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Abstract

This paper describes DEDALUS, a system that uses a vari-
ant of means-ends analysis to generate plans and uses
an incremental learning algorithm to acquire probabilistic
search heuristics from problem solutions. We summarize
DEDALUS’ approach to search, knowledge, organization,
and learning, and examine its behavior on multi-column
subtraction. We then evaluate the system in lerms of its
congistency with known results on human problem solving,
comparing it to other psychological models of learning and
planning.

Introduction

A central aspect of human intelligence is the ability to plan,
that is, to generate action sequences that achieve one’s
goals. As a result, planning and problem solving are impor-
tant topics within both cognitive psychology and artificial
intelligence. However, relatively few planning systems have
been designed with an eye toward explaining psychological
findings, and even fewer provide accounts of human learn-
ing on planning tasks.

In this paper we describe DEDALUS, a planning system
that we designed with human behavior in mind. Unlike
most recent work on learning and planning, DEDALUS em-
ploys a combination of forward chaining and means-ends
search, represents knowledge in a probabilistic framework,
stores both cases and abstractions, and learns through an
incremental process of concept formation. In the follow-
ing section we discuss these aspects of the system, relat-
ing them to high-level knowledge of human behavior. Af-
ter this, we consider its behavior on the domain of multi-
column subtraction. Finally, we present a brief evaluation
of DEDALUS’ and other models’ abilities to explain robust
psychological findings.

An Overview of DEDALUS

Like most planning systems, DEDALUS must solve prob-
lems that involve transforming an initial state into a desired
state through the application of operators. The system de-
scribes each state as a set of literals (predicates with argu-
ments), and it describes each problem or subproblem as an
initial state conjoined with a set of differences that must
be eliminated. DEDALUS represents each operator in a sim-
ilar manner, specifying its preconditions as a set of state
descriptors and its effects as a set of differences. Later we
present examples of states and problems from subtraction,
but first let us consider how the system uses this repre-
sentation to solve problems, organize knowledge, constrain
search, and learn from experience.

Organization of Search

One of the most pervasive phenomena in problem solving
is that humans carry out search through some problem
space (Newell, 1980}, and computational work on problem
solving has focused on two basic approaches to organiz-
ing this search. In forward chaining or state-space search,
one applies an operator to an initial state, another oper-
ator to its successor, and so forth. At each stage of this
process, one considers an operator only if its preconditions
exactly match the current state. In means-ends analysis,
one chooses a difference between the current and desired
state, selects an operator which reduces that difference, and
attempts to apply the operator. If the operator’s precon-
ditions are not satisfied, the method is recursively called
with the task of changing the current state into one that
satisfies them. Once the operator’s preconditions are met,
a new state resulting from its application is generated. If
the new state satisfies the goals, the method exits success-
fully; otherwise it recurses with the task of changing the
new state into one that does satisfy the goals.

There is considerable evidence that humans use means-
ends analysis when information is available about the de-
sired state (Newell & Simon, 1972), letting them focus
on operators relevant to goals. However, they can also
solve problems for which there is no explicit goal descrip-
tion. Moreover, traditional means-ends systems examine
only one difference at a time, and it seems unlikely that
humans operate in such a non-gestalt manner. In re-
sponse, DEDALUS uses an alternative control scheme — flez-
tble means-ends analysis — that prefers operators which re-
duce more differences and operators whose preconditions
more closely match the current state. Thus, the retrieval
process incorporates ideas from both approaches, biasing
the system toward operators that have more effects and
that are more nearly applicable. On tasks with explicit
goals, the system takes both differences and state features
into account; on less well-defined problems, it retrieves op-
erators based on state descriptors alone. As we will see
below, DEDALUS can also place weights on each difference
and state descriptor, letting the system attend to the fea-
tures appropriate for a given domain.

The system uses these biases to direct a heuristic depth-
first search through the space of problem-solving traces.
Figure 1 shows a successful trace that transforms the ini-
tial into the desired state for a problem involving multi-
column subtraction. Each node in this trace corresponds

'DAEDALUS borrows the notion of flexible means-ends
analysis from Jones’ (1989) EUREKA system, which used a
very similar idea with a different retrieval method.
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Figure 1: A multi-column subtraction problem, along with a problem-solving trace generated by D&DALUS. Each node
consists of a state description, a set of differences, and the selected operator. Black nodes correspond to problems on which
the system initially selected the incorrect operator; gray nodes specify problems on which it made the right selection.

to a problem or subproblem that is described as a set of
state predicates, a set of differences, and the operator se-
lected to solve it. DADALUS constructs such traces from left
to right and from top to bottom. For instance, it first se-
lects an operator for the overall (leftmost) problem, which
creates the two subproblems immediately to its right. The
system then selects an operator for the first ({opmost) sub-
problem, generates subsubproblems, and recurses. After
solving this subproblem, it tentatively applies the original
operator and attempts to solve the second subproblem of
the original task. In situations where DEDALUS cannot
solve a subproblem, it backtracks and selects another oper-
ator. However, user-specified parameters limit the number
of operators it considers at each level and the depth of the
resulting trace; these bound the overall amount of search.

Organization of Plan Knowledge

One common approach to encoding plan knowledge in-
volves the use of abstract rules or schemas. For instance,
Minton et al.’s (1989) PRODIGY uses abstract search-control
rules and Mooney’s (1990) EGGs employs general plan
schemas. Each rule or schema covers many specific situ-
ations, letting these systems use a simple matching or uni-
fication algorithm to determine their applicability. Another
approach encodes knowledge as specific cases from the do-
main, including particular problems or subproblems, de-
sirable and undesirable approaches to these problems, and
possibly the reasons for their desirability. Researchers in
this case-based paradigm have proposed a variety of meth-
ods for using this information (e.g., Carbonell & Veloso,
1988; Hammond, 1990; Jones, 1989), many of them with di-
rect mapping to techniques that assume abstractions. This
approach relies on more sophisticated matching schemes
than needed for abstract knowledge, often requiring rela-
tional partial matching (i.e., structural analogy).
However, anecdotal evidence suggests that humans store
both cases and abstractions in long-term memory. Early
knowledge of a domain takes the form of specific problem-
solving traces, which must be accessed through some form

of analogical retrieval. Later, additional experience forms
the basis for abstract schemas, which ‘blur together’ a num-
ber of similar cases. DADALUS takes such an integrated
view, storing both cases and abstractions in a single proba-
bilistic concept hierarchy. Figure 2 shows the probabilistic
hierarchy for the subtraction domain after DEDALUS has
incorporated its experience with the problem from Figure
1. The terminal nodes in gray represent components of
the problem-solving trace generated during solution of this
task. As we saw earlier, each such trace component corre-
sponds to a problem described as a set of state predicates,
a set of differences, and the operator used to solve it.

The figure includes full descriptions for two of these cases
(nodes N2 and N3). The additional terminal nodes (in
white) represent the original operator schemas that were
already present in memory. The hierarchy also contains
some abstractions (in black) that DEDALUS created dur-
ing the process of storing the trace components, as we de-
scribe later. The figure also shows the full description of
one abstraction (node N1), which provides a probabilistic
summary of the nodes (N2 and N3) below it. Each such
description includes an overall probability of occurrence,
together with a conditional probability for each difference,
state descriptor, and operator. Briefly, the interpretation of
each node is that, given the probabilistically specified state
descriptors and differences, one should select the operator
with the highest probability. This is the form of knowledge
that DEDALUS uses to constrain operator retrieval and thus
to direct search during planning.

Constraining Search with Knowledge

Another basic finding is that experts use their knowledge
of a domain to reduce or eliminate search (Chi, Glaser, &
Rees, 1982). Early research on planning and problem solv-
ing (e.g., Newell et al., 1960; Fikes et al., 1971) had little
to say about this topic, and in time a separate tradition
emerged that focused on the retrieval of relevant plans or
components from memory (e.g., Hammond, 1990). This
work has emphasized solution of familiar problems using
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Figure 2: A DZDALUS concept hierarchy that incorporates cases (gray) and abstractions (black) resulting from storage of
components from a problem-solving trace for subtraction, along with the original operator schemas (white) for this domain.

stored knowledge, but downplayed results about problem
solving in novel domains, where search plays a major role.

D&EDALUS attempts to model the importance of both
search and knowledge in planning. The system operates
within a problem-space framework, using domain-specific
knowledge stored in its probabilistic concept hierarchy to
constrain search when available. However, upon encoun-
tering new problems for which it has little knowledge,
D&DALUS gracefully falls back on a more search-intensive
approach to plan generation. In both cases, the hierar-
chy plays the same role for DEDALUS as does the table of
connections for Newell et al.’s GPS (1960), letting it select
operators for flexible means-ends analysis.

In order to select an operator, the system invokes
COBWEBR, a variant of Fisher’s (1987) CoBWEB that car-
ries out heuristic classification on relational descriptions.
The CoBWEBR module accepts a problem description,
which consists of the current state and a set of differences,
and sorts it through the concept hierarchy in an attempt to
retrieve the most relevant piece of knowledge to bias oper-
ator selection. As Allen and Thompson (1991) describe in
detail, the system uses the conditional probabilities stored
with each node to carry out a heuristic search through the
space of partial matches, attempting to find the best match
in each case. COBWEBR invokes a reduced version of cate-
gory utility, the evaluation function used in Fisher’s system,
to guide search through the space of matches.

After determining a best match between the problem
description and each node at a given level of the hierar-
chy, CoBWEBR selects the node with the highest-scoring

match and then recurses to the next level. It continues in
this manner until it reaches a terminal node, then selects
the operator associated with that node and uses the par-
tial match for the node to determine the operator’s bind-
ings. The usefulness of operators retrieved in this manner
is related to the amount of knowledge stored in long-term
memory. If DEDALUS has access only to the operators for
a domain, it will often select an unprofitable one, leading
to backtracking or failure. However, if memory contains
detailed knowledge about the situations that occur in a do-
main, the system is more likely to select an operator on the
solution path, reducing search and increasing success rate.

Acquisition of Plan Knowledge

Human problem solvers learn from experience, reducing
their search as they become familiar with a domain. Most
recent work on learning in planning domains has taken an
analytical approach (e.g., Laird, Rosenbloom, & Newell,
1986; Minton et al., 1989; Mooney, 1990), which involves
compiling existing knowledge into new forms. Although
elegant, such mechanisms tend to predict faster learning
than occurs in humans, who must often work through a
problem many times to eliminate search (Anzai & Simon,
1979). Anderson (1983) describes one response, which in-
volves combining an analytical learning mechanism with
an empirical technigue for strengthening rules. DADALUS
takes a different approach, employing an inductive learn-
ing method to index cases and to construct probabilistic
abstractions. Some research has focused on inductive ap-
proaches to learning search-control knowledge (e.g., Lang-
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ley, 1985), but unlike earlier work on this topic, D&EDALUS
supports the acquisition of probabilistic plan knowledge.
Fisher and Langley (1990) review psychological evidence
for probabilistic representations of concepts, and we believe
that plan knowledge is stored in the same manner.

Learning in DZDALUS occurs whenever the system finds
a solution to a problem or subproblem, at which point it
incorporates the problem description and the successful op-
erator into long-term memory. For instance, each of the
nodes from the problem-solving trace in Figure 1 would be
sorted through the concept hierarchy and stored in the hi-
erarchy. Like the COBWEB system on which it is based,
DEDALUS makes use of two main learning operations. If a
trace component reaches a terminal node in memory, the
CoBWEBR module extends the hierarchy downward, creat-
ing a new node N that is a probabilistic summary of the
case and the terminal node, and making them both children
of N. In contrast, if the trace component is summarized
poorly by all the children of node K, COBWEBR creates
a new child of K based on the case. During learning, this
module uses the full version of category utility to determine
when a new branch is justified; this differs from retrieval,
in which problems are always sorted to terminal nodes.

In addition, when in learning mode, the system also con-
siders merging and splitting existing concepts, in an at-
tempt to minimize effects due to training order. Again,
CoBWEBR uses the full version of its evaluation function
to select between these learning operations and those de-
scribed above. If the routine decides to incorporate a train-
ing case into a given node N, it simply updates the prob-
ability for N and the conditional probabilities for each of
the features (both problem descriptors and operators) as-
sociated with it. If a feature occurs in the training instance
that is not present in the node, COBWEBR adds it to the
node’s description with a low probability. This averaging
process occurs for each node through which the instance
passes. One important point is that DADALUS incorporates
each plan component into long-term memory during prob-
lem solving. This scheme is consistent with the incremental
nature of human learning.

DADALUS on Multi-column Subtraction

In the previous section we referred to an example involving
multi-column subtraction; here we consider DEDALUS’ be-
havior in this domain in more detail. We focus on subtrac-
tion tasks because they have educational relevance, they
have been widely studied, and they can be clearly defined
yet cause difficulty for many students. The task used in
Figure 1, 716 — 598, provides a relatively simple example.
Given two rows of digits, one must find their overall differ-
ence —in this case 118 — and write this in a third row. Tasks
that involve borrowing (i.e., in which the top number in a
column is smaller than the lower one) require more opera-
tors and are more difficult for humans; this holds especially
for tasks containing zeroes in the top row.

For this domain we initialized DADALUS’ memory with
nine operators, each defined in terms of preconditions, add
lists, and delete lists, as in STRIPS (Fikes et al., 1971) and
in many production-system models (e.g., Anderson, 1983).
Three of the operators — FIND-DIFFERENCE, FIND-ToOP,
and SKIP-ZERO — are responsible for finding the answer
associated with a particular column, but are applicable un-
der different conditions and involve slightly different ac-
tions. Two other operators — ADD-TEN and DECREMENT
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— implement borrowing, whereas SHIFT-LEFT and SHIFT-
RIGHT change the column on which attention is focused.
Finally, the operators WRITE-ANSWER and TOP-GREATER
make inferences that support the solution process.

The operators are quite similar to those used by Lan-
gley, Wogulis, and Ohlsson (1990) to model subtraction
errors, which in turn were based on the rules used in error
models proposed by Young and O’Shea (1981). However,
this earlier work assumed that students solved subtraction
problems in a forward-chaining manner. This runs counter
both to intuitions about borrowing and to strategies pre-
sented by expert teachers (S. Ohlsson, personal communi-
cation), which suggest that means-ends reasoning occurs
in multi-column subtraction tasks. DADALUS employs its
knowledge in this fashion, selecting operators (e.g., FIND-
DIFFERENCE) that would make progress toward the de-
sired state, noting that preconditions are not met, and
then selecting other operators {e.g., ADD-TEN) to achieve
these preconditions. This framework also differs from
the problem-reduction scheme used by Brown and Burton
(1978) and by VanLehn (1990). Both approaches decom-
pose problems into subproblems, but problem-reduction
methods specify such decompositions in advance, whereas
DZEDALUS generates them dynamically.

Given the correct operators for multi-column subtrac-
tion, DEDALUS cannot explain the errors commonly ob-
served in students’ behavior on this domain (Brown & Bur-
ton, 1978; VanLehn, 1990). Because the system only ap-
plies operators when their preconditions have been met, its
answers are guaranteed to be correct. However, unlike the
previous models of subtraction behavior, DEDALUS may re-
quire search to solve a problem even when its operators are
correct; this occurs because it may not select the best op-
erator on its first attempt. Combined with the system’s
constrained search algorithm, which considers only a few
alternatives at each level, this means DADALUS may fail
entirely to solve certain problems. This differs from the be-
havior observed in many students who, upon encountering
a difficult problem, produce syntactically correct answers
with incorrect digits. In future work, we plan to extend
DEDALUS to generate abstract plans that ignore the vio-
lation of certain operator preconditions. The execution of
abstract plans would explain some catalogued subtraction
errors, such as students’ tendency to subtract the top num-
ber from the lower one when the latter is larger.

Although DADALUS does not model subtraction errors,
we believe it provides a viable model of learning in this
domain. To demonstrate this, we presented the system
with worked solutions to eight problems taken from Van-
Lehn (1990, p. 55), in each case providing DEDALUS with
a problem-solving trace like that in Figure 1. The system
stored each component of these traces in long-term memory
for use on future tasks. We then presented DEDALUS with
the original tasks and a separate set of twelve test prob-
lems taken from the same source, which it had to solve in
the absence of further learning. For comparison, we also
let the system work on the same problems with no knowl-
edge except the correct operators. Table 1 gives the results:
DEDALUS solved all of the training problems after learning,
but poor operator selection let it solve only one of them
before learning. Similarly, it solved two of the twelve test
problems after learning but none before, showing modest
transfer. Moreover, the problems solved after learning were
handled with no search. Thus, the system suggests one
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Table 1: D&EDALUS’ behavior on multi-column subtraction
problems taken from VanLehn (1990).

PROBLEMS SOLVED

TRAINING TEST

BEFORE LEARNING 12% 0%
AFTER LEARNING 100% 17%

possible mechanism through which students improve their
ability by training on worked sample problems. However,
our purpose here is not to claim that DEDALUS provides
a better model of subtraction behavior than other frame-
works, but simply to demonstrate that it supports learning
in an interesting domain. Elsewhere (Langley & Allen, in
press) we report similar results on the blocks world.

Psychological Adequacy of DEDALUS

Earlier we noted some high-level aspects of human cogni-
tion that are reflected in DEDALUS, but this was only in
passing. Now let us reconsider the system’s psychological
plausibility in more detail, drawing on VanLehn’s (1989)
excellent review of the major findings with respect to hu-
man problem solving. These phenomena are qualitative
in nature, but they still provide constraints on the opera-
tion of cognitive simulations. Table 2 lists most of the be-
haviors that VanLehn reports which are directly related to
problem solving, along with others noted by Jones (1989).
The table also shows how DEDALUS fares relative to three
other models of problem solving and learning: Anderson’s
(1983) Act, Laird, Rosenbloom, and Newell’s (1986) SOAR,
and Jones’ (1989) EUREKA. Langley and Allen (in press)
present a more extensive comparison.

The first three phenomena address issues about ba-
sic problem-solving strategies rather than learning. Both
D&EpALUS and EUREKA incorporate a version of means-ends
analysis, which humans appear to use in novel domains;
in contrast, SOAR can produce means-ends behavior with
preference rules, but the process is not built into the ar-
chitecture, and ACT provides support for backward chain-
ing but not true means-ends analysis. Of the four frame-
works, only EUREKA mimics the nonsystematic strategy of
humans, who often explore a search path in depth, then re-
turn to the initial state to consider an alternative (Newell &
Simon, 1972). All four architectures should account for the
relative difficulty of problem isomorphs (Kotovsky, Hayes,
& Simon, 1985), but this ability relies on representational
assumptions outside the systems themselves.

Some additional behaviors concern changes in perfor-
mance as humans gain experience in a problem-solving do-
main. The most basic finding is that learning leads to re-
duced search on a class of problems. As we report else-
where (Langley & Allen, in press), DEDALUS generally car-
ries out less search with experience, as do EUREKA, AcT,
and SOAR, although the latter two employ explanation-
based learning methods, Jones’ system relies entirely on
analogical reasoning, and DEDALUS uses concept forma-
tion. The different architectures also differ in their rate
of learning. Another phenomenon involves the asymmetry
of transfer across problems, in which experience on diffi-
cult tasks aids the solution of simpler problems more than
the reverse situation. Presumably this occurs because the
structures needed for the simpler task are subsumed by the
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Table 2: Psychological adequacy of four models of learning
in problem-solving domains in terms of whether they ac-
count (@), fail to account (6), or partially account (®) for
phenomenon from VanLehn (#) and Jones (o).

Acr Soar Eureka Dzpavrus

Means-ends®
Nonsystematic®
Isomorphs*
Reduced search*
Asymmetries*
Einstellung*
Verbalization*
Reduced time*
Rare analogy™*
Superficiality*

CODPDPDEDDPODO
CODDPDDDPODD
SO0 DDODD
S XOROJORR A NOXORS:)

more difficult one. Since all four models decompose prob-
lems into subproblems, then learn methods for solving these
subproblems, all should produce this result. Another well-
established transfer effect, Einstellung (Luchins, 1942), oc-
curs when one is trained on problems with complex solu-
tions and then given problems with analogous solutions but
also with simpler ones. Under such conditions, subjects in-
evitably solve the new problems in the complex way that
has worked in the past. EUREKA and AcCT have been explic-
itly shown to produce this behavior, and we expect SOAR
and DEDALUS to generate similar results.

In addition, the skills of experienced problem solvers are
more automatized than those of novices, in that they can
carry them out with little attention. Experts typically solve
problems much more rapidly, even when their solutions in-
volve the same number of steps, and they tend to verbalize
much less, suggesting that they have lost access to inter-
mediate subproblems. Both D&DALUS and EUREKA have
difficulty explaining these phenomena, in that they never
change the steps taken in generating a solution; learning
may eliminate poor choices, but each niode in the problem-
solving trace must still be constructed one step at a time.
In contrast, ACT and SOAR actually eliminate subproblems
through learning, which explains the reduction in verbal-
ization and some of the observed speedup.

A final set of empirical results concern problem solving
by analogy. Experiments reveal that spontaneous cross-
domain analogy is quite rare (e.g., Gick & Holyoak, 1980).
People can solve problems by analogy when given an ex-
plicit mapping between source and target problems, but
they cannot always find such a mapping on their own.
Moreover, in cases of spontaneous retrieval, the reminding
is usually based on some superficial, surface similarity that
may produce a misleading analogy (e.g., Ross, 1984). Eu-
REKA relies on a form of analogical retrieval that operates
on surface-level descriptions, and Jones (1989) has shown
that it replicates the basic finding that experience with one
problem increases the likelihood of solving an analogous
problem, but that spontaneous analogy across domains is
far from guaranteed. Because DEDALUS also uses a form of
analogical retrieval, it should produce similar results, but
(as with EUREKA) only provided it is given states and oper-
ators that share some surface features across the domains.
AcT and SOAR have more difficulty with these phenomena,
since neither has any architectural mechanism for analogy,
though both could mimic analogy using explicit rules.
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Conclusions

In the previous pages we described DEDALUS, a planning
system that was designed to be consistent with knowledge
of human problem-solving behavior. We found that the
system directs problem-space search using a flexible ver-
sion of means-ends analysis, organizes both cases and ab-
stractions in a probabilistic concept hierarchy, employs do-
main knowledge to constrain its generation of plans, and
acquires plan knowledge through an incremental learning
process. In particular, DEDALUS retrieves relevant opera-
tors by sorting new problems through its concept hierarchy,
and it stores the components of successful plans in this hi-
erarchy for future retrieval. We demonstrated the system’s
behavior in the domain of multi-column subtraction.

We also examined DEDALUS’ ability to explain aspects
of human cognition at a qualitative level, finding that the
system is consistent with a variety of robust phenomena
that have been observed in human problem solving. How-
ever, three previous models also explain roughly the same
behaviors. DEDALUS differs from Laird et al.’s SOAR and
Anderson’s ACT in its partial coverage of analogical reason-
ing, an area it shares with Jones’ EUREKA system. How-
ever, DEDALUS fails to explain the reduction of verbal-
ization and the automatization observed in highly-skilled
problem solvers, and its search organization does not mimic
the nonsystematic behavior found in human problem solv-
ing, which only EUREKA has attempted to handle.

In addition, the system fails in the broader sense that
humans are physical agents who interleave planning with
other processes. A fuller model of human behavior would
explicitly link cognition with action and perception. Such
issues arise even in constrained domains like subtraction,
in which students cannot hold the entire problem in short-
term memory, and thus must perceive and alter a physical
display. Elsewhere (Langley & Allen, in press) we have de-
scribed our ideas for extending DEDALUS along these lines,
and developing this augmented model remains an impor-
tant direction for future research.
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