To appear in Proceedings of the Fifth International Workshop on Principles of Diagnosis (1994). New Paltz, NY.

Theory Revision in Fault Hierarchies

Pat Langley; George Drastal, R. Bharat Rao and Russell Greiner
Learning Systems Department, Siemens Corporate Research

755 College Road East, Princeton, NJ 08540 USA

Abstract

The fault hierarchy representation is widely
used in expert systems for the diagnosis of
complex mechanical devices. On the assump-
tion that an appropriate bias for a knowledge
representation language is also an appropri-
ate bias for learning in this domain, we have
developed a theory revision method that op-
erates directly on a fault hierarchy. This task
presents several challenges: A typical train-
ing instance is missing most feature values,
and the pattern of missing features is signif-
icant, rather than merely an effect of noise.
Moreover, the accuracy of a candidate theory
is measured by considering both the sequence
of tests required to arrive at a diagnosis and
its agreement with the diagnostic endpoints
provided by an expert. This paper first de-
scribes the A algorithm for theory revision
of fault hierarchies that was designed to ad-
dress these challenges, then discusses its ap-
plication in knowledge base maintenance and
reports on experiments that use A to revise
a fielded diagnostic system.

1 Knowledge Maintenance and
Machine Learning

Over the past decade, large-scale expert systems have
found widespread use. However, developers have found
that the cost of maintaining a knowledge base, over
its lifetime, can be as high as the initial cost of its
development. One response is to use machine learn-
ing to correct the knowledge base as problems emerge.
Unfortunately, standard induction methods seem 1ll-
suited to this task, as they are designed to use train-
ing data to construct a knowledge base from scratch,
and the rate at which training data is generated by
field users 1s typically too low to support regeneration
of the knowledge base each time a revision is needed.

*Current address: Robotics Laboratory, Computer Sci-
ence Department, Stanford University, Stanford, CA 94305

As domain knowledge is available (in the form of the
knowledge base), it makes sense to take advantage of
this information (even if imperfect) to bias the induc-
tion process. Techniques for theory revision are suited
for the task of knowledge maintenance, since they use
training data to improve an initial domain theory.

In this paper, we report research on theory revision
that has been driven by our experience with CTX, a
fielded expert system (now undergoing beta testing by
65 field service engineers in the U.S.) that diagnoses
faults in the high-voltage generator of a computerized
tomography (CT) scanner manufactured by Siemens
Medical Systems. Although initial feedback indicates
that ¢TX reduces both the number of repeat visits by
field service engineers and the number of times they
must consult a domain expert, users have reported
errors in the knowledge base. In addition, we know
that bug reports will accrue as the failure distribution
drifts, due both to aging of the devices and device up-
grades. These events create a need for periodic updat-
ing of the knowledge base to maintain an acceptable
performance level. Qur goal is to develop a theory
revision system that can correct these errors in a cost-
effective manner, by minimizing the need for manual
revision by a knowledge engineer.

The task raises two problems that previous research in
theory revision has not addressed. First, the diagnos-
tic knowledge base takes the form of a fault hierarchy,
which differs from the standard Horn clause represen-
tation used in most theory revision work. As domain
experts and users seem comfortable with the repre-
sentational bias provided by a fault hierarchy, we are
reluctant to change to a different formalism. Second,
most work on induction has assumed that all (or at
least most) features appear in training and test cases.
However, the selective nature of the diagnostic pro-
cess means that only a few of the many possible fea-
ture values are specified in any instance, and the set of
features present is correlated with the diagnosis itself
(Rao, Greiner, & Hancock, 1994). We must deal with
both issues as part of a practical approach to knowl-
edge base maintenance.

In the next section, we explain the structure of fault
hierarchies, examine the procedure by which ¢TX uses

THEORY REVISION IN FAULT HIERARCHIES 2

CoolingTube

AirBlower

FanAssembly

TempSensor

FanFuse

Connections

FanM otor

Figure 1: A partial fault hierarchy for the cooling subsystem of the X-ray tube in a computerized tomography

scanner. Test and repair information is omitted.

such hierarchies to diagnose faults, and introduce the
A algorithm, which revises an initial fault hierarchy in
response to logs of diagnostic sessions. In Section 3 we
present some hypotheses about the learning system’s
behavior, consider the experimental approach we have
taken to test them, and report the results of our exper-
iments. In the final section, we compare A with other
approaches to theory revision, outline some directions
for future work, and review the contributions of our
research.

2 Theory Revision for Diagnostic
Expert Systems

2.1 Representation of Diagnostic Knowledge

One representational formalism that has been used in
diagnostic expert systems is the fault hierarchy. This
structure is a directed acyclic graph (DAG) in which
nodes correspond to possible faults in the device, and
each child node corresponds to a possible cause of its
parent node. Note that a node represents a functional
failure, which need not correspond to a physically dis-
tinct component but rather to a set of components that
is causally linked to that function. Figure 1 shows the
portion of the ¢TX fault hierarchy that deals with the
X-ray tube cooling subsystem in a CT scanner. This
hierarchy states that a malfunction in CoolingTube
can be caused by either a fault in the AirBlower, the
FanAssembly, or the TempSensor. Similarly, a mal-
function in the FanAssembly can be caused by a blown
FanFuse, loose Connections, or a faulty FanMotor.

Each node N has an associated “node test”, written
Ty, for determining the presence of its specified fault.
Each such node test is a Boolean combination of a
set of primitive tests (e.g., temperature > 80 A loose-
connection = true). In each situation, the node test
will return either ‘true’ or “false’, which (respectively)
confirms or disconfirms the presence of the specified
fault. We will refer to a test result that confirms
node N as “7 5”7 and to one that disconfirms N as

“Tao. (Hence, T panruse means the test associated
with the “FanFuse” node, Tpanpuse, was confirmed,
and T panpuse Means this test was disconfirmed.) In
addition to a test, each terminal node N in the fault
hierarchy specifies the repair R intended to correct
its associated fault. For example, the ‘FanFuse’ node
in Figure 1 has an attached “replace the fan fuse” re-
pair (denoted Rpanpuse) that will, when appropriate,
eliminate the higher-level faults in the fan assembly
and tube cooling functions.!

Typically, nodes higher in the fault hierarchy repre-
sent faults in larger modules or subsystems of a de-
vice, which can be caused by any of the more localized
faults below them. Thus, elimination of a high-level
fault, N, implies the elimination of all faults that fall
below N in the hierarchy (unless one can reach the
lower nodes through another path?). The fault hier-
archy used in the fielded ¢TX system contains approx-
imately 580 fault nodes and 400 different tests that
recommend one of 150 alternative repairs.

2.2 Diagnosis Using a Fault Hierarchy

The ¢TX system is implemented in TESTBENCH,? a
diagnostic shell that evaluates a fault hierarchy by
depth-first traversal of the DAG, beginning at a root
node R, where T g is an initial (i.e., presenting) symp-
tom, which is known to be true. On reaching the node
N, TESTBENCH invokes (or directs the user to carry
out) the test T associated with N. If the test result
confirms that fault N is present in the device, TEST-
BENCH examines N’s children to determine which of
these more specific faults is responsible for the prob-
lem, beginning with the leftmost child. Alternatively,
if the test result disconfirms N, TESTBENCH consid-

!Pigure 1 does not explicitly show either the tests or
the repairs associated with the nodes.

2This can occur when N has multiple parents, produc-
ing a hierarchy that is an arbitrary directed acyclic graph
rather than a tree like the one in Figure 1.

*TESTBENCH is a trademark of Carnegie Group, Inc.

THEORY REVISION IN FAULT HIERARCHIES 3

ers the sibling fault node to N’s immediate right. The
diagnostic process halts when TESTBENCH either con-
firms a terminal node (and returns the associated re-
pair), or when TESTBENCH disconfirms all children
of a confirmed fault, in which case it gives up (and
returns “N o-Diagnosis”). Thus, diagnosis takes the
form of depth-first search with no backtracking.

For example, suppose we suspect that a fault may exist
in the cooling system, under the “CoolingTube” node
of the fault hierarchy is shown in Figure 1. TEST-
BENCH would first test for this fault, in this case ask-
ing the engineer to see if the X-ray tube is overheat-
ing. If true, this test confirms the fault and the sys-
tem tentatively hypothesizes that the fault resides in
the AirBlower, since this is the leftmost child of the
CoolingTube node. If the test associated with this
node returns false, then the AirBlower fault is discon-
firmed and TESTBENCH then hypothesizes the next
fault in this set of children, FanAssembly. If the test
Tranassembly (switching the fan on and noting if it
does not rotate) succeeds, TESTBENCH confirms the
FanAssembly fault and then considers the first of its
children, FanFuse. If checking the fuses reveals no
failure there, TESTBENCH disconfirms this hypothesis
and considers its sibling, Connections. If its test suc-
ceeds, TESTBENCH suggests a repair (Rconnections =
“replacing the connector”) and the diagnostic process
halts.

Note that any diagnostic session actually corresponds
to a path through the fault hierarchy, with con-
firmed tests leading downward and disconfirmed tests
leading to the right. For instance, the second of
the scenarios we described above produces the path
< TCoolmgTube ’ TAirBlowera TFanAssembly ; TFanFuse ’
T Connections), Which indicates an alternation between
movements downward and to the right through the
fault hierarchy in Figure 1. The left to right ordering
of sibling faults is a natural way to encode the prefer-
ences of an expert test engineer who is faced with the
choice of alternate fault hypotheses to pursue. Notice
also that TESTBENCH has performed only 5 of the 7
tests of this fault hierarchy.

A set of these diagnostic sessions, augmented with the
correct repair and possibly other test values provided
by the human expert, form the “labeled training in-
stances” used by the A theory revision system, de-
scribed below.

2.3 The A Theory Revision Algorithm

To revise an incorrect fault hierarchy, we considered
first translating the initial fault hierarchy into an
equivalent representation, such as Horn clauses or a
decision tree, then using an existing induction method
to modify this structure, and finally translating the re-
sult back into a revised fault hierarchy. However, we
rejected this approach for two reasons. First, a minor
revision in the search space of either Horn clauses or
decision trees may correspond to a large step in the

space of fault hierarchies — a step that may not pre-
serve the original causal structure. Since any proposed
revision will be subject to approval by domain experts,
the allowable transformations should minimize viola-
tions of the causal structure in order to be comprehen-
sible to them. Second, traditional induction methods
typically assume that most feature values are present
in the training data and that the hidden feature values
are uncorrelated with the class. As noted earlier, our
learning task clearly violates this assumption. There-
fore, we have developed A, a theory revision system
that operates directly with fault hierarchies and han-
dles training data with missing features.

The A system uses four types of transformations to
move through the space of fault hierarchies, each map-
ping one hierarchy H to a slightly different hierarchy:

o Addpci(H) adds a link to H, by creating a new
connection from node P to node C'| making C
the i** child of parent P; this creates a new path
through which TESTBENCH can reach C.

o Deletep o (H) deletes a link from H, by removing
the existing connection between a parent node P
and one of its children C'; this eliminates one of
the paths to C'.

o Movep, p, ci(H) moves one of H’s node, by re-
moving a node C' from its parent P, and making
it the 7** child of Ps; this is equivalent to deleting
the link from P; to C' and adding a link from P
to C'.

o Switchp o, c,(H) switches two of H’s nodes, by
taking two nodes, C; and (s, with a common par-
ent P and interchanging their positions; this alters
the order in which TESTBENCH considers C4 and
C5 after confirming P. Notice this is equivalent
to (at most) two Move transformations.

For each transformation, ¢ € { Add, Delete, Move,
Switch }, we let o(H) represent the hierarchy formed
by applying o to H. For example, using the hierarchies
shown in Figure 2, Switchs 4, p(K Br) = K Br; notice
also that Moves g 4 2(KBr) = KBr.

The A system places some restrictions on the appli-
cation of these transformations. In particular, it for-
bids deletions of links that would completely discon-
nect one or more nodes from the hierarchy, and it
disallows transformations that would introduce loops
by making a node its own descendant. Nevertheless,
there is a very large space of possible structures that
the transformations can generate from the initial fault
hierarchy.* For example, given a complete fault hier-
archy with depth d and b branches at each level, there
are O(b?) possible transformations.

*Note that these transformations only alter the struc-
ture of the hierarchy; they do not modify the primitive tests
associated with each node, which for now we assume to be
correct. Section 4.2 explains why this is not a restriction.

THEORY REVISION IN FAULT HIERARCHIES 4

The A algorithm employs a simple hill-climbing strat-
egy to search this space, using the given initial fault
hierarchy as its starting point. On each cycle, A
applies each of the transformations {o¢} to the cur-
rent hierarchy H in all legal ways to generate a set
Neighbors(H) = {o(H)} of revised hierarchies, each
differing from H by a single modification. It then
uses a given set of labeled training examples S = {s;}
(described above) to evaluate the empirical accuracy
of H and each H’ € Neighbors(H): That is, TEST-
BENCH uses the performance component described in
Section 2.2 to execute each hierarchy H; on a train-
ing example s;, which either returns some repair or
fails, returning “A o-Diagnosis”. A gives H; a score
of 1 if its repair on s; corresponds to the correct repair
(which labeled the example), and a score of 0 other-
wise. H;’s empirical accuracy is then the average of
these scores over the set S.°

The system then selects the most accurate knowledge
base from Neighbors(H), which we denote H*. If H*
is more accurate than the current hierarchy H, then
A replaces H with H* and iterates: seeking a neigh-
bor H** € Neighbors(H*) with a yet higher accuracy
score, and so forth. Otherwise, if none of H’s neigh-
bors has a better score than H, A halts and returns H
as the best of the fault hierarchies it has encountered.

We overlay a bias in favor of minimal change upon this
simple scheme as follows. Transformations are applied
first to leaf nodes of the DAG before they are tried
at successively higher levels, and ties in the evalua-
tion function are broken by choosing the earlier revi-
sion. As typical fault hierarchies contain fewer initial
symptoms than diagnostic endpoints, and relatively
few nodes have multiple parents, nodes towards the
leaves are traversed less frequently than nodes nearer
the root, which means changes to the lower nodes
(closer to the leafs) will affect fewer instances than
changes to the upper nodes. This bias implements
a preference for retaining as much as possible of the
original fault hierarchy, which is reasonable since we
expect that any serious errors in the hierarchy would
elicit a correspondingly large number of bug reports.
Similarly, we apply a preference ordering to the four
transformations that reflects the behavior of human
domain experts in the task of theory revision, based
on our observations.

3 Experimental Evaluation of the A
Method

For the users of A to consider the system successful, it
must revise fielded knowledge bases (such as ¢TX) to
reduce the number of subsequent bug reports. How-
ever, as we do not yet have access to these reports, we
have resorted to other techniques to obtain a prelimi-

°This is actually a simplified description of the process;
Section 3.2 discusses some other complications. Also, Sec-
tion 4.2 suggests a more efficient implementation.

nary evaluation. In this section, we report some initial
experimental studies using a data set that was synthe-
sized by introducing plausible errors into a particular
knowledge base which, for purposes of the study, we
assume to be correct. The rest of this section presents
the dependent measures and independent variables of
interest, along with some hypotheses about A’s learn-
ing behavior. We then describe the nature of the train-
ing and test sets used in our studies. Finally, we report
the outcome of our experiments and compare these re-
sults to our hypotheses.

3.1 Experimental Variables and Hypotheses

Three main factors should influence the behavior of A.
The first is the number of training cases the learning
system has observed. Although A is nonincremental,
we can still generate ‘learning curves’ by measuring the
performance of the revised fault hierarchy after every n
training instances. This will give us information about
the rate of learning and its asymptotic performance.

A second central factor i1s the target fault hierarchy.
We will not vary this term in our experiments, as
our main aim is to evaluate A’s ability to acquire
the correct TESTBENCH hierarchy for the ¢TX do-
main. For the purpose of these experiments, we as-
sume that the fielded knowledge base is the target,
and furthermore that its structure is representative of
TESTBENCH fault hierarchies for other applications.®
Our experiments were performed using a connected
subgraph of the full fault hierarchy which includes 63
unique tests that are organized into 66 failure nodes,
with 39 possible repairs reachable through 41 alterna-
tive paths. This size is typical of a connected subgraph
in the ¢TX fault hierarchy.

The distance between the initial and target hierarchy is
the third important factor. We generate an initial fault
hierarchy by applying inverses of the learning transfor-
mations from Section 2.3 to the target hierarchy, vary-
ing the distance by introducing different numbers of
such ‘bugs’. Figure 2 gives a simple example in which
the switch operator transforms the target hierarchy
into an initial one. In this case, the distance is one,
but use of multiple transformations can produce ini-
tial hierarchies more distant from the target.” Based
on inspection of the development history of the cTX
system, we have selected ten bugs that appear typ-
ical, including four examples of node movement and
two cases each of switching nodes, adding a link, and
deleting a link. We combine these to generate different
experimental starting points.

In a companion corpus of experiments, we used a dif-
ferent target fault hierarchy, taken from a different fielded
application. Those results are not reported here as they
are essentially the same as the ones described below.

"Because different sets of transformations can produce
the same fault hierarchy, we compare the mutated hierar-
chy with the target to compute the minimum distance; we
use this measure of distance in our experiments.

THEORY REVISION IN FAULT HIERARCHIES 5

Target Knowledge Base: KB |

Initial Knowledge Base: KB |

Figure 2: The learning transformations from A can generate an initial TESTBENCH hierarchy from the target
hierarchy. Here switching nodes transforms the target fault hierarchy, K Br, which tests A before B, into the
“initial” hierarchy, K By which performs these tests in the reverse order.

The goal of A is to revise the initial fault hierarchy
in ways that improve its ability to propose correct re-
pairs. This suggests diagnostic accuracy as the natu-
ral performance measure in our studies. However, we
would also like A to carry out an efficient search of
the space of revisions, which suggests the number of
revision steps during learning as a second dependent
measure.

These independent and dependent variables suggest
three hypotheses about the behavior of A, each of
which seems desirable for a theory revision system.
First, the accuracy of the revised knowledge base
should increase monotonically with the number of
training instances, as with most induction techniques.
More important, the number of training cases required
to reach asymptotic accuracy should grow only linearly
with the distance between the initial and target hier-
archies. Finally, the number of revision steps that A
takes during learning should scale well (e.g., linearly)
with the distance between the initial and target hier-
archies, given a sufficient number of training instances.

3.2 Generation of Training and Test Data

Although we must use artificial data to evaluate A we
would like our instances to realistically simulate bug
reports from the field. Here we assume that a field
engineer performs diagnostic tests as specified by the
initial TESTBENCH hierarchy and, if the suggested re-
pair does not solve the problem, the engineer consults
the domain expert, who recommends additional tests
that lead to the correct repair. We will assume that
the expert’s suggestions are always correct.

Hence, a bug report includes a transcript of the test
values elicited by following the initial hierarchy, any
additional test values given by the expert, and the cor-
rect diagnosis. Transcripts of cases that were correctly
diagnosed by the initial hierarchy are also used by the
learning system. Note that in both cases, the training
instance includes only some of many possible tests, and
the ones included are determined by both the initial
hierarchy and the expert. This feature distinguishes
our work from other research on theory revision.

To generate data of this form, we consult the tar-
get TESTBENCH hierarchy, which here plays the role
of the domain expert. The first step in generating
a training instance involves randomly selecting some
path through the target hierarchy. This provides a se-
quence of tests and their associated values, along with
the correct repair. For example, consider again the
target hierarchy in Figure 2, which contains three such
paths: <TA,Tc> <TA,Tc,TD >, and <TA,TB,TE >
Note that these paths specify the tests that the correct
TESTBENCH hierarchy would generate. For a given
situation, however, the initial hierarchy may propose
irrelevant tests (i.e., tests whose values are not needed
by the target hierarchy) and omit relevant ones (i.e.,
tests whose values are needed by the target hierarchy).
For each irrelevant test value requested by the initial
hierarchy, A inserts a random value into the training
case, and for each omitted relevant test, A inserts the
value corresponding to the correct path, to simulate
advice given by the expert.

For example, consider the first path above, (7 4,7 ¢).
When using the problematic initial hierarchy K By,
shown on the right of Figure 2, TESTBENCH would
consider the node B (and possibly E) before con-
sidering A and C'. Notice however that the tar-
get hierarchy K Br only provides test values for
T4 and Te, but not for either Tp nor Tp. We
therefore consider all possible values of T and Tg
consistent with the performance element’s traversal
of the initial hierarchy; wiz., i#1:(7p,7g,7a,7¢),
iz:(TB,TE,TA,Tc>, and i3:<TB,TA,Tc>. These
training instances cause the performance element to
return diagnosis E, No-Diagnosis, and C, respec-
tively. Case #; simulates a bug report in which the
expert system’s advice leads to an incorrect diagnosis.®
Case i3 simulates a report of the expert system fail-
ing to arrive at a diagnosis because the confirming test
Tp is a red herring. Case i3 leads to the correct di-
agnosis, though an unnecessary test Tp 1s ordered. A

81t is easy toimagine how 7 g could confirm a fault in £
even though F is not actually faulty. If £ were dependent
on ¢ then Ty alone might never have been intended to
discriminate F from C, unless Tz were preceded by a test
to first rule out C.

THEORY REVISION IN FAULT HIERARCHIES 6

o

8’ m—— T T T T STee——————
>
o
g
28 Dist %incorrect 95% conf intervals
& - 1 174 (0.97,0.22,0.19,0.12)
2 — 2 318 (1.48,0.37,0.430.25)
g 31 - 3 499 (891,1.82,1.19,1.20)
= 4 493 (6.09,2.32,1.55,1.07)

— 5 521 (11.97,153,1.43118)
Q-
0 50 100 150

number of training examples

Figure 3: Diagnostic accuracy of the revised hierarchy as a function of the number of training instances, for each

distance between the initial and target hierarchies.

will stochastically select one of these (augmented with
the correct repair and the other relevant tests), with a
probability that depends on the unspecified tests that
had to be performed, and return some specific value.

The above description explains our approach to gener-
ating a training case from an individual path through
the target hierarchy. To generate an entire training set,
we must also use some distribution of paths. Here, we
assume paths are uniformly distributed, and we select
them randomly with replacement. For the target hi-
erarchy in Figure 2, we would select each path with %
probability independently. Since in general a hierar-
chy is a DAG rather than a tree, this strategy produces
some repairs more frequently than others. This seems
a plausible assumption in the absence of an actual fault
distribution.

In generating test data, many of the same issues arise
as for training instances. We randomly select a path
from the target hierarchy and, for each test along this
path, we include the value needed to continue toward
the selected repair. However, instead of inserting ran-
dom values for only those tests that the initial hi-
erarchy would request, we insert random values for
all tests not along the correct path. For example,
one possible test case from the above path would be
(Ta,Tp,Tc,Tp,Tr). Thisscheme ensures that any
revised hierarchy can access any test during the di-
agnostic process. Naturally, we assume the test cases
follow the same distribution as the training instances.”

3.3 Experimental Results

Using the framework described above, we carried out
an experiment designed to test our hypotheses. We
varied the number of training instances available to A

°Since we know the distribution of synthetic data in
these experiments, we could analytically compute the ac-
curacy of a hypothesis. This will not be possible, however,
when data are provided by the user population.

from 20 to 160 and the distance between the initial and
target hierarchy from one to five, in each case measur-
ing the two dependent variables discussed earlier. For
each condition, we averaged the results over 10 to 30
different initial hierarchies and 10 to 30 different train-
ing sets, both randomly generated.

Figure 3 plots the accuracy of the revised knowledge
base on 500 test instances (the same test set for each
run) as a function of these two factors. As expected,
the accuracy of the revised hierarchy increases mono-
tonically with the number of training instances (shown
for 20, 40, 80, 160), approaching 100%. More inter-
esting, the number of instances required to reach this
level increases roughly linearly with the distance be-
tween the initial and target hierarchies, as proposed in
our second hypothesis. The legend in Figure 3 shows,
for each distance value, the average percentage of total
training instances that are misclassified by the initial
hierarchy, and 95% confidence intervals on each point.

The results for our second dependent variable, the
number of steps occurring during theory revision, ap-
pear in Figure 4. This graph is generally consistent
with our third hypothesis, showing that A’s number
of revision steps grows approximately linearly with the
distance from the initial hierarchy to the target. This
relation seems to hold for all training set sizes greater
than zero. At least for the distances examined in this
study, A appears to scale well to increasing amounts
of mutilation in the target TESTBENCH hierarchy.

In summary, our experimental results have generally
borne out the hypotheses we proposed earlier in the
section. This suggests that A has the characteristics
one desires from a theory revision system, and that
its behavior will be robust even when given a large
fault hierarchy that contains many errors and training
instances that omit the values of many features.

THEORY REVISION IN FAULT HIERARCHIES 7

o |
o
5
g o |
S oo
. — ot
SR i — +
N
3 + +
______________________________ +
€ o +
2 4 + : § -
e
Q | -—
o — — —
O) - 150

number of training examples

Figure 4: Revision steps during learning as a function of the number of training instances, for each distance

between the initial and target hierarchies.

4 Discussion

4.1 Related Research on Theory Revision

The approach we have taken with A has close con-
nections with other work on theory revision, includ-
ing Ginsberg, Weiss, and Politakis (1988), Ourston
and Mooney (1990), Craw and Sleeman (1990), Tow-
ell (1991), Cain (1991), Richards and Mooney (1991),
Wogulis and Pazzani (1993), and Asker (1994). Start-
ing from an initial domain theory obtained from ex-
perts, these methods also iteratively modify that the-
ory to improve accuracy on a set of training cases. Like
them, A uses the training instances to direct a non-
incremental hill-climbing search through the space of
domain theories.

However, the hypothesis space of fault hierarchies con-
sidered by A differs from the space searched by others,
and the transformations used in A implement one-step
revisions that may correspond to multiple-step revi-
sions in other systems. The bias that 1s embodied in
the concept description language of fault hierarchies
and in the set of transformations is a familiar and in-
tuitive one for experts in technical diagnosis. The bias
toward using as much of the initial domain theory as
possible, implemented in A by a preference ordering on
transformations, can also be found in Drastal, Raatz,

and Czako (1989).

One can also view incremental methods for the induc-
tion of decision trees (e.g., Schlimmer & Fisher, 1986;
Utgoff, 1989) as carrying out a form of theory revision.
Again, this approach performs a hill-climbing search
using the current knowledge base as its starting point.
The standard operators here involve extending the de-
cision tree downward, pruning the tree, and reversing
the order of two tests. Typically, this work assumes
that one constructs a decision tree from scratch, but
the basic approach should apply equally well when an
expert provides an initial tree.

Our experimental studies have also drawn from the
previous work on theory revision. In particular, Rose

(1989) reports experiments that systematically vary
the distance between the initial and target theories, us-
ing both accuracy and number of revision steps as de-
pendent measures. In addition, Rose (1989), Ourston
and Mooney (1990), and others have presented learn-
ing curves that measure accuracy as a function of the
number of training cases seen by the theory revision
system.

4.2 Directions for Future Work

Although our experiments with A have been encour-
aging, we have yet to explore many other facets of
theory revision for expert systems. For example, we
have focused on a particular (rather general) set of
hierarchy—to—hierarchy transformations, which modify
the “structure” of the hierarchy. There are other ob-
vious transformations that affect the “contents” of the
individual nodes. In particular, we could define trans-
formations that change the test within a particular
node; such an operator could transform the “Is the
temperature above 70°7” primitive test to, say, “Is
the temperature above 80°7”. Although it would be
easy to incorporate such transformations into A, we
have not found them necessary, as almost all of the
tests used in our applications are inherently binary, of
the form “Is light no. 3 on?”.1°

Second, although our descriptions deal only with “con-
nected hierarchies” | where there 1s a path from the root
to each leaf (repair) node, we could use the same A
procedure on disconnected hierarchies. In particular,
it could handle hierarchies that include both a con-
nected component KB, (like the one shown in Fig-
ure 1) and a small collection of “extra nodes” that
contain tests and/or repairs not included in the con-
nected part (e.g., a “bad wire” node, with a test and
repair not in K B..). Notice that A can use an add
transformation to link one of these auxiliary nodes into
the existing connected portion, which has the effect of

10Ty fact, we informally estimate that over 95% of our
tests are inherently binary.

THEORY REVISION IN FAULT HIERARCHIES 8

adding in a new test into that hierarchy. We can use
this same “trick” to acquire new repairs, by adding a
link from the some node in KB.. to a node with a
novel repair.1!

A third extension concerns A’s greedy approach, which
currently generates and evaluates all possible revisions.
Although this scheme is easy to describe, it is ineffi-
cient for large knowledge bases and large training sets.
Even in our controlled experiments, A generated ap-
proximately 10, 000 neighbors for each current hierar-
chy. An alternative approach would generate possi-
ble revisions more selectively, based only on training
cases that the current theory misclassifies. For ex-
ample, such an algorithm would note when a desired
test has been omitted on a training case, then con-
sider moving the associated node to a position in which
it would have been used in the case. Similarly, the
method would consider removing only links to those
nodes whose associated tests appear in a faulty diag-
nosis. We are currently testing these changes to A,
and we expect them to speed the theory revision pro-
cess with no loss of accuracy.

Finally, although we have emphasized the accuracy
of diagnosis, we must also be able to use feedback
on the sequence of tests requested. Incorporating a
penalty for unnecessary tests into the evaluation func-
tion should be a straightforward way to direct the
search toward theories that arrive at a correct diag-
nosis by the most preferred path.!?

4.3 Contributions of the Research

In this paper, we described an approach to theory re-
vision for diagnostic expert systems, and its imple-
mentation in A. This effort was motivated by the re-
quirement to operate directly with a knowledge rep-
resentation that has been used in diagnostic expert
systems of large scale, and to meet acceptance criteria
that include both the cost and accuracy of diagnosis.
Our approach also had to be tolerant of missing fea-
ture values, and the method had to be able to produce
highly accurate fault hierarchies without a large train-
ing set. Our initial experimental studies indicate that
the A algorithm tends to converge rapidly on accu-
rate knowledge bases, often reconstructing the actual
target theory that was used to generate the training
and test data. We have shown this using training sets
containing randomized values for tests that are not es-
sential to a given diagnosis. We also found that A
scales well as one increases the distance between the
initial and target hierarchy.

1 Of course, we still require an expert to specify these
auxiliary tests and repairs.

2Note that, in general, this “preference” is a function of
many variables, including time and equipment needed to
perform a test, risk of causing damage by testing, reliability
of the test result, and information gain of the test.

References

Asker, L. (1994). Improving accuracy of incorrect do-
main theories. Proceedings of the Eleventh Interna-
tional Conference on Machine Learning (pp. 19-27).
New Brunswick, NJ: Morgan Kaufmann.

Cain, T. (1991). The Ductor: A theory revision sys-
tem for propositional domains. Proceedings of the
FEighth International Workshop on Machine Learn-
ing (pp. 485-489). Evanston: Morgan Kaufmann.

Craw, S., & Sleeman, D. (1990). Automating the
refinement of knowledge-based systems. Proceed-
wngs of Furopean Conference on Artificial Intelli-
gence (pp. 167-172). Stockholm: Pitman.

Drastal, G., Raatz, S., & Czako, G. (1989). Induction
in an abstraction space: A form of constructive in-
duction. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (pp. 708
712). Detroit: Morgan Kaufmann.

Ginsberg, A., Weiss, S., & Politakis, P. (1988). Au-
tomatic knowledge base refinement for classification
systems. Artificial Intelligence, 35, 197-226.

Ourston, D., & Mooney, R. (1990). Changing the
rules: A comprehensive approach to theory refine-
ment. Proceedings of the Fighth National Con-
ference on Artificial Intelligence (pp. 815-820).
Boston: AAAI Press.

Rao, R. B., Greiner, R., & Hancock, T. (1994). Ex-
ploiting the absence of irrelevant information: What
you don’t know can help you. Working Notes of the

AAAI Fall Symposium on Relevance. New Orleans:
AAAT Press.

Richards, B., & Mooney, R. (1991). First-order the-
ory revision. Proceedings of the FEighth Interna-
tional Workshop on Machine Learning (pp. 447-
451). Evanston, IL: Morgan Kaufmann.

Rose, D. (1989). Using domain knowledge to aid scien-
tific theory revision. Proceedings of the Sizth Inter-
national Workshop on Machine Learning (pp. 272—
277). Tthaca, NY: Morgan Kaufmann.

Schlimmer, J. C., & Fisher, D. (1986). A case study
of incremental concept induction. Proceedings of the
Fifth National Conference on Artificial Intelligence
(pp. 496-501). Philadelphia: Morgan Kaufmann.

Towell, G. (1991). Symbolic knowledge and neural net-
works: Insertion, refinement, and extraction. Doc-
toral dissertation, Computer Sciences Department,
University of Wisconsin, Madison.

Utgoff, P. E. (1989). Incremental induction of decision
trees. Machine Learning, 4, 161-186.

Wogulis, J., & Pazzani, M. (1993). A methodol-
ogy for evaluating theory revision systems: Results
with Audrey II. Proceedings of Thirteenth Inter-
national Joint Conference on Artificial Intelligence
(pp. 1128-1134). Chambéry: Morgan Kaufmann.

