, we could analytically compute the ac-curacy of a hypothesis. This will not be possible, however,when data are provided by the user population.

from 20 to 160 and the distance between the initial andtarget hierarchy from one to �ve, in each case measur-ing the two dependent variables discussed earlier. Foreach condition, we averaged the results over 10 to 30di�erent initial hierarchies and 10 to 30 di�erent train-ing sets, both randomly generated.Figure 3 plots the accuracy of the revised knowledgebase on 500 test instances (the same test set for eachrun) as a function of these two factors. As expected,the accuracy of the revised hierarchy increases mono-tonically with the number of training instances (shownfor 20, 40, 80, 160), approaching 100%. More inter-esting, the number of instances required to reach thislevel increases roughly linearly with the distance be-tween the initial and target hierarchies, as proposed inour second hypothesis. The legend in Figure 3 shows,for each distance value, the average percentage of totaltraining instances that are misclassi�ed by the initialhierarchy, and 95% con�dence intervals on each point.The results for our second dependent variable, thenumber of steps occurring during theory revision, ap-pear in Figure 4. This graph is generally consistentwith our third hypothesis, showing that �'s numberof revision steps grows approximately linearly with thedistance from the initial hierarchy to the target. Thisrelation seems to hold for all training set sizes greaterthan zero. At least for the distances examined in thisstudy, � appears to scale well to increasing amountsof mutilation in the target TestBench hierarchy.In summary, our experimental results have generallyborne out the hypotheses we proposed earlier in thesection. This suggests that � has the characteristicsone desires from a theory revision system, and thatits behavior will be robust even when given a largefault hierarchy that contains many errors and traininginstances that omit the values of many features.

Theory Revision in Fault Hierarchies 7
number of training examples

n
u

m
b

e
r

o
f

re
vi

si
o

n
s

0 50 100 150

0
.0

1
.0

2
.0

3
.0

4
.0

Figure 4: Revision steps during learning as a function of the number of training instances, for each distancebetween the initial and target hierarchies.4 Discussion4.1 Related Research on Theory RevisionThe approach we have taken with � has close con-nections with other work on theory revision, includ-ing Ginsberg, Weiss, and Politakis (1988), Ourstonand Mooney (1990), Craw and Sleeman (1990), Tow-ell (1991), Cain (1991), Richards and Mooney (1991),Wogulis and Pazzani (1993), and Asker (1994). Start-ing from an initial domain theory obtained from ex-perts, these methods also iteratively modify that the-ory to improve accuracy on a set of training cases. Likethem, � uses the training instances to direct a non-incremental hill-climbing search through the space ofdomain theories.However, the hypothesis space of fault hierarchies con-sidered by � di�ers from the space searched by others,and the transformations used in � implement one-steprevisions that may correspond to multiple-step revi-sions in other systems. The bias that is embodied inthe concept description language of fault hierarchiesand in the set of transformations is a familiar and in-tuitive one for experts in technical diagnosis. The biastoward using as much of the initial domain theory aspossible, implemented in � by a preference ordering ontransformations, can also be found in Drastal, Raatz,and Czako (1989).One can also view incremental methods for the induc-tion of decision trees (e.g., Schlimmer & Fisher, 1986;Utgo�, 1989) as carrying out a form of theory revision.Again, this approach performs a hill-climbing searchusing the current knowledge base as its starting point.The standard operators here involve extending the de-cision tree downward, pruning the tree, and reversingthe order of two tests. Typically, this work assumesthat one constructs a decision tree from scratch, butthe basic approach should apply equally well when anexpert provides an initial tree.Our experimental studies have also drawn from theprevious work on theory revision. In particular, Rose

(1989) reports experiments that systematically varythe distance between the initial and target theories, us-ing both accuracy and number of revision steps as de-pendent measures. In addition, Rose (1989), Ourstonand Mooney (1990), and others have presented learn-ing curves that measure accuracy as a function of thenumber of training cases seen by the theory revisionsystem.4.2 Directions for Future WorkAlthough our experiments with � have been encour-aging, we have yet to explore many other facets oftheory revision for expert systems. For example, wehave focused on a particular (rather general) set ofhierarchy{to{hierarchy transformations, which modifythe \structure" of the hierarchy. There are other ob-vious transformations that a�ect the \contents" of theindividual nodes. In particular, we could de�ne trans-formations that change the test within a particularnode; such an operator could transform the \Is thetemperature above 70o?" primitive test to, say, \Isthe temperature above 80o?". Although it would beeasy to incorporate such transformations into �, wehave not found them necessary, as almost all of thetests used in our applications are inherently binary, ofthe form \Is light no. 3 on?".10Second, although our descriptions deal only with \con-nected hierarchies", where there is a path from the rootto each leaf (repair) node, we could use the same �procedure on disconnected hierarchies. In particular,it could handle hierarchies that include both a con-nected component KBcc (like the one shown in Fig-ure 1) and a small collection of \extra nodes" thatcontain tests and/or repairs not included in the con-nected part (e.g., a \bad wire" node, with a test andrepair not in KBcc). Notice that � can use an addtransformation to link one of these auxiliary nodes intothe existing connected portion, which has the e�ect of10In fact, we informally estimate that over 95% of ourtests are inherently binary.

Theory Revision in Fault Hierarchies 8adding in a new test into that hierarchy. We can usethis same \trick" to acquire new repairs, by adding alink from the some node in KBcc to a node with anovel repair.11A third extension concerns �'s greedy approach, whichcurrently generates and evaluates all possible revisions.Although this scheme is easy to describe, it is ine�-cient for large knowledge bases and large training sets.Even in our controlled experiments, � generated ap-proximately 10; 000 neighbors for each current hierar-chy. An alternative approach would generate possi-ble revisions more selectively, based only on trainingcases that the current theory misclassi�es. For ex-ample, such an algorithm would note when a desiredtest has been omitted on a training case, then con-sider moving the associated node to a position in whichit would have been used in the case. Similarly, themethod would consider removing only links to thosenodes whose associated tests appear in a faulty diag-nosis. We are currently testing these changes to �,and we expect them to speed the theory revision pro-cess with no loss of accuracy.Finally, although we have emphasized the accuracyof diagnosis, we must also be able to use feedbackon the sequence of tests requested. Incorporating apenalty for unnecessary tests into the evaluation func-tion should be a straightforward way to direct thesearch toward theories that arrive at a correct diag-nosis by the most preferred path.124.3 Contributions of the ResearchIn this paper, we described an approach to theory re-vision for diagnostic expert systems, and its imple-mentation in �. This e�ort was motivated by the re-quirement to operate directly with a knowledge rep-resentation that has been used in diagnostic expertsystems of large scale, and to meet acceptance criteriathat include both the cost and accuracy of diagnosis.Our approach also had to be tolerant of missing fea-ture values, and the method had to be able to producehighly accurate fault hierarchies without a large train-ing set. Our initial experimental studies indicate thatthe � algorithm tends to converge rapidly on accu-rate knowledge bases, often reconstructing the actualtarget theory that was used to generate the trainingand test data. We have shown this using training setscontaining randomized values for tests that are not es-sential to a given diagnosis. We also found that �scales well as one increases the distance between theinitial and target hierarchy.11Of course, we still require an expert to specify theseauxiliary tests and repairs.12Note that, in general, this \preference" is a function ofmany variables, including time and equipment needed toperform a test, risk of causing damage by testing, reliabilityof the test result, and information gain of the test.

ReferencesAsker, L. (1994). Improving accuracy of incorrect do-main theories. Proceedings of the Eleventh Interna-tional Conference on Machine Learning (pp. 19{27).New Brunswick, NJ: Morgan Kaufmann.Cain, T. (1991). The Ductor: A theory revision sys-tem for propositional domains. Proceedings of theEighth International Workshop on Machine Learn-ing (pp. 485{489). Evanston: Morgan Kaufmann.Craw, S., & Sleeman, D. (1990). Automating there�nement of knowledge-based systems. Proceed-ings of European Conference on Arti�cial Intelli-gence (pp. 167{172). Stockholm: Pitman.Drastal, G., Raatz, S., & Czako, G. (1989). Inductionin an abstraction space: A form of constructive in-duction. Proceedings of the Eleventh InternationalJoint Conference on Arti�cial Intelligence (pp. 708{712). Detroit: Morgan Kaufmann.Ginsberg, A., Weiss, S., & Politakis, P. (1988). Au-tomatic knowledge base re�nement for classi�cationsystems. Arti�cial Intelligence, 35 , 197{226.Ourston, D., & Mooney, R. (1990). Changing therules: A comprehensive approach to theory re�ne-ment. Proceedings of the Eighth National Con-ference on Arti�cial Intelligence (pp. 815{820).Boston: AAAI Press.Rao, R. B., Greiner, R., & Hancock, T. (1994). Ex-ploiting the absence of irrelevant information: Whatyou don't know can help you. Working Notes of theAAAI Fall Symposium on Relevance. New Orleans:AAAI Press.Richards, B., & Mooney, R. (1991). First-order the-ory revision. Proceedings of the Eighth Interna-tional Workshop on Machine Learning (pp. 447{451). Evanston, IL: Morgan Kaufmann.Rose, D. (1989). Using domain knowledge to aid scien-ti�c theory revision. Proceedings of the Sixth Inter-national Workshop on Machine Learning (pp. 272{277). Ithaca, NY: Morgan Kaufmann.Schlimmer, J. C., & Fisher, D. (1986). A case studyof incremental concept induction. Proceedings of theFifth National Conference on Arti�cial Intelligence(pp. 496{501). Philadelphia: Morgan Kaufmann.Towell, G. (1991). Symbolic knowledge and neural net-works: Insertion, re�nement, and extraction. Doc-toral dissertation, Computer Sciences Department,University of Wisconsin, Madison.Utgo�, P. E. (1989). Incremental induction of decisiontrees. Machine Learning , 4 , 161{186.Wogulis, J., & Pazzani, M. (1993). A methodol-ogy for evaluating theory revision systems: Resultswith Audrey II. Proceedings of Thirteenth Inter-national Joint Conference on Arti�cial Intelligence(pp. 1128{1134). Chamb�ery: Morgan Kaufmann.

