
Relevance and Insight in Experimental StudiesPat LangleyAs its name suggests, arti�cial intelligence is a science of the arti�cial (Simon, 1969). As withother conscious creations, there is a great temptation to assume that we can understand the behaviorof AI systems entirely through formal analysis. However, the complexity of most AI constructsmakes this impractical, forcing us to rely on the same experimental approach that has been souseful in the natural sciences. Many of the same issues and methods apply directly to AI systems,including the need to identify clearly one's dependent and independent variables, the importance ofcareful experimental design, and the need to average across random variables outside one's control.However, beyond these obvious features, a compelling experimental study of intelligent behaviormust satisfy two additional criteria: it must have relevance and it must produce insight . Wewill illustrate these ideas with examples from machine learning, one of the most experimentallyoriented sub�elds within arti�cial intelligence. Moreover, since AI researchers are often concernedwith extending some existing method to improve its behavior, we will focus on this paradigm.An experimental study of AI methods has relevance if it has implications for problems on whichthose methods will be used in practice. This criterion is best satis�ed by running one's experimentson natural domains from the real world. For example, within the machine learning community,most papers report experimental results on data sets from UCI repository, a collection of �les thatcontain data on a variety of natural classi�cation tasks, such as medical diagnosis.Experiments with natural domains are essential because extensions to existing algorithms, al-though intuitively plausible, often make little di�erence in practice. Consider the naive Bayesianclassi�er, a simple learning method that uses training data to estimate the conditional probabilitiesof attribute values given the class. Because naive Bayes assumes that each attribute is condition-ally independent, given the class, it would seem easy to improve upon by using more sophisticatedmethods. However, both Kononenko (1991) and Langley (1993) report little or no improvementwith extensions to naive Bayes on a number of real-world data sets. Their studies, although givingnegative results, were relevant in that they tested their intuitions on natural domains.However, experimental studies on natural domains alone do not satisfy our insight criterion. Themachine learning community, in particular, has come to rely almost exclusively on experiments thatcompare alternative methods on a variety of standard domains (here 20 or so data sets from theUCI repository), then conclude that one technique or another is superior because it fares better onmost of the domains. Such `bake o�s' tell one very little about the reasons for results, and thus donot provide the understanding about causes that we expect in science.Insight is best obtained by running experiments on synthetic domains that have been designedto test explicit hypotheses, typically motivated by the intuitions behind the original extension. Forexample, Langley (1993) reports experiments on synthetic domains that involve target concepts withdisjoint decision regions, which violate another assumption made by naive Bayes. The importanceof using synthetic domains in not because they let one generate some new task, but because they letone vary systematically some dimension of interest, and thus test hypotheses about the conditions



under which one method will fare better than another. Of course, by themselves, studies withsynthetic domains do not ensure relevance; Langley found major di�erences between naive Bayesand his extension on the predicted synthetic domains, but these di�erences did not carry over toreal-world induction tasks.Thus, truly compelling studies, in machine learning and elsewhere, will include experimentson both natural and synthetic domains, the �rst to establish relevance and the second to achieveinsight. Ideally, they will also relate the �ndings in the two types of study. For instance, if one �ndsthe same shape of results (say when varying some other factor, such as number of training cases) ina synthetic and natural domain, this suggests that the natural domain has similar characteristics tothe synthetic one. This strategy lets one move beyond causal accounts in arti�cial domains towardreasons for success or failure in natural ones, thus giving relevance and understanding at the sametime.Of course, insights about the sources of an algorithm's power are as important as insights aboutthe e�ects of domain characteristics. Thus, a well-rounded experimental paper will also includelesion studies, which remove algorithm components to determine their contribution, and studies thatexamine sensitivity to speci�c parameter settings. Experiments that systematically vary externalresources, such as the number of training cases available for learning, should also play a role in anycomplete empirical study. These recommendations are not new; Kibler and Langley (1988) proposethese research strategies in an early paper on the experimental study of learning, and Cohen (1995)makes a broader case for their use with any intelligent system.We have drawn our examples from machine learning, but the same basic arguments hold acrossarti�cial intelligence. Research on planning, natural language, diagnosis, perception, and roboticswould all bene�t from a more balanced mixture of experiments. Although some work along theselines exists, papers in every AI sub�eld would be more compelling if they included systematicexperiments designed with both relevance and insight in mind. We encourage AI researchers totake both of these criteria into account in their experimental evaluations, and thus to speed progresstoward the day when our �eld becomes a true science of the arti�cial.ReferencesCohen, P. R. (1995). Empirical methods for arti�cial intelligence. Cambridge, MA: The MIT Press.Kibler, D., & Langley, P. (1988). Machine learning as an experimental science. Proceedings ofthe Third European Working Session on Learning (pp. 81{92). Glasgow, Scotland: Pittman.Reprinted in J. W. Shavlik & T. G. Dietterich (Eds.) (1990), Readings in machine learning .San Francisco, CA: Morgan Kaufmann.Kononenko, I. (1991). Semi-naive Bayesian classi�er. Proceedings of the Sixth European WorkingSession on Learning (pp. 206{219). Porto, Portugal: Pittman.Langley, P. (1993). Induction of recursive Bayesian classi�ers. Proceedings of the 1993 EuropeanConference on Machine Learning (pp. 153{164). Vienna: Springer-Verlag.Simon, H. A. (1969). Sciences of the arti�cial . Cambridge, MA: The MIT Press.


