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Abstract

In this paper, we examine the motivations for research on cognitive architectures and review some candidates that have been explored
in the literature. After this, we consider the capabilities that a cognitive architecture should support, some properties that it should exhi-
bit related to representation, organization, performance, and learning, and some criteria for evaluating such architectures at the systems
level. In closing, we discuss some open issues that should drive future research in this important area.
� 2008 Published by Elsevier B.V.
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1. Background and motivation

A cognitive architecture specifies the underlying infra-
structure for an intelligent system. Briefly, an architecture
includes those aspects of a cognitive agent that are constant
over time and across different application domains. These
typically include:

� the short-term and long-term memories that store con-
tent about the agent’s beliefs, goals, and knowledge;
� the representation of elements that are contained in

these memories and their organization into larger-scale
mental structures; and
� the functional processes that operate on these structures,

including the performance mechanisms that utilize them
and the learning mechanisms that alter them.

Because the contents of an agent’s memories can change
over time, one would not consider the knowledge and
beliefs encoded therein to be part of that agent’s architec-
ture. Just as different programs can run on the same com-
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puter architecture, so different knowledge bases and beliefs
can be interpreted by the same cognitive architecture.
There is also a direct analogy with a building’s architecture,
which consists of permanent features like its foundation,
roof, and rooms, rather than its furniture and appliances,
which one can move or replace.

As we will see, alternative cognitive architectures can
differ in the specific assumptions they make about these
issues, just as distinct buildings differ in their layouts. In
addition to making different commitments about how to
represent, use, or acquire knowledge and beliefs, alterna-
tive frameworks may claim that more or less is built into
the architectural level, just as some buildings embed shelves
and closets into their fixed structures, whereas others han-
dle the same functions with replaceable furniture.

Research on cognitive architectures is important because
it supports a central goal of artificial intelligence and cogni-
tive science: the creation and understanding of synthetic
agents that support the same capabilities as humans. Some
work focuses on modeling the invariant aspects of human
cognition, whereas other efforts view architectures as an
effective path to building intelligent agents. However, these
are not antithetical goals; cognitive psychology and AI have
a long history of building on the other’s ideas (Langley,
itectures: Research issues and challenges, Cognitive Systems Re-
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2006), and research on cognitive architectures has played a
key role in this beneficial interchange.

In some ways, cognitive architectures constitute the antith-
esis of expert systems, which provide skilled behavior in nar-
rowly defined contexts. In contrast, architectural research
aims for breadth of coverage across a diverse set of tasks
and domains. More important, it offers accounts of intelligent
behavior at the systems level, rather than at the level of com-
ponent methods designed for specialized tasks. Newell
(1973a) has argued persuasively for systems-level research in
cognitive science and artificial intelligence, claiming ‘‘You
can’t play 20 questions with nature and win”. Instead of car-
rying out micro-studies that address only one issue at a time,
we should attempt to unify many findings into a single theoret-
ical framework, then proceed to test and refine that theory.

Since that call to arms, there has been a steady flow of
research on cognitive architectures. The movement was asso-
ciated originally with a specific class of architectures known
as production systems (Newell, 1973b; Neches, Langley, &
Klahr, 1987) and emphasized explanation of psychological
phenomena, with many current candidates still taking this
form and showing similar concerns. However, over the past
three decades, a variety of other architectural classes have
emerged, some less concerned with human behavior, that
make quite different assumptions about the representation,
organization, utilization, and acquisition of knowledge. At
least three invited symposia have brought together research-
ers in this area (Laird, 1991; VanLehn, 1991; Shapiro &
Langley, 2004), and there have been at least two edited vol-
umes (Sun, 2005; VanLehn, 1991). The movement has gone
beyond basic research into the commercial sector, with appli-
cations to believable agents for simulated training environ-
ments (e.g., Tambe et al., 1995), computer tutoring systems
(Koedinger, Anderson, Hadley, & Mark, 1997), and interac-
tive computer games (e.g., Magerko, Laird, Assanie, Ker-
foot, & Stokes, 2004).

Despite this progress, there remains a need for additional
research in the area of cognitive architectures. As artificial
intelligence and cognitive science have matured, they have
fragmented into a number of well-defined subdisciplines,
each with its own goals and its own criteria for evaluation.
Yet commercial and government applications increasingly
require integrated systems that exhibit intelligent behavior,
not just improvements to the components of such systems.
This demand can be met by an increased focus on system-
level architectures that support complex cognitive behavior
across a broad range of relevant tasks.

In this document, we examine some key issues that arise in
the design and study of integrated cognitive architectures.
Because we cannot hope to survey the entire space of archi-
tectural theories, we focus on the ability to generate intelli-
gent behavior, rather than matching the results of
psychological experiments.1 We begin with a brief review
1 Sun (2007) provides another treatment of cognitive architectures that
discusses the second topic in greater detail.
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of some sample architectures, then discuss the capabilities
and functions that such systems should support. After this,
we consider a number of design decisions that relate to the
properties of cognitive architectures, followed by some
dimensions along which one should evaluate them. In clos-
ing, we note some open issues in the area and propose some
directions that future research should take to address them.

2. Example cognitive architectures

Before turning to abstract issues that arise in research on
cognitive architectures, we should consider some concrete
examples that have been reported in the literature. Here
we review four distinct frameworks that fall at different
points within the architectural space. We have selected
these architectures because each has appeared with reason-
able frequency in the literature, and also because they exhi-
bit different degrees of concern with explaining human
behavior. We have ordered them along this dimension,
with more devoted psychological models coming earlier.

In each case, we discuss the manner in which the archi-
tecture represents, organizes, utilizes, and acquires knowl-
edge, along with its accomplishments. Because we review
only a small sample of extant architectures, we summarize
a variety of other frameworks briefly in the Appendix. Nev-
ertheless, this set should give readers some intuitions about
the space of cognitive architectures, which later sections of
the paper discuss more explicitly.

One common feature of the architectures we examine is
that, although they have some theoretical commitment to
parallelism, especially in memory retrieval, they also rely
on one or a few decision modules. We have not included
connectionist approaches in our treatment because, to
our knowledge, they have not demonstrated the broad
functionality associated with cognitive architectures in the
sense we discuss here. However, they have on occasion
served as important components in larger-scale architec-
tures, as in Sun, Merrill, and Peterson’s (2001) CLARION
framework.

2.1. ACT

ACT-R (Anderson & Lebiere, 1998; Anderson et al.,
2004) is the latest in a family of cognitive architectures,
concerned primarily with modeling human behavior, that
has seen continuous development since the late 1970s.
ACT-R 6 is organized into a set of modules, each of which
processes a different type of information. These include
sensory modules for visual processing, motor modules for
action, an intentional module for goals, and a declarative
module for long-term declarative knowledge. Each module
has an associated buffer that holds a relational declarative
structure (often called ‘chunks’, but different from those in
Soar). Taken together, these buffers comprise ACT-R’s
short-term memory.

A long-term memory of production rules coordinates
the processing of the modules. The conditions of each pro-
itectures: Research issues and challenges, Cognitive Systems Re-
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duction test chunks in the short-term buffers, whereas its
actions alter the buffers upon application. Some changes
modify existing structures, whereas others initiate actions
in the associated modules, such as executing a motor com-
mand or retrieving a chunk from long-term declarative
memory. Each declarative chunk has an associated base
activation that reflects its past usage and influences its
retrieval from long-term memory, whereas each production
has an expected cost (in terms of time needed to achieve
goals) and probability of success.

On every cycle, ACT determines which productions
match against the contents of short-term memory. This
retrieval process is influenced by the base activation for
each chunk it matches. ACT computes the utility for each
matched production as the difference between its expected
benefit (the desirability of its goal times its probability of
success) and its expected cost. The system selects the pro-
duction with the highest utility (after adding noise to this
score) and executes its actions. The new situation leads
new productions to match and fire, so that the cycle
continues.

Learning occurs in ACT-R at both the structural and
statistical levels. For instance, the base activation for
declarative chunks increases with use by productions but
decays otherwise, whereas the cost and success probability
for productions is updated based on their observed behav-
ior. The architecture can learn entirely new rules from sam-
ple solutions through a process of production compilation
that analyzes dependencies of multiple rule firings, replaces
constants with variables, and combines them into new con-
ditions and actions (Taatgen, 2005).

The ACT-R community has used its architecture to
model a variety of phenomena from the experimental psy-
chology literature, including aspects of memory, attention,
reasoning, problem solving, and language processing. Most
publications have reported accurate fits to quantiative data
about human reaction times and error rates. More recently,
Anderson (2007) has related ACT-R modules to different
areas of the brain and developed models that match results
from brain-imaging studies. One the more applied front,
the framework has played a central role in tutoring systems
that have seen wide use in schools (Koedinger et al., 1997),
and it has also been used to control mobile robots that
interact with humans (Trafton et al., 2005).

2.2. Soar

Soar (Laird, 2008; Laird, Newell, & Rosenbloom, 1987;
Newell, 1990) is a cognitive architecture that has been
under continuous development since the early 1980s. Pro-
cedural long-term knowledge in Soar takes the form of pro-
duction rules, which are in turn organized in terms of
operators associated with problem spaces. Some operators
describe simple, primitive actions that modify the agent’s
internal state or generate primitive external actions,
whereas others describe more abstract activities. For many
years, Soar represented all long-term knowledge in this
Please cite this article in press as: Langley, P. et al., Cognitive arch
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form, but recently separate episodic and semantic memo-
ries have been added. The episodic memory (Nuxoll &
Laird, 2007) holds a history of previous states, while
semantic memory contains previously known facts.

All tasks in Soar are formulated as attempts to achieve
goals. Operators perform the basic deliberative acts of
the system, with knowledge used to dynamically determine
their selection and application. The basic processing cycle
repeatedly proposes, selects, and applies operators of the
current problem space to a problem state, moving ahead
one decision at a time. However, when knowledge about
operator selection is insufficient to determine the next oper-
ator to apply or when an abstract operator cannot be
implemented, an impasse occurs; in response, Soar creates
a new goal to determine which operator it should select
or how it should implement the abstract operator.

This process can lead to the dynamic generation of a
goal hierarchy, in that problems are decomposed into sub-
problems as necessary. The ‘state’ of a specific goal
includes all features of its supergoals, plus any additional
cognitive structures necessary to select and apply operators
in the subgoal. Processing in a subgoal involves the same
basic processing cycle of selecting and applying operators.
Subgoals can also deliberately access episodic or semantic
memory to retrieve knowledge relevant to resolving the
impasse. The top state includes all sensor data obtained
from the external environment, so this information is also
available to all subgoals. On any cycle, the states at various
levels of the goal hierarchy can change, typically due to
changes in sensor values or as the result of operator appli-
cations in subgoals. When the system resolves the impasse
that generated a goal, that goal disappears, along with all
the subgoals below it.

Soar has multiple learning mechanisms for different
types of knowledge: chunking and reinforcement learning
acquire procedural knowledge, whereas episodic and
semantic learning acquire their corresponding types of
declarative knowledge. Chunking occurs when one or more
results are produced in a subgoal (Laird, Rosenbloom, &
Newell, 1986). When this happens, Soar learns a new
chunk, represented as a production rule which summarizes
the processing that generated the results. A chunk’s actions
are based on the results, whereas its conditions are based
on those aspects of the goals above the subgoal that were
relevant to determining the results. Once the agent has
learned a chunk, it fires in new situations that are similar
along relevant dimensions, often giving the required results
directly and thus avoiding the impasse that led to its forma-
tion. Reinforcement learning adjusts numeric values associ-
ated with rules that help select operators (Nason & Laird,
2004). Episodic learning records the contents of working
memory in snapshots, while semantic learning stores indi-
vidual elements of working memory for later retrieval.

Researchers have used Soar to develop a variety of
sophisticated agents that have demonstrated impressive
functionality. The most visible has been TAC-Air-Soar
(Tambe et al., 1995), which modeled fighter pilots in mili-
itectures: Research issues and challenges, Cognitive Systems Re-
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tary training exercises that involved air combat scenarios.
More recently, Soar has supported a number of intelligent
agents that control synthetic characters in interactive com-
puter games (Magerko et al., 2004). Another thrust has
involved using Soar to model the details of human lan-
guage processing (Lewis, 1993), categorization (Miller &
Laird, 1996), and other facets of cognition, but the empha-
sis has been on demonstrating high-level functionality
rather than on fits to quantitative measurements.

2.3. ICARUS

ICARUS is a more recent architecture (Langley, Cum-
mings, & Shapiro, 2004) that stores two distinct forms of
knowledge. Concepts describe classes of environmental sit-
uations in terms of other concepts and percepts, whereas
skills specify how to achieve goals by decomposing them
into ordered subgoals. Both concepts and skills involve
relations among objects, and both impose a hierarchical
organization on long-term memory, with the former
grounded in perceptions and the latter in executable
actions. Moreover, skills refer to goal concepts they
achieve, their initiation conditions, and their continuation
conditions.

The basic ICARUS interpreter operates on a recognize-act
cycle. On each step, the architecture deposits descriptions
of visible objects into a perceptual buffer. The system com-
pares primitive concepts to these percepts and adds
matched instances to short-term memory as beliefs. These
in turn trigger matches of higher-level concepts, with the
process continuing until ICARUS infers all deductively
implied beliefs. Next, starting from a top-level goal, it finds
a path downward through the skill hierarchy in which each
subskill has satisfied conditions but an unsatisfied goal.
When a path terminates in a primitive skill with executable
actions, the architecture applies these actions to affect the
environment. This leads to new percepts, changes in beliefs,
and reactive execution of additional skill paths to achieve
the agent’s goals.

However, when ICARUS can find no applicable path
through the skill hierarchy that is relevant to a top-level
goal, it resorts to problem solving using a variant of
means-ends analysis. This module chains backward off
either a skill that would achieve the current goal or off
the goal concept’s definition, and it interleaves problem
solving with execution in that it carries out selected skills
when they become applicable. Whenever problem solving
achieves a goal, ICARUS creates a new skill indexed by that
goal and with one or more ordered subgoals that are based
on the problem solution. If the system encounters similar
problems in the future, it executes the learned skills to han-
dle them reactively, without need for deliberative problem
solving (Langley & Choi, 2006b).

Researchers have used ICARUS to develop agents for a
number of domains that involve a combination of infer-
ence, execution, problem solving, and learning. These have
included tasks like the Tower of Hanoi, multi-column sub-
Please cite this article in press as: Langley, P. et al., Cognitive arch
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traction, FreeCell solitaire, and logistics planning. They
have also used the architecture to control synthetic charac-
ters in simulated virtual environments, including ones that
involve urban driving (Langley & Choi, 2006a) and first-
person shooter scenarios (Choi, Konik, Nejati, Park, &
Langley, 2007). Ongoing work aims to link ICARUS to phys-
ical robots that carry out joint activities with humans.

2.4. PRODIGY

PRODIGY (Carbonell, Knoblock, & Minton, 1990) is
another cognitive architecture that saw extensive develop-
ment from the middle 1980s to the late 1990s. This frame-
work incorporates two main kinds of knowledge. Domain
rules encode the conditions under which actions have cer-
tain effects, where the latter are described as the addition
or deletion of first-order expressions. These refer both to
physical actions that affect the environment and to infer-
ence rules, which are purely cognitive. In contrast, control
rules specify the conditions under which the architecture
should select, reject, or prefer a given operator, set of oper-
ator bindings, problem state, or goal during the search
process.

As in ICARUS, PRODIGY’s basic problem-solving mod-
ule involves search through a problem space to achieve one
or more goals, which it also casts as first-order expressions.
This search relies on means-ends analysis, which selects an
operator that reduces some difference between the current
state and the goal, which in turn can lead to subproblems
with their own current states and goals. On each cycle,
PRODIGY uses its control rules to select an operator,
binding set, state, or goal, to reject them out of hand, or
to prefer some over others. In the absence of such control
knowledge, the architecture makes choices at random and
pursues depth-first means-ends search with backtracking.

PRODIGY’s explanation-based learning module con-
structs control rules based on its problem-solving experi-
ence (Minton, 1990). Successful achievement of a goal
after search leads to creation of selection or preference
rules related to that goal and to the operators whose appli-
cation achieved it. Failure to achieve a goal leads to crea-
tion of rejection or preference rules for operators, goals,
and states that did not produce a solution. To generate
these control rules, PRODIGY invokes a learning method
that analyzes problem-solving traces and proves the rea-
sons for success or failure. The architecture also collects
statistics on learned rules and retains only those whose
inclusion, over time, leads to more efficient problem
solving.

In addition, PRODIGY includes separate modules for
controlling search by analogy with earlier solutions (Veloso
& Carbonell, 1993), learning operator descriptions from
observed solutions or experimentation (Wang, 1995), and
improving the quality of solutions (Pérez & Carbonell,
1994). Although most research in this framework has dealt
exclusively with planning and problem solving, PRODIGY
also formed the basis for an impressive system that inter-
itectures: Research issues and challenges, Cognitive Systems Re-
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leaved planning and execution for a mobile robot that
accepted asynchronous requests from users (Haigh &
Veloso, 1996).

3. Capabilities of cognitive architectures

Any intelligent system is designed to engage in certain
activities that, taken together, constitute its functional
capabilities. In this section, we discuss the varied capabili-
ties that a cognitive architecture can support. Although
only a few abilities, such as recognition and decision mak-
ing, are strictly required to support a well-defined architec-
ture, the entire set seems required to cover the full range of
human-level intelligent activities.

A central issue that confronts the designer of a cognitive
architecture is how to let agents access different sources of
knowledge. Many of the capabilities we discuss below give
the agent access to such knowledge. For example, knowl-
edge about the environment comes through perception,
knowledge about implications of the current situation
comes through planning, reasoning, and prediction, knowl-
edge from other agents comes via communication, and
knowledge from the past comes through remembering
and learning. The more such capabilities an architecture
supports, the more sources of knowledge it can access to
inform its behavior.

Another key question is whether the cognitive archi-
tecture supports a capability directly, using embedded
processes, or whether it instead provides ways to imple-
ment that capability in terms of knowledge. Design
decisions of this sort influence what the agent can learn
from experience, what the designers can optimize at the
outset, and what functionalities can rely on specialized
representations and mechanisms. In this section, we
attempt to describe functionality without referring to
the underlying mechanisms that implement them, but
this is an important issue that deserves more attention
in the future.

3.1. Recognition and categorization

An intelligent agent must make some contact between its
environment and its knowledge. This requires the ability to
recognize situations or events as instances of known or
familiar patterns. For example, a reader must recognize let-
ters and the words they make up, a chess player must iden-
tify meaningful board configurations, and an image analyst
must detect buildings and vehicles in aerial photographs.
However, recognition need not be limited to static situa-
tions. A fencing master can identify different types of
attacks and a football coach can recognize the execution
of particular plays by the opposing team, both of which
involve dynamic events.

Recognition is closely related to categorization, which
involves the assignment of objects, situations, and events
to known concepts or categories. However, research on
cognitive architectures typically assumes recognition is a
Please cite this article in press as: Langley, P. et al., Cognitive arch
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primitive process that occurs on a single cycle and that
underlies many higher-level functions, whereas categoriza-
tion is sometimes viewed as a higher-level function. Recog-
nition and categorization are closely linked to perception,
in that they often operate on output from the perceptual
system, and some frameworks view them as indistinguish-
able. However, they can both operate on abstract mental
structures, including those generated internally, so we will
treat them as distinct.

To support recognition and categorization, a cognitive
architecture must provide some way to represent patterns
and situations in memory. Because these patterns must
apply to similar but distinct situations, they must encode
general relations that hold across these situations. An
architecture must also include some recognition process
that lets it identify when a particular situation matches a
stored pattern or category and, possibly, measure the
degree to which it matches. In production system architec-
tures, this mechanism determines when the conditions of
each production rule match and the particular ways they
are instantiated. Finally, a complete architecture should
include some means to learn new patterns or categories
from instruction or experience, and to refine existing pat-
terns when appropriate.

3.2. Decision making and choice

To operate in an environment, an intelligent system also
requires the ability to make decisions and select among
alternatives. For instance, a student must decide which
operation will simplify an integration problem, a speaker
must select what word to use next in an utterance, and a
baseball player must decide whether or not to swing at a
pitch. Such decisions are often associated with the recogni-
tion of a situation or pattern, and most cognitive architec-
tures combine the two mechanisms in a recognize-act cycle
that underlies all cognitive behavior.

Such one-step decision making has much in common
with higher-level choice, but differs in its complexity. For
example, consider a consumer deciding which brand of
detergent to buy, a driver choosing which route to drive,
and a general selecting which target to bomb. Each of these
decisions can be quite complex, depending on how much
time and energy the person is willing to devote. Thus, we
should distinguish between decisions that are made at the
architectural level and more complex ones that the archi-
tecture enables.

To support decision making, a cognitive architecture
must provide some way to represent alternative choices
or actions, whether these are internal cognitive operations
or external ones. It must also offer some process for select-
ing among these alternatives, which most architectures sep-
arate into two steps. The first determines whether a given
choice or action is allowable, typically by associating it
with some pattern and considering it only if the pattern is
matched. For instance, we can specify the conditions under
which a chess move is legal, then consider that move only
itectures: Research issues and challenges, Cognitive Systems Re-
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when the conditions are met. The second step selects
among allowable alternatives, often by computing some
numeric score and choosing one or more with better scores.
Such conflict resolution takes quite different forms in differ-
ent architectures.

Finally, an ideal cognitive architecture should incorpo-
rate some way to improve its decisions through learning.
Although this can, in principle, involve learning new alter-
natives, most mechanisms focus on learning or revising
either the conditions under which an existing action is con-
sidered allowable or altering the numeric functions used
during the conflict resolution stage. The resulting improve-
ments in decision making will then be reflected in the
agent’s overall behavior.

3.3. Perception and situation assessment

Cognition does not occur in isolation; an intelligent
agent exists in the context of some external environment
that it must sense, perceive, and interpret. An agent may
sense the world through different modalities, just as a
human has access to sight, hearing, and touch. The sensors
may range from simple devices like a thermometer, which
generates a single continuous value, to more complex
mechanisms like stereoscopic vision or sonar that generate
a depth map for the local environment within the agent’s
field of view. Perception can also involve the integration
of results from different modalities into a single assessment
or description of the environmental situation, which an
architecture can represent for utilization by other cognitive
processes.

Perception is a broad term that covers many types of
processing, from inexpensive ones that an architecture
can support automatically to ones that require limited
resources and so must be invoked through conscious inten-
tions. For example, the human visual system can detect
motion in the periphery without special effort, but the
fovea can extract details only from the small region at
which it is pointed. A cognitive architecture that includes
the second form of sensor must confront the issue of atten-

tion, that is, deciding how to allocate and direct its limited
perceptual resources to detect relevant information in a
complex environment.

An architecture that supports perception should also
deal with the issue that sensors are often noisy and provide
at most an inaccurate and partial picture of the agent’s sur-
roundings. Dynamic environments further complicate mat-
ters in that the agent must track changes that sometimes
occur at a rapid rate. These challenges can be offset with
perceptual knowledge about what sensors to invoke, where
and when to focus them, and what inferences are plausible.
An architecture can also acquire and improve this knowl-
edge by learning from previous perceptual experiences.

An intelligent agent should also be able to move beyond
perception of isolated objects and events to understand and
interpret the broader environmental situation. For exam-
ple, a fire control officer on a ship must understand the
Please cite this article in press as: Langley, P. et al., Cognitive arch
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location, severity, and trajectory of fires in order to
respond effectively, whereas a general must be aware of
an enemy’s encampments, numbers, and resources to
defend against them successfully. Thus, situation assess-
ment requires an intelligent agent to combine perceptual
information about many entities and events, possibly
obtained from many sources, to compose a large-scale
model of the current environment. As such, it relies both
on the recognition and categorization of familiar patterns
in the environment, which we discussed earlier, and on
inferential mechanisms, which we will consider shortly.

3.4. Prediction and monitoring

Cognitive architectures exist over time, which means
they can benefit from an ability to predict future situations
and events accurately. For example, a good driver knows
approximately when his car will run out of gas, a successful
student can predict how much he must study to ace a final,
and a skilled pilot can judge how close he can fly to the
ground without crashing. Perfect prediction may not be
possible in many situations, but perfection is seldom neces-
sary to make predictions that are useful to an intelligent
system.

Prediction requires some model of the environment and
the effect actions have on it, and the architecture must rep-
resent this model in memory. One general approach
involves storing some mapping from a description of the
current situation and an action onto a description of the
resulting situation. Another approach encodes the effects
of actions or events in terms of changes to the environment.
In either case, the architecture also requires some mecha-
nism that uses these knowledge structures to predict future
situations, say by recognizing a class of situations in which
an action will have certain effects. An ideal architecture
should also include the ability to learn predictive models
from experience and to refine them over time.

Once an architecture has a mechanism for making pre-
dictions, it can also utilize them to monitor the environ-
ment. For example, a pilot may suspect that his tank has
a leak if the fuel gauge goes down more rapidly than usual,
and a commander may suspect enemy action if a reconnais-
sance team fails to report on time. Because monitoring
relates sensing to prediction, it raises issues of attentional
focus when an architecture has limited perceptual
resources. Monitoring also provides natural support for
learning, since errors can help an agent improve its model
of the environment.

3.5. Problem solving and planning

Because intelligent systems must achieve their goals in
novel situations, the cognitive architectures that support
them must be able to generate plans and solve problems.
For example, an unmanned aircraft benefits from having
a sensible flight plan, a project manager desires a schedule
that allocates tasks to specific people at specific times, and
itectures: Research issues and challenges, Cognitive Systems Re-
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a general seldom moves into enemy territory without at
least an abstract course of action. When executed, plans
often go awry, but that does not make them any less useful
to an intelligent agent’s thinking about the future.

Planning is only possible when the agent has an environ-
mental model that predicts the effects of its actions. To sup-
port planning, a cognitive architecture must be able to
represent a plan as an (at least partially) ordered set of
actions, their expected effects, and the manner in which
these effects enable later actions. The plan need not be com-
plete to guide behavior, in that it may extend only a short
time into the future or refer to abstract actions that can be
expanded in different ways. The structure may also include
conditional actions and branches that depend on the out-
come of earlier events as noted by the agent.

An intelligent agent should also be able to construct a
plan from components available in memory. These compo-
nents may refer to low-level motor and sensory actions but,
often, they will be more abstract structures, including pre-
stored subplans. There exist many mechanisms for generat-
ing plans from components, as well as ones for adapting
plans that have been retrieved from memory. What these
methods have in common is that they involve problem
solving or search. That is, they carry out steps through a
space of problem states, on each step considering applica-
ble operators, selecting one or more operator, and applying
it to produce a new problem state. This search process con-
tinues until the system has found an acceptable plan or
decides to give up.

The notion of problem solving is somewhat more gen-
eral than planning, though they are typically viewed as clo-
sely related. In particular, planning usually refers to
cognitive activities within the agent’s head, whereas prob-
lem solving can also occur in the world. Especially when
a situation is complex and the architecture has memory
limitations, an agent may carry out search by applying
operators or actions in the environment, rather than trying
to construct a plan internally. Problem solving can also rely
on a mixture of internal planning and external behavior,
but it generally involves the multi-step construction of a
problem solution. Like planning, problem solving is often
characterized in terms of search through a problem space
that applies operators to generate new states, selects prom-
ising candidates, and continues until reaching a recognized
goal.

Planning and problem solving can also benefit from
learning. Naturally, improved predictive models for actions
can lead to more effective plans, but learning can also occur
at the level of problem-space search, whether this activity
takes place in the agent’s head or in the physical world.
Such learning can rely on a variety of information sources.
In addition to learning from direct instruction, an architec-
ture can learn from the results of problem-space search
(Sleeman, Langley, & Mitchell, 1982), by observing
another agent’s behavior or behavioral cloning (Sammut,
1996), and from delayed rewards via reinforcement learning

(Sutton & Barto, 1998). Learning can aim to improve prob-
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lem solving behavior in two ways (Langley, 1995a). One
focuses on reducing the branching factor of search, either
through adding heuristic conditions to problem-space
operators or refining a numeric evaluation function to
guide choice. Another focuses on forming macro-operators
or stored plans that reduce the effective depth of search by
taking larger steps in the problem space.

Intelligent agents that operate in and monitor dynamic
environments must often modify existing plans in response
to unanticipated changes. This can occur in several con-
texts. For instance, an agent should update its plan when
it detects a changed situation that makes some planned
activities inapplicable, and thus requires other actions.
Another context occurs when a new situation suggests
some more desirable way of accomplishing the agent’s
goal; such opportunistic planning can take advantage of
these unexpected changes. Monitoring a plan’s execution
can also lead to revised estimates about the plan’s effective-
ness, and, ultimately, to a decision to pursue some other
course of action with greater potential. Replanning can
draw on the same mechanisms as generating a plan from
scratch, but requires additional operators for removing
actions or replacing them with other steps. Similar methods
can also adapt to the current situation a known plan the
agent has retrieved from memory.

3.6. Reasoning and belief maintenance

Problem solving is closely related to reasoning, another
central cognitive activity that lets an agent augment its
knowledge state. Whereas planning is concerned primarily
with achieving objectives in the world by taking actions,
reasoning draws mental conclusions from other beliefs or
assumptions that the agent already holds. For example, a
pilot might conclude that, if another plane changes its
course to intersect his own, it is probably an enemy fighter.
Similarly, a geometry student might deduce that two trian-
gles are congruent because they share certain sides and ver-
tices, and a general might infer that, since he has received
no recent reports of enemy movement, a nearby opposing
force is still camped where it was the day before.

To support such reasoning, a cognitive architecture
must first be able to represent relationships among beliefs.
A common formalism for encoding such relationships is
first-order logic, but many other notations have also been
used, ranging from production rules to neural networks
to Bayesian networks. The relations represented in this
manner may be logically or probabilistically sound, but
this is not required; knowledge about reasoning can also
be heuristic or approximate and still prove quite useful to
an intelligent agent. Equally important, the formalism
may be more or less expressive (e.g., limited to proposi-
tional logic) or computationally efficient.

Naturally, a cognitive architecture also requires mecha-
nisms that draw inferences using these knowledge struc-
tures. Deductive reasoning is an important and widely
studied form of inference that lets one combine general
itectures: Research issues and challenges, Cognitive Systems Re-
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and specific beliefs to conclude others that they entail log-
ically. However, an agent can also engage in inductive rea-
soning, which moves from specific beliefs to more general
ones and which can be viewed as a form of learning. An
architecture may also support abductive inference, which
combines general knowledge and specific beliefs to hypoth-
esize other specific beliefs, as occurs in medical diagnosis.
In constrained situations, an agent can simply draw all con-
clusions that follow from its knowledge base, but more
often it must select which inferential knowledge to apply.
This raises issues of search closely akin to those in planning
tasks, along with issues of learning to make that search
more effective.

Reasoning plays an important role not only when infer-
ring new beliefs but when deciding whether to maintain
existing ones. To the extent that certain beliefs depend on
others, an agent should track the latter to determine
whether it should continue to believe the former, abandon
it, or otherwise alter its confidence. Such belief maintenance

is especially important for dynamic environments in which
situations may change in unexpected ways, with implica-
tions for the agent’s behavior. One general response to this
issue involves maintaining dependency structures in mem-
ory that connect beliefs, which the architecture can use to
propagate changes as they occur.

3.7. Execution and action

Cognition occurs to support and drive activity in the
environment. To this end, a cognitive architecture must
be able to represent and store motor skills that enable such
activity. For example, a mobile ground robot or unmanned
air vehicle should have skills or policies for navigating from
one place to another, for manipulating its surroundings
with effectors, and for coordinating its behavior with other
agents on its team. These may be encoded solely in terms of
primitive or component actions, but they may also specify
more complex multi-step skills or procedures. The latter
may take the form of plans that the agent has generated
or retrieved from memory, especially in architectures that
have grown out of work on problem solving and planning.
However, other formulations of motor skill execution, such
as closed-loop controllers, have also been explored.

A cognitive architecture must also be able to execute
skills and actions in the environment. In some frameworks,
this happens in a completely reactive manner, with the
agent selecting one or more primitive actions on each deci-
sion cycle, executing them, and repeating the process on the
next cycle. This approach is associated with closed-loop
strategies for execution, since the agent can also sense the
environment on each time step. The utilization of more
complex skills supports open-loop execution, in which the
agent calls upon a stored procedure across many cycles
without checking the environment. However, a flexible
architecture should support the entire continuum from
fully reactive, closed-loop behavior to automatized, open-
loop behavior, as can humans.
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Ideally, a cognitive architecture should also be able learn
about skills and execution policies from instruction and
experience. Such learning can take different forms, many
of which parallel those that arise in planning and problem
solving. For example, an agent can learn by observing
another agent’s behavior, by successfully achieving its
goals, and from delayed rewards. Similarly, it can learn
or refine its knowledge for selecting primitive actions,
either in terms of heuristic conditions on their application
or as a numeric evaluation function that reflects their util-
ity. Alternatively, an agent can acquire or revise more com-
plex skills in terms of known skills or actions.

3.8. Interaction and communication

Sometimes the most effective way for an agent to obtain
knowledge is from another agent, making communication
another important ability that an architecture should sup-
port. For example, a commander may give orders to, and
receive reports from, her subordinates, while a shopper in
a flea market may dicker about an item’s price with its
owner. Similarly, a traveler may ask and receive directions
on a street corner, while an attorney may query a defen-
dant about where he was on a particular night. Agents exist
in environments with other agents, and there are many
occasions in which they must transfer knowledge from
one to another.

Whatever the modality through which this occurs, a
communicating agent must represent the knowledge that
it aims to convey or that it believes another agent intends
for it. The content so transferred can involve any of the
cognitive activities we have discussed so far. Thus, two
agents can communicate about categories recognized and
decisions made, about perceptions and actions, about pre-
dictions and anomalies, and about plans and inferences.
One natural approach is to draw on the representations
that result from these activities as the input to, and the out-
put from, interagent communication.

A cognitive architecture should also support mecha-
nisms for transforming knowledge into the form and med-
ium through which it will be communicated. The most
common form is spoken or written language, which follows
established conventions for semantics, syntax, and prag-
matics onto which an agent must map the content it wants
to convey. Even when entities communicate with purely
artificial languages, they do not have exactly the same men-
tal structures and they must translate content into some
external format. One can view language generation as a
form of planning and execution, whereas language under-
standing involves inference and reasoning. However, the
specialized nature of language processing makes these
views misleading, since the task raises many additional
issues.

An important form of communication occurs in conver-
sational dialogues, which require both generation and
understanding of natural language, as well as coordination
with the other agent in the form of turn taking. Learning is
itectures: Research issues and challenges, Cognitive Systems Re-
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also an important issue in language and other forms of
communication, since an architecture should be able to
acquire syntactic and semantic knowledge for use at both
the sentence and dialogue levels. Moreover, some commu-
nicative tasks, like question answering, require access to
memory for past events and cognitive activities, which in
turn benefits from episodic storage.

3.9. Remembering, reflection, and learning

A cognitive architecture can also benefit from capabili-
ties that cut across those described in the previous sections,
in that they operate on mental structures produced or uti-
lized by them. Such abilities, which Sloman (2001) refers to
as metamanagement mechanisms, are not strictly required
for an intelligent agent, but their inclusion can extend con-
siderably the flexibility and robustness of an architecture.

One capacity of this sort involves remembering – the
ability to encode and store the results of cognitive process-
ing in memory and to retrieve or access them later. An
agent cannot directly remember external situations or its
own physical actions; it can only recall cognitive structures
that describe those events or inferences about them. This
idea extends naturally to memories of problem solving, rea-
soning, and communication. To remember any cognitive
activity, the architecture must store the cognitive structures
generated during that activity, index them in memory, and
retrieve them when needed. The resulting content is often
referred to as episodic memories.

Another capability that requires access to traces of cog-
nitive activity is reflection. This may involve processing of
either recent mental structures that are still available or
older structures that the agent must retrieve from its epi-
sodic store. One type of reflective activity concerns the jus-
tification or explanation of an agent’s inferences, plans,
decisions, or actions in terms of cognitive steps that led
to them. Another revolves around meta-reasoning about
other cognitive activities, which an architecture can apply
to the same areas as explanation, but which emphasizes
their generation (e.g., forming inferences or making plans)
rather than their justification. To the extent that reflective
processes lay down their own cognitive traces, they may
themselves be subject to reflection. However, an architec-
ture can also support reflection through less transparent
mechanisms, such as statistical analyses, that are not them-
selves inspectable by the agent.

A final important ability that applies to many cognitive
activities is learning. We have discussed previously the var-
ious forms this can take, in the context of different architec-
tural capacities, but we should also consider broader issues.
Learning usually involves generalization beyond specific
beliefs and events. Although most architectures carry out
this generalization at storage time and enter generalized
knowledge structures in memory, some learning mecha-
nisms store specific situations and generalization occurs
at retrieval time through analogical or case-based reason-
ing. Either approach can lead to different degrees of gener-
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alization or transfer, ranging from very similar tasks, to
other tasks within the same domain, and even to tasks
within related but distinct domains. Many architectures
treat learning as an automatic process that is not subject
to inspection or conscious control, but they can also use
meta-reasoning to support learning in a more deliberate
manner. The data on which learning operates may come
from many sources, including observation of another
agent, an agent’s own problem-solving behavior, or prac-
tice of known skills. But whatever the source of experience,
all involve processing of memory structures to improve the
agent’s capabilities.

4. Properties of cognitive architectures

We can also characterize cognitive architectures in terms
of the internal properties that produce the capabilities
described in the previous section. These divide naturally
into the architecture’s representation of knowledge, the
organization it places on that knowledge, the manner in
which the system utilizes its knowledge, and the mecha-
nisms that support acquisition and revision of knowledge
through learning. Below we consider a number of design
decisions that arise within each of these facets of an intelli-
gent system, casting them in terms of the data structures
and algorithms that are supported at the architectural level.
Although we present most issues in terms of oppositions,
many of the alternatives we discuss are complementary
and can exist within the same framework.

4.1. Representation of knowledge

One important class of architectural properties revolves
around the representation of knowledge. Recall that
knowledge itself is not built into an architecture, in that
it can change across domains and over time. However,
the representational formalism in which an agent encodes
its knowledge constitutes a central aspect of a cognitive
architecture.

Perhaps the most basic representational choice involves
whether an architecture commits to a single, uniform nota-
tion for encoding its knowledge or whether it employs a
mixture of formalisms. Selecting a single formalism has
advantages of simplicity and elegance, and it may support
more easily abilities like learning and reflection, since they
must operate on only one type of structure. However, as we
discuss below, different representational options have
advantages and disadvantages, so that focusing on one
framework can force an architecture into awkward
approaches to certain problems. On the other hand, even
mixed architectures are typically limited to a few types of
knowledge structures to avoid complexity.

One common tradition distinguishes declarative from
procedural representations. Declarative encodings of
knowledge can be manipulated by cognitive mechanisms
independent of their content. For instance, a notation for
describing devices might support design, diagnosis, and
itectures: Research issues and challenges, Cognitive Systems Re-
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control. First-order logic (Genesereth & Nilsson, 1987) is a
classic example of such a representation. Generally speak-
ing, declarative representations support very flexible use,
but they may lead to inefficient processing. In contrast,
procedural formalisms encode knowledge about how to
accomplish some task. For instance, an agent might have
a procedure that lets it solve an algebra problem or drive
a vehicle, but not recognize such an activity when done
by others. Production rules (Neches et al., 1987) are a com-
mon means of representing procedural knowledge. In gen-
eral, procedural representations let an agent apply
knowledge efficiently, but typically in an inflexible manner.

We should clarify that a cognitive architecture can sup-
port both declarative and procedural representations, so
they are not mutually exclusive. Also, all architectures have
some declarative and procedural aspects, in that they
require some data structures to recognize and some inter-
preter to control behavior. However, we typically reserve
the term knowledge to refer to structures that are fairly sta-
ble (not changing on every cycle) and that are not built into
the architecture. Moreover, whether knowledge is viewed
as declarative or procedural depends less on its format than
on what architectural mechanisms can access it. For exam-
ple, production rules can be viewed as declarative if other
production rules can inspect them.

Although much of an agent’s knowledge must consist of
skills, concepts, and facts about the world it inhabits, an
architecture may also support meta-knowledge about the
agent’s own capabilities. Such higher-level knowledge can
support meta-reasoning, let the agent ‘‘know what it
knows”, and provide a natural way to achieve cognitive
penetrability, that is, an understanding of the cognitive
steps taken during the agent’s activities and the reasons
for them. Encoding knowledge in a declarative manner is
one way to achieve meta-knowledge, but an emphasis on
procedural representations does not mean an architecture
cannot achieve these ends through other means.

Another contrast parallels the common distinction
between activities and the entities on which they operate.
Most cognitive architectures, because they evolved from
theories of problem solving and planning, focus on skill

knowledge about how to generate or execute sequences of
actions, whether in the agent’s head or in the environment.
However, an equally important facet of cognition is con-

ceptual knowledge, which deals with categories of objects,
situations, and other less action-oriented concepts. All cog-
nitive architectures refer to such categories, but they often
relegate them to opaque symbols, rather than representing
their meaning explicitly. There has been considerable work
on formalisms and methods for conceptual memory, but
seldom in the context of cognitive architectures.

Yet another distinction (Tulving, 1972) involves whether
stored knowledge supports a semantic memory of generic
concepts, procedures, and the like, or whether it encodes
an episodic memory of specific entities and events the agent
has encountered in the environment. Most cognitive archi-
tectures focus on semantic memory, partly because this is a
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natural approach to obtaining the generalized behavior
needed by an intelligent agent, whereas an episodic mem-
ory seems well suited for retrieval of specific facts and
occurrences. However, methods for analogical and case-
based reasoning can produce the effect of generalized
behavior at retrieval time, so an architecture’s commitment
to semantic or episodic memory does not, by itself, limit its
capabilities. Neither must memory be restricted to one
framework or the other.

Researchers in artificial intelligence and cognitive sci-
ence have explored these design decisions through a variety
of specific representational formalisms. An early notation,
known as semantic networks (Ali & Shapiro, 1993; Sowa,
1991), encodes both generic and specific knowledge in a
declarative format that consists of nodes (for concepts or
entities) and links (for relations between them). First-order

logic was another early representational framework that
still sees considerable use; this encodes knowledge as logi-
cal expressions, each cast in terms of predicates and argu-
ments, along with statements that relate these expressions
in terms of logical operators like conjunction, disjunction,
implication, and negation. Production systems (Neches
et al., 1987) provide a more procedural notation, retaining
the modularity of logic, which represents knowledge as a
set of condition–action rules that describe plausible
responses to different situations. Frames (Minsky, 1975)
and schemas offer structured declarative formats that spec-
ify concepts in terms of attributes (slots) and their values
(fillers), whereas plans (Hendler, Tate, & Drummond,
1990) provide a structured framework for encoding courses
of action. In addition, some approaches augment symbolic
structures with strengths (as in neural networks) or proba-
bilities (as in Bayesian networks), although, as typically
implemented, these have limited expressiveness.

4.2. Organization of knowledge

Another important set of properties concerns the man-
ner in which a cognitive architecture organizes knowledge
in its memory. One choice that arises here is whether the
underlying knowledge representation scheme directly sup-
ports ‘flat’ or hierarchical structures. Production systems
and propositional logic are two examples of flat frame-
works, in that the stored memory elements make no direct
reference to each other. This does not mean they cannot
influence one another; clearly, application of one produc-
tion rule can lead to another one’s selection on the next
cycle, but this happens indirectly through operation of
the architecture’s interpreter.

In contrast, stored elements in structured frameworks
make direct reference to other elements. One such
approach involves a task hierarchy, in which one plan or
skill calls directly on component tasks, much as in subrou-
tine calls. Similarly, a part-of hierarchy describes a complex
object or situation in terms of its components and relations
among them. A somewhat different organization occurs
with an is-a hierarchy, in which a category refers to more
itectures: Research issues and challenges, Cognitive Systems Re-
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general concepts (its parents) and more specialized ones (its
children). Most architectures commit to either a flat or
structured scheme, but task, part-of, and is-a hierarchies
are complementary rather than mutually exclusive.

A second organizational property involves the granular-
ity of the knowledge stored in memory. For example, both
production systems and first-order logic constitute fairly
fine-grained forms of knowledge. An architecture that
encodes knowledge in this manner must use its interpreter
to compose them in order to achieve complex behavior.
Another option is to store more coarse-grained structures,
such as plans and macro-operators, that effectively describe
multi-step behavior in single knowledge structures. This
approach places fewer burdens on the interpreter, but also
provides less flexibility and generality in the application of
knowledge. A structured framework offers one compromise
by describing coarse memory elements in terms of fine-
grained ones, thus giving the agent access to both.

Another organizational issue concerns the number of
distinct memories that an architecture supports and their
relations to each other. An intelligent agent requires some
form of long-term memory to store its generic skills and
concepts; this should be relatively stable over time, though
it can change with instruction and learning. An agent also
requires some short-term memory that contains more
dynamic and short-lived beliefs and goals. In most produc-
tion system architectures, these two memories are structur-
ally distinct but related through the matching process,
which compares the conditions of long-term production
rules with short-term structures. Other frameworks treat
short-term memory as the active portion of the long-term
store, whereas others replace a single short-term memory
with a number of modality-specific perceptual buffers. A
cognitive architecture may also allocate its stable knowl-
edge to distinct long-term memories, say for procedural,
conceptual, and episodic structures, as appears to occur
in humans.

4.3. Utilization of knowledge

A third class of properties concerns the utilization of
knowledge stored in long-term memories. As we have seen,
this can range from low-level activities like recognition and
decision making to high-level ones like communication and
reflection. We cannot hope to cover all the design choices
that arise in knowledge utilization, so we focus here on
issues which deal with cognitive behavior that occurs
across cycles, which is typically a central concern of archi-
tectural developers.

One such design decision involves whether problem
solving relies primarily on heuristic search through prob-
lem spaces or on retrieval of solutions or plans from
long-term memory. As usual, this issue should not be
viewed as a strict dichotomy, in that problem-space search
itself requires retrieval of relevant operators, but a cogni-
tive architecture may emphasize one approach over the
other. For instance, production system architectures typi-
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cally construct solutions through heuristic search, whereas
case-based systems retrieve solutions from memory, though
the latter must often adapt the retrieved structure, which
itself can require search.

When a cognitive architecture supports multi-step prob-
lem solving and inference, it can accomplish this in different
ways. One approach, known as forward chaining, applies
relevant operators and inference rules to the current prob-
lem state and current beliefs to produce new states and
beliefs. We can view forward chaining as progressing from
a known mental state toward some goal state or descrip-
tion. In contrast, backward chaining applies relevant oper-
ators and inference rules to current goals in order to
generate new subgoals, which involves progression from
some goal state or description toward current states or
beliefs. A third alternative, means-ends analysis (e.g., Car-
bonell et al., 1990; Ernst & Newell, 1969), combines these
two approaches by selecting operators through backward
chaining but executing them whenever their preconditions
are satisfied.

To clarify this dimension, production system architec-
tures typically operate in a forward-chaining fashion,
while PROLOG (Clocksin & Mellish, 1981) provides a good
example of backward chaining. However, it is important
to distinguish between problem-solving techniques that
are supported directly by an architecture and ones that
are implemented by knowledge stated within that archi-
tecture. For instance, backward-chaining behavior can
arise within a forward-chaining production system
through rules that match against goals and, upon firing,
add subgoals to short-term memory (e.g., Anderson &
Lebiere, 1998). Such knowledge-driven behavior does
not make the architecture itself any less committed to
one position or another.

Computer scientists often make a strong distinction
between sequential and parallel processing, but this dichot-
omy, as typically stated, is misleading in the context of cog-
nitive architectures. Because an intelligent agent exists over
time, it cannot avoid some sequential processing, in that it
must take some cognitive and physical steps before others
are possible. On the other hand, most research on cognitive
architectures assumes that retrieval of structures from
long-term memory occurs in parallel or at least that it hap-
pens so rapidly it has the same effect. However, frame-
works can genuinely differ in the number of cognitive
structures they select and apply on each cycle. For exam-
ple, early production system architectures (Newell, 1973b)
found all matching instantiations of rules on each cycle,
but then selected only one for application; in contrast,
some more recent architectures like Soar (Newell, 1990)
apply all matching rules, but introduce constraints else-
where, as in the number of goals an agent can simulta-
neously pursue. Thus, architectures differ not so much in
whether they support sequential or parallel processing,
but in where they place sequential bottlenecks and the
details of those constraints. Some architectures, like
ACT-R (Anderson et al., 2004), model cognitive bottle-
itectures: Research issues and challenges, Cognitive Systems Re-
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necks in order to simulate limitations on human
performance.

Given that a cognitive architecture has some resource
limitations which require selection among alternative goals,
rules, or other knowledge structures, it needs some way to
make this selection. Early production system architectures
handled this through a process known as conflict resolution,
which selected one or more matched rules to apply based
on criteria like the recency of their matched elements, the
rules’ specificities, or their strengths. Computer programs
for game playing instead select moves with some numeric
evaluation function that combines features of predicted
states, whereas systems that incorporate analogical or
case-based reasoning typically select structures that are
most similar to some target. Again, it is important to dis-
tinguish the general mechanism an architecture uses to
select among alternative decisions or actions from the
knowledge it uses to implement that strategy, which may
differ across tasks or change with learning.

Another central issue for the utilization of knowledge
concerns the relation between cognition and action. A
deliberative architecture is one that plans or reasons out a
course of action before it begins execution, whereas a reac-

tive architecture simply selects its actions on each decision
cycle based on its understanding of the current situation.
Deliberation has advantages in predictable environments,
but it requires an accurate model of actions’ effects and
forces the agent to construct a plan for each new problem
it encounters. Reaction has advantages in dynamic and
unpredictable environments, but requires the presence of
control knowledge for many different situations. Some
architectures (e.g., Carbonell et al., 1990) lean toward
deliberation because they grew out of research on problem
solving and planning, whereas other frameworks (e.g.,
Brooks, 1986) emphasize reactive execution to the exclu-
sion of deliberation. Both positions constitute extremes
along a continuum that, in principle, should be controlled
by agent knowledge rather than built into the architecture.2

A similar issue arises with respect to the relation
between perception and action (Schmidt, 1975). A closed-

loop control system senses the environment on every cycle,
thus giving an agent the opportunity to respond to recent
changes. In contrast, an open-loop system carries out an
extended action sequence over multiple cycles, without
bothering to sense the environment. Closed-loop
approaches are often associated with reactive systems and
open-loop methods with deliberative ones, but they really
involve distinct issues. Closed-loop control has the advan-
tage of rapid response in dynamic domains, but requires
constant monitoring that may exceed an agent’s perceptual
resources. Open-loop behavior requires no sensing and
supports efficient execution, but it seems most appropriate
only for complex skills that necessitate little interaction
2 Another response is to support deliberation and reactive control in
separate modules, as done in Bonasso et al.’s (1997) 3T framework.
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with the environment. Again, these two extremes define a
continuum, and an architecture can utilize domain knowl-
edge to determine where its behavior falls, rather than com-
mitting to one or the other.

4.4. Acquisition and refinement of knowledge

A final important class of properties concerns the acqui-
sition of knowledge from instruction or experience.
Although such learning mechanisms can be called inten-
tionally by the agent and carried out in a deliberative fash-
ion, both their invocation and execution are typically
handled at the architectural level, though the details vary
greatly. One important issue is whether a cognitive archi-
tecture supports many such mechanisms or whether it relies
on a single learning process that (ideally) interacts with
knowledge and experience to achieve many different effects.
For instance, early versions of ACT included five distinct
learning processes, whereas early versions of Soar included
only one such mechanism.

The literature on cognitive architectures commonly dis-
tinguishes between processes that learn entirely new knowl-
edge structures, such as production rules or plans, and ones
that fine tune existing structures, say through adjusting
weights or numeric functions. For example, Soar learns
new selection, rejection, or preference rules when it creates
results in a subgoal, whereas ACT-R updates the utilities
associated with production rules based on their outcomes.
An architectural learning mechanism may also revise exist-
ing structures by adding or removing components. For
instance, early versions of ACT included a discrimination
method that added conditions to production rules and a
generalization method that removed them.

Another common distinction involves whether a given
learning process is analytical or empirical in nature (Schl-
immer & Langley, 1992). Analytical methods rely on some
form of reasoning about the learning experience in terms of
knowledge available to the agent. In contrast, empirical
methods rely on inductive operations that transform expe-
rience into usable knowledge based on detected regulari-
ties. In general, analytical methods are more explanatory
in flavor and empirical methods are more descriptive. This
is actually a continuum rather than a dichotomy, in which
the critical variable is the amount of knowledge-based pro-
cessing the learner carries out. Architectures can certainly
utilize hybrid methods that incorporate ideas from both
frameworks, and they can also combine them through dif-
ferent learning mechanisms. For example, PRODIGY uti-
lizes an analytic method to construct new rules and an
empirical method to estimate their utility after gaining
experience with them.

A fourth issue concerns whether an architecture’s learn-
ing mechanisms operate in an eager or a lazy fashion. Most
frameworks take an eager approach that forms generalized
knowledge structures from experience at the time the latter
enter memory. The interpreter can then process the result-
ing generalized rules, plans, or other structures without fur-
itectures: Research issues and challenges, Cognitive Systems Re-
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ther transformation. Methods for rule induction and
macro-operator construction are good examples of this
approach. However, some architectures take a lazy
approach (Aha, 1997) that stores experiences in memory
untransformed, then carry out implicit generalization at
the time of retrieval and utilization. Analogical and case-
based methods (e.g., Veloso & Carbonell, 1993) are impor-
tant examples of this approach.

A final property revolves around whether learning
occurs in an incremental or nonincremental manner. Incre-
mental methods incorporate training cases one at a time,
with limited memory for previous cases, and update their
knowledge bases after processing each experience. In con-
trast, nonincremental methods process all training cases
in a single step that operates in a batch procedure. Because
agents exist over time, they accumulate experience in an
online fashion, and their learning mechanisms must deal
with this constraint. Incremental methods provide a natural
response, but the order of presentation can influence their
behavior (Langley, 1995b). Nonincremental approaches
avoid this drawback, but only at the expense of retaining
and reprocessing all experiences. Most architectural
research takes an incremental approach to learning, though
room remains for hybrid methods that operate over limited
subsets of experience (e.g., Pearson & Laird, 1999).

5. Evaluation criteria for cognitive architectures

As with any scientific theory or engineered artifact, cog-
nitive architectures require evaluation. However, because
architectural research occurs at the systems level, it poses
more challenges than does the evaluation of component
knowledge structures and methods. In this section, we con-
sider some dimensions along which one can evaluate cogni-
tive architectures. In general, these involve matters of
degree, which suggests the use of quantitative measures
rather than all-or-none tests. Langley and Messina (2004)
discuss additional issues that arise in the evaluation of inte-
grated intelligent systems.

Recall that ability to explain psychological phenomena
is an important dimension along which to evaluate archi-
tectures. For example, in recent years, research within a
number of architectural frameworks (Anderson et al.,
2004; Sun et al., 2001) has emphasized fitting timing and
error data from detailed psychological experiments, but
that is not our focus here. However, it is equally important
to demonstrate that an architecture supports the same
qualitative robustness that humans exhibit. The criteria
we discuss in this section are based directly on such quali-
tative aspects of human behavior, even when a system may
produce them through entirely different means.

Cognitive architectures also provide a distinctive
approach to constructing integrated intelligent systems.
The convential wisdom of software engineering is that
one should develop independent modules that have mini-
mal interaction. In contrast, a cognitive architecture offers
a unified theory of cognition (Newell, 1990) with tightly
Please cite this article in press as: Langley, P. et al., Cognitive arch
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interleaved modules that support synergistic effects. How-
ever, claims about synergy in cognitive systems are difficult
to test empirically,3 so here we focus on other criteria that
are linked directly to functionality.

5.1. Generality, versatility, and taskability

Recall that cognitive architectures are intended to sup-
port general intelligent behavior. Thus, generality is a key
dimension along which to evaluate a candidate framework.
We can measure an architecture’s generality by using it to
construct intelligent systems that are designed for a diverse
set of tasks and environments, then testing its behavior in
those domains. The more environments in which the archi-
tecture supports intelligent behavior, and the broader the
range of those environments, the greater its generality.

However, demonstrating the generality of an architec-
ture may require more or less effort on the part of the sys-
tem developer. For each domain, we might implement a
new system in low-level assembly code, which makes few
theoretical commitments or high-level mechanisms, but
this approach would take much too long. We can define
the versatility of a cognitive architecture in terms of the dif-
ficulty encountered in constructing intelligent systems
across a given set of tasks and environments. The less effort
it takes to get an architecture to produce intelligent behav-
ior in those environments, the greater its versatility.

Generality and versatility are related to a third notion,
the taskability of an architecture, which acknowledges that
long-term knowledge is not the only determinant of an
agent’s behavior in a domain. Briefly, this concerns an
architecture’s ability to carry out different tasks in response
to goals or other external commands from a human or
from some other agent. The more tasks an architecture
can perform in response to such commands, and the
greater their diversity, the greater its taskability. This in
turn can influence generality and versatility, since it can
let the framework cover a wider range of tasks with less
effort on the developer’s part.

5.2. Rationality and optimality

We usually consider an agent to be intelligent when it pur-
sues a behavior for some reason, which makes the rationality

of an architecture another important dimension for its eval-
uation. We can measure a framework’s rationality by exam-
ining the relationship among its goals, its knowledge, and its
actions. For instance, Newell (1982) states ‘‘If an agent has
knowledge that one of its actions will lead to one of its goals,
then the agent will select that action”. Since an architecture
makes many decisions about action over time, we can esti-
mate this sense of rationality by noting the percentage of
times that its behavior satisfies the criterion.
itectures: Research issues and challenges, Cognitive Systems Re-
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Note that this notion of rationality takes no position
about how to select among multiple actions that are rele-
vant to the agent’s goals. One response to this issue comes
from Anderson (1991), who states ‘‘The cognitive system
optimizes the adaptation of the behavior of the organism”.
The notion of optimality assumes some numeric function
over the space of behaviors, with the optimal behavior
being the one that produces the best value on this function.
Although optimality is an all-or-none criterion, we can
measure the degree to which an architecture approaches
optimality by noting the percentage of times its behavior
is optimal across many decision cycles or the ratio of actual
to optimal value it achieves averaged over time.

However, Simon (1957) has argued that, because intel-
ligent agents have limited cognitive resources, the notion
of bounded rationality is more appropriate than optimality
for characterizing their behavior. In his view, an agent has
bounded rationality if it behaves in a manner that is as
nearly optimal with respect to its goals as its resources will
allow. We can measure the degree to which a cognitive
architecture exhibits bounded rationality in the same
manner as for optimality, provided we can incorporate
some measure of the resources it has available for each
decision.

5.3. Efficiency and scalability

Because cognitive architectures must be used in practice,
they must be able to perform tasks within certain time and
space constraints. Thus, efficiency is another important
metric to utilize when evaluating an architecture. We can
measure efficiency in quantitative terms, as the time and
space required by the system, or in all-or-none terms, based
on whether the system satisfies hard constraints on time
and space, as in work on real-time systems. We can also
measure efficiency either at the level of the architecture’s
recognize-act cycle or at the level of complete tasks, which
may give very different results.

However, because architectures must handle tasks and
situations of different difficulty, we also want to know their
scalability. This metric is closely related to the notion of
complexity as used in the formal analysis of algorithms.
Thus, we can measure an architecture’s space and time effi-
ciency in terms of how they are influenced by task diffi-
culty, environmental uncertainty, length of operation,
and other complicating factors. We can examine an archi-
tecture’s complexity profile across a range of problems and
amounts of knowledge. The less an architecture’s efficiency
is affected by these factors, the greater its scalability.

A special case of scalability that has received consider-
able attention arises with cognitive architectures that learn
over time. As learning mechanisms add knowledge to their
long-term memory, many such systems become slower in
their problem-solving behavior, since they have more alter-
natives from which to choose. This utility problem (Minton,
1990) has arisen in different architectures that employ a
variety of representational formalisms and retrieval mech-
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anisms. Making architectures more scalable with respect
to such increased knowledge remains an open research
issue.

5.4. Reactivity and persistence

Many cognitive architectures aim to support agents that
operate in external environments that can change in unpre-
dictable ways. Thus, the ability to react to such changes is
another dimension on which to evaluate candidate frame-
works. We can measure an architecture’s reactivity in terms
of the speed with which it responds to unexpected situa-
tions or events, or in terms of the probability that it will
respond on a given recognize-act cycle. The more rapidly
an architecture responds, or the greater its chances of
responding, the greater its reactivity.4

Of course, this definition must take into account the
relation between the environment and the agent’s model
of that environment. If the model predicts accurately what
transpires, then reactivity becomes less of an issue. But if
the environment is an uncertain one or if the agent has a
weak model, then reactivity becomes crucial to achieve-
ment of the agent’s goals. Alternative cognitive architec-
tures can take different positions along this spectrum, and
we must understand their positions when evaluating their
reactivities.

An issue related to reactivity that has received substan-
tial attention is known as the frame problem (McCarthy,
1963). This arises in any dynamic environment where an
agent must keep its model of the world aligned with the
world itself, despite the inability of the agent to sense the
world in its entirety. Even when it is not hard to detect
environmental changes themselves, propagating the effect
of these changes on knowledge, goals, and actions can be
difficult. Many research efforts have addressed the frame
problem, but making architectures more robust on this
front remains an open area for research.

Despite the importance of reactivity, we should note
that, in many contexts, persistence is equally crucial. An
architecture that always responds immediately to small
environmental changes may lose sight of its longer-term
objectives and oscillate from one activity to another, with
no higher purpose. We can measure persistence as the
degree to which an architecture continues to pursue its
goals despite changes in the environment. Reactivity and
persistence are not opposites, although they may appear
so at first glance. An agent can react to short-term changes
while still continuing to pursue its long-term objectives.

5.5. Improvability

We expect intelligent agents to improve their behavior
over time. One means to this end involves direct addition
itectures: Research issues and challenges, Cognitive Systems Re-
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of knowledge by the system’s programmer or user. The key
question here is not whether such additions are possible,
but how effective they are at improving the agent’s behav-
ior. Thus, we can measure improvability of this type in
terms of the agent’s ability to perform tasks that it could
not handle before the addition of knowledge. More specif-
ically, we can measure the rate at which performance
improves as a function of programmer time, since some
architectures may require less effort to improve than
others.

Another path to improvement involves the agent learn-
ing from its experience with the environment or with its
own internal processes. We can measure an architecture’s
capacity for learning in the same way that we can measure
its capacity for adding knowledge – in terms of its ability to
perform new tasks. Since cognitive agents exist over time,
this means measuring their improvement in performance
as a function of experience. Thus, the method commonly
used in machine learning of separating training from test
cases makes little sense here, and we must instead collect
learning curves that plot performance against experience
in an online setting.

We should note that different forms of learning focus on
different types of knowledge, so we should not expect a
given mechanism to improve behavior on all fronts. For
example, some learning processes are designed to improve
an agent’s ability to recognize objects or situations accu-
rately, others focus on acquisition of new skills, and still
others aim to make those skills more efficient. We should
use different tests to evaluate an architecture’s ability to
learn different types of knowledge, although we would
expect a well-rounded architecture to exhibit them all.

Because learning is based on experience with specific
objects or events, evaluating the generality, transfer,
and reusability of learned knowledge is also crucial.
We want learning to involve more than memorizing spe-
cific experiences, though such episodic memory also has
its uses. We can determine the degree of generalization
and transfer by exposing the agent to situations and
tasks that differ from its previous experience in various
ways and measuring its performance on them. Again, a
key issue concerns the rate of learning or the amount
of acquired knowledge that the architecture needs to
support the desired behavior.

5.6. Autonomy and extended operation

Although we want intelligent agents that can follow
instructions, sometimes we also expect them to operate
on their own over extended periods. To this end, the archi-
tectures that support them must be able to create their own
tasks and goals. Moreover, they must be robust enough to
keep from failing when they encounter unexpected situa-
tions and to keep from slowing down as they accumulate
experience over long periods of time. In other words, a
robust architecture should provide both autonomy and
extended operation.
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We can measure an architecture’s support for autonomy
by presenting agents with high-level tasks that require
autonomous decision making for success and that benefit
from knowledge about the domain. For example, we can
provide an agent with the ability to ask for instructions
when it does not know how to proceed, then measure the
frequency with which it requests assistance as a function
of its knowledge. We can measure the related ability for
extended operation by placing an agent in open-ended
environments, such as a simulated planetary expedition,
and noting how long, on average, it continues before failing
or falling into inaction. We can also measure an agent’s
efficiency as a function of its time in the field, to determine
whether it scales well along this dimension.

6. Open issues in cognitive architectures

Despite the many conceptual advances that have
occurred during three decades of research on cognitive
architectures, and despite the practical use that some archi-
tectures have seen on real-world problems, there remains
considerable need for additional work on this important
topic. In this section, we note some open issues that deserve
attention from researchers in the area.

The most obvious arena for improvement concerns the
introduction of new capabilities. Existing architectures
exhibit many of the capacities described in Section 3, but
few support all of them, and even those achieve certain
functionalities only with substantial programmer effort.
Some progress has been made on architectures that com-
bine deliberative problem solving with reactive control,
but we need increased efforts at unification along a number
of other fronts:

� Most architectures emphasize the generation of solu-
tions to problems or the execution of actions, but cate-
gorization and understanding are also crucial aspects
of cognition, and we need increased attention to these
abilities.
� The focus on problem solving and procedural skills has

drawn attention away from episodic knowledge. We
need more research on architectures that directly sup-
port both episodic memory and reflective processes that
operate on the structures it contains.
� Most architectures emphasize logic or closely related

formalisms for representing knowledge, whereas
humans also appear to utilize visual, auditory, diagram-
matic, and other specialized representational schemes.
We need extended frameworks that can encode knowl-
edge in a variety of formalisms, relate them to each
other, and use them to support intelligent behavior more
flexibly and effectively.
� Although natural language processing has been demon-

strated within some architectures, few intelligent systems
have combined this with the ability to communicate
about their own decisions, plans, and other cognitive
activities in a general manner.
itectures: Research issues and challenges, Cognitive Systems Re-
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� Physical agents have limited resources for perceiving the
world and affecting it, yet few architectures address this
issue. We need expanded frameworks that manage an
agent’s resources to selectively focus its perceptual atten-
tion, its effectors, and the tasks it pursues.
� Although many architectures interface with complex

environments, they rarely confront the interactions
between body and mind that arise with real embodiment.
For instance, we should examine the manner in which
physical embodiment impacts thinking and consider the
origin of agents’ primary goals in terms of internal drives.
� Emotions play a central role in human behavior, yet few

systems offer any account of their purposes or mecha-
nisms. We need new architectures that exhibit emotion
in ways that link directly to other cognitive processes
and that modulate intelligent behavior.
� From an engineering standpoint, architectures are inter-

esting if they ease development of intelligent agents
through reuse, but we need research on whether this is
best accomplished through specialized functional capa-
bilities that are utilized repeatedly or through reusable
knowledge that supports multiple tasks.

Architectures that demonstrate these new capabilities will
support a broader class of intelligent systems than the field
has yet been able to develop.
We also need additional research on the structures and
processes that support such capabilities. Existing cognitive
architectures incorporate many of the underlying proper-
ties that we described in Section 4, but a number of issues
remain unaddressed:

� Certain representational frameworks – production sys-
tems and plans – have dominated architectural research.
To explore the space of architectures more fully, we
should also examine designs that draw on other repre-
sentational frameworks like frames (Minsky, 1975), case
bases (Aamodt & Plaza, 1994), description logics (Nardi
& Brachman, 2002), and probabilistic formalisms (Rich-
ardson & Domingos, 2006).
� Many architectures commit to a single position on proper-

ties related to knowledge utilization, but this is not the only
alternative. We should also explore frameworks that
change their location on a given spectrum (e.g., deliberative
vs. reactive behavior) dynamically based on their situation.
� Most architectures incorporate some form of learning,

but none have shown the richness of improvement that
humans demonstrate. We need more robust and flexible
learning mechanisms that are designed for extended
operation in complex, unfamiliar domains and that
build in a cumulative manner on the results of previous
learning over long periods of time.

These additional structures and processes should both
increase our understanding of the space of cognitive archi-
tectures and provide capabilities that are not currently
available.
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The research community should also devote more seri-
ous attention to methods for the thoughtful evaluation of
cognitive architectures. Metrics like those we proposed in
Section 5 are necessary but not sufficient to understand sci-
entifically the mapping from architectural properties to the
capabilities they support. In addition, we must identify or
create complex environments, both physical and simulated,
that exercise these capabilities and provide realistic oppor-
tunities for measurement.

We will also need an experimental method that recog-
nizes the fact that cognitive architectures involve integration
of many components which may have synergistic effects,
rather than consisting of independent but unrelated mod-
ules (Langley & Messina, 2004). Experimental comparisons
among architectures have an important role to play, but
these must control carefully for the task being handled
and the amount of knowledge encoded, and they must mea-
sure dependent variables in unbiased and informative ways.
Systematic experiments that are designed to identify sources
of power will tell us far more about the nature of cognitive
architectures than simplistic competitions.

Our field still has far to travel before we understand fully
the space of cognitive architectures and the principles that
underlie their successful design and utilization. However,
we now have over two decades’ experience with construct-
ing and using a variety of such architectures for a wide
range of problems, along with a number of challenges that
have arisen in this pursuit. If the scenery revealed by these
initial steps are any indication, the journey ahead promises
even more interesting and intriguing sites and attractions.
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Appendix. Representative cognitive architectures

Many researchers have proposed and studied cognitive
architectures over the past three decades. Some have been
only thought experiments, while others have been imple-
mented and utilized as tools by people at many institutions.
Here we review briefly a number of architectures that have
appeared in the literature. We have not attempted to be
exhaustive, but this set should give readers an idea of the
great diversity of research in this area.

� ACT-R (Anderson, 2007; Anderson et al., 2004), the
most recent instantiation of the ACT family, includes
a declarative memory for facts and a procedural mem-
itectures: Research issues and challenges, Cognitive Systems Re-
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ory consisting of production rules. The architecture
operates by matching productions on perceptions and
facts, mediated by the real-valued activation levels of
objects, and executing them to affect the environment
or alter declarative memory. Learning in ACT-R
involves creating new facts and productions, as well as
updating base activations and utilities associated with
these structures.
� The AIS architecture (Hayes-Roth, Pfleger, Lalanda,

Morignot, & Balabanovic, 1995) stores procedural
knowledge as a set of behaviors, each with associated
triggering conditions, and control plans, which specify
temporal patterns of plan steps. These match against,
modify, and interact through a declarative memory that
stores factual knowledge, intended activities, and traces
of the agent’s experience. On each cycle, a meta-control-
ler evaluates enabled behaviors and selects which ones to
execute. The architecture includes a deliberative cogni-
tive layer, which is responsible for situation assessment
and planning, and a more rapid physical layer, which
handles perception and action in the environment.
� APEX (Freed, 1998) organizes knowledge in hierarchi-

cal procedures, with higher-level elements indexed by
the task they address and referring to subtasks they
invoke. These match against the contents of a perceptual
memory, with a selection process adding tasks to an
agenda. The architecture associates cognitive, percep-
tual, and motor resources; this can lead to conflicts
among tasks on the agenda, which the system resolves
by selecting those with highest priority. This can lead
to interruption of tasks and later resumption when
resources become available.
� CIRCA (Musliner, Goldman, & Pelican, 2001) incor-

porates a static memory for possible action, temporal,
and event transitions, along with a dynamic memory
for specific plans and events. The cognitive subsystem
generates a planned course of action, encoded as a non-
deterministic finite state graph, starting first with an
abstract plan and refining it as appropriate. The archi-
tecture passes this structure to a real-time subsystem
that operates in parallel with the cognitive subsystem,
letting the former execute the plan while the latter
attempts to improve it.
� CLARION (Sun et al., 2001) stores both action-cen-

tered and non-action knowledge in implicit form, using
multi-layer neural networks, and in explicit form, using
symbolic production rules. Corresponding short-term
memories contain activations on nodes and symbolic
elements that the architecture matches against long-term
structures. Performance involves passing sensory infor-
mation to the implicit layer, which generates alternative
high-value actions, and to the explicit layer, which uses
rules to propose actions; the architecture then selects the
candidate with the highest expected value. Learning
involves weight revision in the implicit system, using a
combination of reinforcement learning and backpropa-
gation to estimate value functions, and construction of
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production rules by extraction from the implicit layer,
error-driven revision, and instantiation of rule
templates.
� CogAff (Sloman, 2001) is an architectural schema or

framework designed to support interaction between cog-
nition and affect. Although it does not commit to spe-
cific representations, it does posit three distinct levels
of processing. A reactive level uses condition–action
associations that respond to immediate environmental
situations. A deliberative layer operates over mental
goals, states, and plans to reason about future scenarios.
Finally, metamanagement mechanisms let an agent
think about its own thoughts and experiences. Affective
experience is linked to interruption of some layers by
others, with more sophisticated emotions occurring at
higher levels.
� Emile (Gratch, 2000) provides an architectural account

of emotions and their effect on behavior. Long-term
knowledge includes Strips operators for use in plan gen-
eration and construal frames that specify conditions
(relating events, expectations, goals, and standards) for
eliciting different emotions. As the agent acquires new
information about expected events, an appraisal module
generates emotions in response, with initial intensity
being a function of their probability and importance,
but decaying over time. The agent’s own emotions
focuses efforts of the planning module and biases action
selection, while inferences about other agents’ emotions
guide its dialogue choices.
� The Entropy Reduction Engine (Drummond, Bresina, &

Kedar, 1991) includes long-term memories for domain
operators that describe the effects of actions, domain
and behavioral constraints, situated control rules that
propose actions to achieve goals, and reduction rules
that decompose complex problems into simpler ones.
The architecture uses its operators and constraints to
produce temporal projections, which it then compiles
into control rules that a recognize-act interpreter uses
to determine which actions to execute. The projection
process is supplemented by a problem reduction mod-
ule, which uses the decomposition rules to constrain its
search. Successful projections lead the system to learn
new control rules, whereas prediction failures lead to
revision of operators and domain constraints.
� EPIC (Meyer & Kieras, 1997) encodes long-term knowl-

edge as production rules, organized as methods for
accomplishing goals, that match against short-term ele-
ments in a variety of memories, including visual, audi-
tory, and tactile buffers. Performance involves selecting
matched rules and applying them in parallel to move
eyes, control hands, or alter the contents of memory.
Research on EPIC has included a strong emphasis on
achieving quantitative fits to human behavior, especially
on tasks that involve interacting with complex devices.
� FORR (Epstein, 1992) includes a declarative memory

for facts and a procedural memory represented as a hier-
archy of weighted heuristics. The architecture matches
itectures: Research issues and challenges, Cognitive Systems Re-
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perceptions and facts against the conditions of heuris-
tics, with matched structures proposing and rating can-
didate actions. Execution affects the environment or
changes the contents of declarative memory. Learning
involves creating new facts and heuristics, adjusting
weights, and restructuring the hierarchy based on facts
and metaheuristics for accuracy, utility, risk, and speed.
� GLAIR (Shapiro & Ismail, 2003) stores content at a

knowledge or cognitive level, a perceptual-motor level,
and a sensori-actuator level. The highest layer includes
generalized structures that define predicates in logical
terms, ultimately grounding abstract concepts and pro-
cedures in perceptual features and behavioral routines
at the middle layer. The system supports inference, belief
revision, planning, execution, and natural language pro-
cessing, inferring high-level beliefs from perceptions and
deriving commands at the sensori-actuator level from
the agent’s goals and plans.
� ICARUS (Langley & Choi, 2006a; Langley et al., 2004)

represents long-term knowledge in separate memories
for hierarchical skills and concepts, with short-term
beliefs, goals, and intentions cast as instances of these
general structures. The performance element first infers
all beliefs implied by its concepts and its perceptions
of the environment, then selects an applicable path
through the skill hierarchy to execute. Means-ends prob-
lem solving occurs when no skills relevant to the current
goal are applicable, whereas learning creates new skills
based on traces of successful problem solving.
� PolyScheme (Cassimatis, Trafton, Bugajska, & Schultz,

2004) is a cognitive architecture designed to achieve
human-level intelligence by integrating multiple repre-
sentations, reasoning methods, and problem-solving
techniques. Each representation has an associated spe-
cialist module that supports forward inference, subgoal-
ing, and other basic operations, which match against a
shared dynamic memory with elements that are
grounded in perception and action. PolyScheme make
a stronger semantic commitment than most architec-
tures, encoding all structures with a basic set of relations
about time, space, events, identity, causality, and belief.
� PRODIGY (Carbonell et al., 1990) encodes two kinds of

long-term structures – domain operators that describe
the effects of actions and control rules that specify when
the system should select, reject, or prefer a given opera-
tor, binding, state, or goal. Short-term structures include
descriptions of states and contents of a goal stack. Prob-
lem solving involves means-ends analysis, which repeat-
edly selects an operator to reduce differences between
the current goal and state until it finds a sequence that
achieves the top-level goal. An explanation-based learn-
ing module analyzes problem-solving traces and creates
new selection, rejection, and preference rules to reduce
search on future tasks. Other modules control search
by analogy with earlier solutions, learn operator descrip-
tions from experimentation, and learn to improve the
quality of solutions.
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� PRS (Ingrand, Georgeff, & Rao, 1992), which stands for
Procedural Reasoning System, was an early architecture
in the Beliefs–Desires–Intentions paradigm. The frame-
work stores hierarchical procedures with conditions,
effects, and ordered steps that invoke subprocedures.
Dynamic structures include beliefs about the environ-
ment, desires the agent wants to achieve, and intentions
the agent plans to carry out. On each cycle, PRS decides
whether to continue executing its current intention or to
select a new intention to pursue.
� The Remote Agent architecture (Pell et al., 1997) was

developed to control autonomous, mission-oriented
spacecraft. Long-term structures include mission goals,
possible activities and constraints on their execution,
and qualitative models of the spacecraft’s components,
whereas dynamic structures include plans about which
activities to pursue, schedules about when to carry them
out, and inferences about the operating or failure
modes. The architecture incorporates processes which
retrieve high-level goals, generate plans and schedules
that should achieve them, execute these schedules by
calling low-level commands, monitor the modes of each
spacecraft component, and recover in case of failures.
� RCS (Albus et al., 1992) is an architectural framework

for developing intelligent physical agents. Expertise
resides in a hierarchical set of knowledge modules, each
with its own long-term and short-term memories.
Knowledge representation is heterogeneous, including
frames, rules, images, and maps. Modules operate in
parallel, with a sensory interpreter examining the cur-
rent state, a world model predicting future states, value
judgement selecting among alternatives, and behavior
generation carrying out tasks. Higher-level modules
influence their children in a top–down manner, whereas
children pass information back up to their parent
modules.
� Soar (Laird et al., 1987; Newell, 1990) encodes proce-

dural long-term memory as production rules, whereas
working memory contains a set of elements with attri-
butes and values. The performance system matches pro-
ductions against elements in working memory, and
generates subgoals automatically when it cannot con-
tinue. When processing in the subgoal lets the agent
overcome this impasse, the architecture adds a new
chunk to long-term memory that summarizes the sub-
goal processing. In recent versions, episodic and seman-
tic learning store working memory elements as
structures in long-term memory, while reinforcement
learning alters weights associated with rules that select
operators.
� 3T (Bonasso et al., 1997) stores long-term knowledge in

three layers or tiers. The lowest level consists of sensori-
motor behaviors, which the architecture executes reac-
tively, whereas the middle layer stores reactive action
packages (Firby, 1994) that sequence these behaviors.
The highest layer contains abstract operators, which a
deliberative planner uses to generate a partial-order plan
itectures: Research issues and challenges, Cognitive Systems Re-
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that the middle layer serializes and executes. In addition
to this high-level plan, each skill and reactive action
package has its own short-term memory. A predecessor
of 3T, the Atlantis architecture (Gat, 1991), organized
its knowledge and behavior in a very similar manner.
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