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11  CoBwEB models of categorization and
probabilistic concept formation

Wayne Iba and Par Langley

Description of the model

In this chapter, we describe a family of integrated categorization and
category learning models that process and organize past experience to
facilitate responses to future experience. The CoBwWEB system (Fisher,
1987) and its descendants CLASSIT (Gennari, 1990), Oxpow (Iba,
1991), LaBYRINTH (Thompson & Langley, 1991), DEDALUS (Langley &
Allen, 1993), and TwiLix (Martin & Billman, 1994) comprise a family
of models that share a genealogy, a search strategy, and a heuristic to
guide that search. We will often refer to this entire family as COBWEB
when the intended meaning is clear from the context.

These systems grew out of machine learning and cognitive science
research that explored methods for acquiring concepts in an unsuper-
vised context. In that setting, a teacher does not provide explicit category
information for instances as the learner encounters them; instead, the
learner must decide how to group or categorize a collection of instances.
In contrast to most clustering methods, instances are encountered #ncre-
mentally; the learner must make appropriate adjustments in response to
each one as it comes. The CoBWEB family of models view categorization
as a conceptualization process or as the formation of ontologies.! That
is, these models provide answers to the question, ‘How does one form
conceptual representations of similar experiences and how might those
representations be organized?’” However, these models also address the
use of the acquired concepts to handle future situations. The framework
embodies a collection of assumptions that together provide constraints
on the design and implementation of computational systems for onto-
logy formation and use. Such implemented models make it possible for
agents to efficiently process new experiences and respond in an effective
manner (for some definition of effectiveness).

! We use ontology in its narrow philosophical sense and do not intend the connotations
associated with common knowledge frameworks and agent interchange languages.
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Assumptions

The CoBWEB models we describe here have emer
text of several assumptions. These assumptions may
sophical, psychological and computational.
Philosophically, a conceptualization or ontology provides g m ‘
a_gents to make sense of their experiences. We assume that conce eans.fq
tions conforming to the actual world will provide performancs e
tages over alternative conceptualizations. This emphasis on raadvar‘x,
begeﬁts suggests that the contents or substance of concepts Fa)s -
their organization and relationships, are important issues for ti)eseWGH -
0@3. Note that, although a particular conceptualization represemmetm‘
tain ontological commitments on the agent’s part (Gruber 1995; o
syst;:lms ;eed not be concerned with the metaphysical situa)tion as };2;
as the ado i i :
B e ade Eﬁ.ed ontology provides pragmatic value when responding tg

These models also grew out of several psychological assumpti k

Follolv&./mg a grand traditon in artificial intelligence, we treat }I;ur(:lsp
cognmop as an inspiration for the design of computational proces &
that'exhlblt intelligence. For example, if we believe that humans em lses
par.tla_l matching in categorization, then we would be wise to incligy
a SI‘rml'ar mechanism in our computational models. Likewise cogniti .
11m1tat19ns Qbserved in humans should provide constraints )on impl‘:
menta'nons in computer systems. If humans learn incrementally (subject
to their ability to reprocess previous stimuli), these models should do th
same. Athough alternative methods not subject to such constraints mae
perform in some respects more effectively than methods that are subjecst[
to them, we know that, at a minimum, the constraints found in humans
do not preclude intelligent behaviour or, in this case, the formation and
Pse. of conceptualizations. As stated by Fisher and Pazzani (1991, p. 26)
prmmples which dictate preferred concepts in humans are good,he.uris—’
tics for machine concept formation.’

Several computational assumptions have influenced the design and
development of CoOBWEB models. First, we recognize that nearly all of
the concepts that humans form exhibit an imprecision that reveals itself.
fc.)r' example, when trying to pin down the meaning of words. This impre—)
CISIOI’I.I’n.akeS €xact reasoning and communication a challenging task
but t.hls.xmprecision also allows concepts considerable flexibility in thei;
application to novel situations. So from our existence proof in humans
we conclude that imprecise reasoning is sufficient for intelligence. From
the way humans powerfully use the flexibility of such Imprecision, we
assume that such reasoning might prove to be necessary for intelligeiice.

ged within the co
be grouped gg phile

the membership of given objects with respect to alternative categories.
_ probability theory provides support for some types of partial matching,
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Computationally, partial matching enables flexible reasoning about

as well as an account for some of the imprecision in our language. Thus,
CoBwEB models share a commitment to probabilistic representation of

 concepts.

Second, we note that hierarchies are efficient data structures for
storing and retrieving information and that humans frequently think
about concepts in terms of ‘is-a’ or ‘a kind of” hierarchies. In order to
access one of # nodes organized in an appropriately structured hierarchy,
we need only incur log,(n) comparisons for uniform branching factor b.
Even if it proves to be the case that humans do not organize concepts
within hierarchies but only introspect as if they did, the computational
benefit remains. So CoBWEB models also assume that the probabilistic
concepts they form are organized into some form of hierarchical structure.
Furthermore, we assume that such hierarchies have the property that,
when branches relate a parent to various children, the parent generalizes
the more specific child concepts.

Finally we remember that conceptualizations provide value only in so
far as they facilitate the processing of new experiences in an effective
manner. It is only within the context of some performance task that a
concept hierarchy proves its value. In one form or another, COBWEB
models all rely on flexible prediction as their performance task (Fisher,
1987). Generally, we may think of flexible prediction as a measure of
the average predictive power derived from a conceptualization. For a
given object, flexible prediction measures the average predictive accuracy
on unseen attributes. When evaluating learned concept hierarchies, we
take a test instance and withhold each attribute, comparing the model’s
prediction of the missing attribute to the withheld value.? The average
accuracy on these individual predictions provides the measure of flexible
prediction. These models implicitly seek to maximize this average pre-
dictive ability.

Details of the model

We are now ready to describe the common elements of this family of
methods and point the reader to other sources that explain significant
variations. The model’s core consists of three elements: the internal
representation of concepts, search operators for exploring the space of

2 In the limit, we withhold every possible non-empty proper subset of attributes and ask
the model to predict all missing ones.
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conceptualizations, and the heuristic evaluation function for guidi
search. These three elements are employed in a uniform mannber fmg
Performance and learning. COBWEB uses the same process fororfb()th
ing cop‘ceptuahzations as it does for categorization or flexible predjco'rm
I'be difference between }earning and performance is the object of i:tonk
est — the new conceptualization as a whole in the first case, and the v +
of a specific concept in which a test instance is classified in the Sec‘;iges

th

. Represenzz'ng conceptualizations Concepts, organized
h}erarchles, serve as the basis for categorization in COBWEB mode]
given concept subsumes or summarizes a number of child concepts tShA
are each more specific than it. For example, the concept ‘bird’ mév h T
subconcepts ‘robin’, ‘goldfinch’, and ‘turkey’. Although some C()JB\ ?Ye
models maintain a strict tree hierarchy and others allow a directed ‘:EB .
structure,’ each concept is a child of a more general concept and irig taph |
has some number of more specific child concepts below it. The exceptjgm ~
are. the root of the concept hierarchy, which has no parent, and leavns
which are maximally specific concepts corresponding to single insta eS)‘
or collections of indistinguishable instances. e

Thc?se models represent individual concepts probabilistically. Each
node in a conceptualization summarizes the previously observed objects
deemed to have been members of that particular category. The systemn |
summarizes these instances by estimating the probability distributions
for each att.ribute under an assumption of conditional independence
The respective values observed for a given attribute form the estimate of
Fhe probability distribution for that attribute, If the attribute is numeric
mstgac} of symbolic, one approach is to model it as a mean and standard
deVlat.lon under the assumption that its range of values satisfies a nor-
mal distribution. As will be seen, the model also needs to know the prior
probability of a category; it stores a count of the number of objects clas-
sified at each category and estimates its base rate as this count divided by
the total number of objects in its parent.* )
‘ All CoBWEB models represent the attributes of concepts in a probabil-
Istic fashion along these lines. However, two of the methods, LABYRINTH
and OxBow, additionally model the components that comprise s£ruc—

tured stimuli and treat these components as some form of attributes
along with the regular attributes. For example, OXBow forms concepts

within

3 - H i3 H
E:)f exgr'nplg, Tw ILIX allows a given concept to participate in multiple contexts, effect-
\ wely giving it 11}u1t1ple parent concepts (Martin & Billman, 1994).
Techm_cally, thlg is the copditional probability that an instance belongs in a particular
class given that it belongs in the parent class. N
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of movement skills and includes probabilities on components of the skill,
reating a component as a kind of attribute. Alternatively, LABYRINTH
might represent chairs as having a seat component and one or more legs
that support the seat. These particular models point to the variety of
representations that are possible within COBWEB’s framework of prob-
abilistic hierarchies.

Searching for conceprualizations The manner in which these
models form hierarchies of probabilistic concepts may be viewed as
a search through the space of such hierarchies. Specifically, CoswEeB
conducts this search in an incremental hill-climbing manner, locally
maximizing the quality of the hierarchy as described below. Steps
between states involve either modifications to the particular concepts,
modifications to their hierarchical organization, or a combination of
both. Updates to concepts reflect changes to probability estimates, and
revisions to the hierarchy itself reflect the addition, merging, or splitting
of concepts. Drawing inspiration from the incremental character of
human concept learning, COBWEB models consider local revisions to
the current concept hierarchy based on single instances.

For a given training stimulus, 7, and a node into which the stimulus has
been categorized (initially the root), COBWEB evaluates several alterna-
tives regarding the concepts ¢, that are the immediate children of the
given node. First, the system considers adding the new instance, 7, to the
child concept, ¢,, into which it fits best according to the search heuristic
described below. Second, if the new instance is sufficiently unlike all of
the existing children, the system creates a new singleton concept with
the instance and adds the new concept as a sibling of the existing child
concepts.

Because order effects can sometimes cause COBWEB to mistakenly
add new singleton concepts or classify new instances as existing
concepts, the model employs two structural revision operators that
simulate a form of backtracking. Thus, as a third alternative, the system
considers merging the two best-fitting child concepts and adding the
new instance to this merged concept. Finally, it considers splitting the
best child concept, promoting its children to the current set of chil-
dren, and adding the new instance to the best over the resulting set of
child concepts. These two structural revision operators do not repro-
cess previously encountered examples but instead depend on probabil-
istic summaries stored at the current level of the hierarchy. Given the
four alternative conceptualizations arising from these search operators,
the system selects among them according to its evaluation function, as
discussed shortly.
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Recursively, the system repeats this comparison between co :
classifications until it creates a leaf node with the new instance Yé”lpenn
alternative above). Thus, a new instance triggers a sequence of usecon‘
to probabilistic representations of concepts, possibly intersperqegdaie
revisions of the local hierarchical structure, finally Culminatin‘ 1 with
addition of a new singleton concept. & th?'

distribution of the class where the instance ultimately comes to rest, as
well as all the distributions of concepts along the path back to the root
concept. Additionally, the process of classifying the instance may trigger
Jocal revisions to the hierarchy along that path. Thus, we might think of
classification (performance) taking place by incorporating (learning) the
instance to be predicted, and learning taking place by classifying a newly
Guidine the h for o ' observeci instance (at each step of the process, alternative classifications

g search for conceprualizations The manipulationg are considered and the best forms the basis for updates).

described above occur under the guidance of a heuristic evaluation
no

.function' that measures the quality of the children of a given ¢
in the hierarchy. Gluck and Corter (1985) propose category utili

Corter’s formula to multiple categories as:

K

CU(C):% ;P(Ckic)zzP(Af:Vz)‘iCk)Z*ZZP(Aisz'ic)z n
-1 T T

where K is the number of classes at the current level of the hierarch

P(C,| Q) is the base-rate probability that an instance belongs to the chifg
clgs§ given it belongs to the parent class C, P(4, = Vi1 Cy) s the prob-
ability that attribute / will have value j given that we Iénow the instance
belongs to category C,, which is summed first over the possible values
of attribute 4, and then over all attributes 7. Similarly, P(4; = V| C) is the
same summed quantity when we only know that the instance belongs to
the parent class. This formula applies to nominally valued attributesb; for

continuous attributes, the corresponding generalization (Gennari, 1990)
1s defined as:

K
1 1 1
CU{C)= — P _ —
(C) X kzsi (CkiC)ZO'ik 20_&) 2)

H

Where 0y, is the standard deviation of attribute 7 in child class C, and o,
is the' standard deviation of the attribute in the parent class C. Using thilg
metric, COBWEB evaluates the quality of alternative revisions to this part
of the. hierarchy and selects the best alternative. Unless a new singleton
class- is created, the process is repeated with the selected node as the
nominal root and its children as the partition over the objects that have
previously been classified here.

Ag?m, note that COBWEB models tightly couple performance and
learning. The process of classifying an instance updates the probability

oncept
numeri i ot
¢ measure of how good or useful a particular partition is with

respect to the parent concept. Fisher (1987) generalized Gluck and

Motivation

Most generally, a simple recognition that most human learning takes
place in non-teaching environments underlines the need to understand
unsupervised category learning. By the time children master several hun-
dred words, they have learned a vast quantity of information about the way
their world works. The knowledge they accumulate spans objects they have
experienced through one or more (often all) of the senses, motor skills they
have refined for moving through and manipulating their environment, and
basic reasoning skills for accomplishing their goals (or more often getting

others to fulfil them). Infants and toddlers acquire most of this knowledge
through what corresponds to the unsupervised learning process described
above. Thus, we want to explore methods by which such accumulation and
organization of knowledge can take place. By actually implementing such
methods, we verify their practicability and utility. The model and assump-
tions we have described above grow out of prior inclinations or sensibilities
that situate and motivate our model-building activities.

Philosophical sensibilities

The conceptualization process fundamentally entails the formation of
a world model. Philosophically, we assume the value of such concep-
tualizations lies solely in their predictive advantage. For two alternative
conceptualizations of prior experience, an intelligent agent should prefer
the one that makes relevant predictions more accurately. Thus, the onto-
logical commitments implicit in a conceptualization refer to the utility of
the model rather than to the way the world ‘actually is’.

Note that reference to utility carries with it a notion of value. Clearly,
the ability to predict some features is more valuable than others. For
example, seeing a four-legged animal, we have much higher utility from
accurately predicting the animal’s likelihood of attacking and harming
us than in accurately predicting its body temperature. Most of the
CoBwEgB models treat all attributes as having equal utility. However,
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Martin and Billman (1994) have explored relaxing this assumption by
maintaining weights that they associates with features as a representation
of their respective values. "

Psychological sensibilities

Human behaviour and cognition provide an unending source of phe-
nomena to understand and explain, but conceptualization is particularly
important. A long tradition of artificial intelligence work has sought insigh‘[}g
from psychology to fuel the implementation of computational models anc\i
research in the CoBwER family is a clear instance of this tradition.

W? assume that insights from human concept formation will tend tq
prowde useful implementation constraints. Humans, as examples of inte]-
ligent agents,‘motivate and justify this assumption. Note that humang
process experiences incrementally, have a limited capacity to remember
and reprocess these experiences, and reason imperfectly about them, If
we consistently and faithfully designed with respect to the patterns and
constraints observed in humans, then our models should exhibit import-
ant aspects of intelligent behaviour. However, we also assume that intel-
hgen.cc? is not a uniquely human characteristic. Thus, we view human
cognition as providing soft constraints that may be ignored as needed.

Computational sensibilities

In addition to the sensibilities identified above, we also expect that if
CoBWEB captures characteristics of human intelligence, then it can also
fgnction as a practical tool. That is, we want it to process data and pro-
vide results in a reasonable amount of time. Qur choice of modelling
concepts with probabilities provides an example of tensions betwee;
s'ensibilities. Probability theory nicely models certain aspects of intel-
ligence. Dretske (1999) has argued that probability and information
theory provides a formal basis for understanding knowledge. However,
we know that humans do not reason according to Bayes-optimal prin-
ciples. Thus, our models employ a probabilistic representation without
a commitment to such reasoning. Given our primary interest in form-
ing reliable models that allow agents to operate effectively, probabilistic
representations provide a natural, efficient and weli-grounded foundation.

In the case of our choice to organize concepts in hierarchies, our
psychological and computational sensibilities work in harmony. In com-
puter science applications, the tree serves as a common and well-used
d‘ata structure. Although other structures have superior characteris-
tics along particular dimensions, the tree excels in its combination of
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Table 11.1 Generic algorithm for the family of COBWEB models

j/ for parent concept p and new instance ¢
classifv(p, i)
if p is a leaf and has no children,
create copy of p as new-p;
create singleton node from ¢ as new-;
update p’s probabilities based on 4
add new-p and new-i as children of p;
else with each child ¢, of p
select best of these four according to CategoryUtility(p)
1. add i to each child ¢, of p;
rank order their resulting partitions;
2. add ¢ as new singleton child of p;
3. merge the best and second-best children from 1;
add 7 to merged result;
4. promote children of best child to be children of p;
add instance to best of children;
unless 2 is selected, continue with classify(c,, 1)
where ¢, is the child that gets 7.

flexibility and efficiency. For example, a hash map provides faster access
to stored items, but it would not store two related concepts near each
other. On the other hand, a tree organizes concepts so that similar con-
cepts are close and provides efficient access to them. Furthermore, this
structure increases the expressivity of the simple conditional probability
scheme described above by embedding implicit conditional assumptions
based on a concept’s chain of parents.

Implementing COBWEB

Having described the motivations and the general outlines for the model,
we can provide the details necessary for a rational reconstruction. To
implement a CoBWEB model, one must define: (1) the data structures
for representing probabilistic concept hierarchies, (2) a function for
updating the estimate of the probability distribution in response to a new
instance, (3) the category utility function for deciding among the alterna-
tives that are generated by (4) the four search operators that revise the
hierarchy. Table 11.1 presents the schematic algorithm for the family of
models we have discussed.

Representing and updating probabilistic concepts

Hierarchies consist of concept nodes, which in turn consist of prior
probabilities for the concept itself, symbolic names, attributes and their
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values, conditional probability distributions over these attributes anqg
values, and a collection of concept nodes representing the more specific
concept nodes that are children of the given concept. Because Copwgy
works incrementally, processing one instance at a time, it updates itg
probability distributions without reprocessing previous instances. The
model represents base-rate probabilities by storing the counts of instances
classified at each concept; the ratio of the count at the child to the count
of the parent represents the base-rate probability of the child concept,

The treatment of probability distributions over attributes dependg
on whether the attribute is nominally or continuously valued. To main-
tain the probability distribution of a nominal attribute, one need only
tabulate a total count for the attribute and counts for each observed
value for that attribute. The ratio of a particular value’s count to the
number of times that attribute was observed provides the conditiona]
probability of the attribute having that value given that the instance
is a member of the class. We can have the model process continu-
ous attributes either by employing some discretization method and
treating values as nominal or by estimating the density as a normal
distribution. When choosing the latter, the model maintains two run-
ning sums — one for the values of the attribute and the other for the
sum of the squared values. With these two sums it can incrementally
compute the standard deviation by expanding the expression from the
traditional definition.

Revising the concept hierarchy

Table 11.1 identifies four alternative updates that a COBWEB model
must generate and evaluate. The first two — adding the new instance to
the best child and creating a new singleton concept — present no signifi-
cant implementation issues. The operation described above for updating
probabilistic concepts takes care of the first and a simple addition of a
new concept node to the collection of child concepts handles the second.
However, experience suggests that the merge and split operators require
considerable development and debugging time.

The merge operator inputs two existing concepts and creates a new
concept. The system determines the instance count for the new concept
by adding the counts of the two concepts to be merged; similarly, the
system computes the attribute models in the merged concept by adding
the counts from corresponding attributes when nominally valued and
by adding sums and sum of squares when continuously valued. The
new merged concept contains a collection of child concepts created by
combining the children of the two concepts being merged.
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When splitting a concept, the system removes the concept to be split
from the collection in which it occurs, then adds to that collection each
child of the split node. Because these children comprise the summary
information found in the deleted node, no counts or models need to be
updated. We assume that, when computing category utility, the correct
size of the collection is used as the discount factor, 1/K, in Equation 1.

Other details

For both splitting and merging, the implementer should take care that,
when creating the alternative local revisions to the concept hierarchy,
she either maintains an original copy or provides reversibility of all
operators. Creating copies of the hierarchy for each candidate might
at first seem to be a memory-intensive operation. However, with the
exception of the split operator, the revisions only impact the immedi-
ate context — the parent and its children. Thus, we need not copy more
specific layers of the existing hierarchy as long as we handle the split
operator properly.

Another detail arises in situations where one decides to estimate the
probability distribution of a numeric attribute using a mean and standard
deviation. For such cases, one must allow for singleton concepts where
the standard deviation on attribute values will be zero and consequently
the category utility will be undefined. A response employed by several
CoBWEB models introduces an acuity parameter, which represents the
minimum variance for an attribute. This parameter bears similarity to the
psychological notion of a just noticeable difference, the quantity by which
two attribute values must differ in order to be distinguishable.

On a related note, the implementer may choose to include a cutoff
parameter that serves as an alternative termination to the recursive algo-
rithm presented in Table 11.1. Either for efficiency reasons (space or
time) or because of cognitive limitations in humans, the classification
process may reach a point where further subdivision into more specific
concepts provides no additional predictive benefit. One natural approach
to implementing the cutoff depends on the gain in information between
the parent and the partition of children; when the gain falls below some
predetermined cutoff value the system stops making sub-classes.

An example of COBWEB’S operation

A simple example may clarify the operation of COBWEB models. Suppose
our system is learning about musical instruments for the first time. In
this scenario, assume the system has encountered four instruments:




COBWEB models 265
P(C)=5/5 P(A=V|C)
Material | Wood 1/5
Plastic 1/5
Brass 3/5
Range High 1/5
Medium 2/5
Low 1/5
Keys Three 2/5
Four 1/5
Many 2/5
Reeds None 3/5
One 1/5
Two 1/5
S
jP(C):S/S P(A=V|C)| |P(C)=3/5 P(A=VIC)| [P(C)=1/5 P(A=V|C)
Material | Brass 1 Material |Wood 1/3 Material |Brass 1
Range High 1/3 Plastic 1/3 Range Medium 1
Medium 1/3 Brass i/3 Keys Four 1
i Low 1/3 | [Range _ |Medium 1 Reeds None 1
Keys Three 2/3 | |Keys Four 1/3
Four 1/3 Many 2/3
Reeds None 1 Reeds None 1/3
One 1/3
Two 1/3
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P(C)=4/4 P{A=V|C)
Material Wood 1/4
Plastic 1/4
Brass 1/2
Range High 1/4
Medium 1/2
Low 1/4
Keys Three 1/2
Many 1/2
Reeds None 1/2
One 1/4
Two 1/4
P(C)=2/4 P(A=V|C) P(C)=2/4 P(A=V|C)
Material Brass 1 Material Wood 1/2
Range High 1/2 Plastic 12
Low 1/2 Range Medium 1
Keys Three 1 Keys Many 1
Reeds None 1 Reeds One 1/2
Two 1/2

Figure 11.1 A possible concept hierarchy that captures probabilistic
knowledge of musical instruments in two categories — brass and
woodwind.

an oboe, a clarinet, a trumpet, and a tuba. Instruments are described
by four attributes: the primary material of which they are constructed
(wood, brass or plastic),’ their musical range (low, medium or high), the
number of keys for forming different pitches (three, four or many), and
the number of reeds (none, one, two or many). The trumpet and the tuba
are made of brass, have three keys, no reeds, and have a high and low
musical range, respectively. The oboe and the clarinet both have many
keys and a medium range, but the oboe is made of wood and has two
reeds while the clarinet is made of plastic and has only one reed. Let us
suppose that, based on these four musical instruments, the system has
formed the concept hierarchy as shown in Figure 11.1, where the hier-
archy consists of two classes corresponding to our traditional notions of
brass and woodwind instruments.

> Here we use ‘plastic’ to stand for composite products that are occasionally used in the
construction of less expensive woodwind instruments.

Figure 11.2 A rendering of multiple alternative updates to the
concept hierarchy as a result of encountering a French horn. The
root concept has been updated and one of the three alternatives (or
merge or split) would be selected as the basis for a new partition
consisting of the modified class and the original classes.

At this point, assume we show the system a particular French horn,
which has the standard three valves plus a fourth rotary valve. COBWEB
incorporates the new instrument (brass, medium, four, none) into the
root of its conceptualization in a straightforward manner, updating
the counts on attribute values. Next, the model decides between the
various alternative operators described earlier. First, it considers add-
ing it to the left-hand class corresponding to brass instruments. As a
result, the prior probability on the class node becomes 3/5. COBWEB
also updates the conditional probabilities for each attribute-value given
the brass class. In the case of the material and reeds attributes, these
probabilities do not change, as the French horn has the same values.
However, it differs from the other brass instruments encountered in
that the French horn’s musical range attribute value is medium and
it has four keys instead of three. We show the new probabilities for
the category in the lower-left concept in Figure 11.2. Note this figure
does not show an actual hierarchy but rather the alternative revisions
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to the respective classes that would result from incorporating the new‘
instrument and the possible third class created from the single French
horn. That is, the three child classes in Figure 11.2 represent the muty
ally exclusive updates for finding the best child and creating 3 nev; ‘
singleton (steps 1 and 2 in the algorithm given in Table 11.1), The
system evaluates the partition that results from the respective updates
together with the other original classes, having updated only their prior
probabilities.
With the alternative updates in hand, COBWEB must determine which
alternative to prefer according to the category utility metric. The com.
putation® from Equation 1 reveals that the partition resulting from the
addition of the French horn to the brass class has a score of 44/3¢.
the new prior for the class, 3/5, times the sum of squared Conditionai ‘
probabilities 26/9, plus the score for the existing woodwind class (with
updated prior) 2/5 times 3, all discounted by 1/2 for the number of
classes in the partition. Similarly, the score for adding the new instance k
to the woodwind instruments is the score from the original brass clags
with the prior update (2/5 times 7/2) plus the updated woodwinds class’
shown in the middle-bottom of Figure 11.2 (3/5 times 20/9) for a total
score of 41/30, after applying the discount of 1/2. Finally, the option for
creating a third class consisting of just the French horn has an overall
score of only 34/30. In the last case, note that although the singleton
class has high conditional probabilities, the low base-rate for the new
class 1/5 and the larger discount penalty for the extra class (1/3 instead
of 1/2) lower this alternative’s partition score substantially.
Because there are only two classes in the initial concept hierarchy,
CoBWEB would not consider merging them as described earlier. Given
that the brass class is the best option, the system would finally consider
promoting its two children, the singleton trumpet and tuba that it started
with, and then check again to determine into which class it would be
best to add the French horn. The overall score of this split option is
32/30, also a relatively low result. Consequently, the French horn would
be placed with the other brass instruments (as we intuitively expected all
along) and continue the process recursively.
This example portrays the concept formation process at an early
stage of learning. As more examples are observed over time, the hier-
archy becomes wider and deeper. Concepts near the top of the hierarchy
summarize a large number and a wide variety of instruments observed

® We have omitted subtracting the parent’s value of 42/25 because this same amount s
subtrgcted from each option. The parent’s value plays a significant role only when imple~
menting a cutoff mechanism.
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py the system; concepts near the leaves of the tree summarize a small
aumber of very similar instruments. In the musical instruments domain,
we could expect CoswEB to form two top-level concepts for brass and
woodwinds, with the woodwinds concept having three children, for
single-reed instruments like the clarinet and various types of saxophones,
double-reed instruments such as the oboe, and non-reed woodwinds like
the flute.

This simple example should convey the core method employed
by this family of concept learning systems. However, several issues
pear mentioning. First, some attribute information may be missing
from instances. That is, the system may not initially perceive all of the
features that describe observed objects. For example, many people
would not take notice of the presence or absence of a spit-valve on
brass instruments. But when the system starts noticing such a feature,
CoBWEB updates counts on the individual attributes and modifies
the category utility function accordingly. Second, instead of simple
attribute-value representations, objects may consist of components
and these components may be structurally related. In general, this
structural information cannot be compressed into an attribute-value
format. In such cases, we must extend the representation and evalu-
ation function employed by rhe model. Also, the control structure must
be augmented in some way to confront the partial matching prob-
lem. Iba’s (1991) OxBow addressed both of these issues by forming
classes of observed and practised motor skills. Likewise, Thompson
and Langley’s (1991) LABYRINTH system extended COBWEB to
learn concepts that describe complex objects and relations among
their parts. Finally, one may relax the constraint that a concept hier-
archy must be a tree and instead allow a directed acyclic graph. In this
context, parent concepts still summarize their children but a given
child may be summarized by multiple parents. Martin and Billman
(1994) employed this strategy in their TWILIX system, thereby allow-
ing it to learn concepts that participate in multiple partitions. For
example, the concept for ‘bugle’ might appear as a child of the ‘brass’
concept, and also as a child of a ‘signal mechanism’ class.

Relation to other models

Now that we have reviewed the CoBWEB class of models, let us con-
sider their similarities and differences from other approaches presented
in this volume and elsewhere. We can view these relations along several
dimensions: the representation and organization of categories, how
categorizations are formed and used, and motivational commitments.
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Representing and organizing categories

Most models for representing categories rely on either exemplars, nroi.
types, or some hybrid of them. We can view COBWEB as a hybrié) e
forms a hierarchy with concepts at higher levels that resemble -
types and leaves of the hierarchy that serve as exemplars. The SUSI’J[TOtO;
mlodel (Chapter 10) provides a similar hybrid. Like COBWEB, it AN
with exemplars and lets them evolve into prototypes. Exen;plaStar.t >
SUS?‘AIN become more abstract in a context-sensitive manner g)j'sd i
by stimuli; this lets prototypes and exemplars co-exist and com etl o
tbe same level, potentially leading to interesting interactions Irﬁ) e
ciple, COBWEB could have both exemplars and prototypes in'the S e
cgllection of concepts, but typically they are stratified by depth inag]le -
hierarchy. SUSTAIN represents categories in a connectionist framew X
but does not provide a hierarchy for them. o
N COBWEB’S probabilistic representation of concepts also bears simila
ities to Griffiths er al’s (Chapter 8) mixture models for density estimr.
m.on..In CoBWEB, each concept provides an estimate of the probabilii1~
dls}:r1bution over the instances classified by it. Both systems support o
}mlﬁcation of the prototype and exemplar models, COBWER assign:
mstapces to multiple categories along the classification path spannin
multlple levels of the hierarchy, whereas the mixture models assigrg1
1gstan§es to multiple categories at the same level. The approaches also k
dlffer in their performance methods, with CoBWEBR using the categor
utility function grounded in information theory and the nonparamgtriz
models described by Griffiths ez al, employing Bayesian methods.
COBWEB organizes its categories in a hierarchy of increasingly specific
cluste‘rs. Most of the models presented in this volume do not address the
orgam?ation of categories — hierarchical or otherwise. Pothos, Chater
a.nd Hines (Chapter 9) describe the simplicity model, whose agglomera—)
tive method could be extended to hierarchies in a natural and straight-
forward manner. Griffiths ez al. describe a hierarchical model in which
cluste.rs may participate in multiple categories, although this hierarchy
has little resemblance to the multi-level concept hierarchy produced
b‘y CoOBWEB. Anderson and Matessa (1991) present a hierarchical ver-
sion of their model that bears similarities to the COBWEB framework,
Feigenbaum’s (1961) ErAM system also forms hierarchical structures
although concepts appear at the leaves and internal nodes inﬂuence)
classification of novel stimuli.
. Historically, Fisher’s (1987) CoBwEB grew out of ideas found in earl-
ler systems such as UNimeMm (Lebowitz, 1982), Cyrus (Kolodner,
1983), and Eram. To our knowledge, COBWEB was the first model of
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Catcgorization and category learning to employ probabilistic represen-
rations for incrementally learning concepts organized within a general-
to-specific Is-A hierarchy. The synthesis represented by CoBwEB and
its direct descendants stimulated a number of exciting approaches that
have fruitfully branched in other directions (e.g., Anderson & Matessa,

1991; Cheesman et al., 1988; Griffiths ez al., Chapter 8).

Using and learning categories

Many models of categorization utilize measures of similarity between
stimuli to guide their classification and, where applicable, their forma-
tion of conceptualizations. These similarity measures are often based on
distance metrics. In contrast, COBWEB uses probability estimates stored
in concepts at each level of its hierarchy to categorize a new example and
updates the estimates for the concept to which it is assigned. The use
of category utility in this estimation serves as a unifying feature of the
CoBwEB family of methods.

Like most of the models in this volume, COBWEB forms its concep-
tualization in an incremental fashion. Such methods must contend with
order effects resulting from non-representative sequences of stimuli. In
fact, order effects in humans are such a fundamental assumption that
experimental regimes always attempt to control for them. Pure exemplar
models (e.g., Nosofsky’s GCM, Chapter 2) may be sensitive to a pecu-
liar initial sample of stimuli, but in the long run order effects should not
impact such methods. Likewise, prototype models (e.g., Minda & Smith,
Chapter 3) would not notice order effects in the long run if applied in a
supervised learning context. However, hybrid or prototype models that
incrementally form categories (e.g., Ashby et al.’s COVIS, Chapter 4, and
McDonnell and Gureckis’s SUSTAIN, Chapter 10) will be susceptible
to such effects. SUSTAIN provides mechanisms for adding clusters but
apparently does not have an operator for backtracking from an ill-advised
cluster. Presumably the impact of such choices can be eliminated over
time by adjustment of weights.

An earlier relative of CoBwes, McKusick and Langley’s (1991)
ARACHNE, attempts to eliminate order effects by adopting an alternative
search heuristic. Instead of using category utility to guide the search for
a hierarchy of probabilistic concepts, it uses structural properties of the
hierarchy to guide the addition of new categories or the revision of exist-
ing concepts via merging and splitting. In general, the resulting structural
revisions are more extensive than CoBWEB’s. Empirical results demon-
strated that ARACHNE was less sensitive to noise in the domain and
more adept at utilizing background knowledge. Which method provides
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a more realistic model of order effects in hurmnan learning remains a topic
for future research.

Guiding motivations

The models presented in this volume span a range of commitments i
both their details and their motivations. Some present a rational mode]
for categorization irrespective of its value as a model of human cat-
egory learning or performance (e.g., Griffiths ez al., Chapter 8). Many
others focus on explaining specific phenomena from constrained recog-
nition and choice selection tasks (e.g., Ashby er al.’s COVIS, Chapter 4).
Models in the CoBwEB family fall between, addressing problems that
we might expect an agent to encounter when trying to make sense of,
navigate, and manipulate its environment, while also attempting to
explain high-level psychological phenomena. For example, CoBwrg
provides an account of the basic level (see also Pothos er al.’s simpli-
city model, Chapter 9), typicality effects, and the power law of learning.
Taken together, the similarities and differences between COBWEB and
other models underline areas of active research and areas where further
work will be helpful.

Directions for future research

CoBwEB models of categorization and category learning account for a
wide range of psychological phenomena, including basic and typicality
effects, fan effects, and the power-law of learning (Fisher & Langley,
1990; Iba, 1991). We have successfully applied these models in several
domains. Thus, several directions of research hold promise for fruitful
investigations and insightful results. Broadly, these involve two lines of
work — improving the model itself and applying the model.

It is widely established that as concepts become well established they
become more resistant to change. This raises the issue of how CoOBWEB
reorganizes its concept hierarchy over time. Should the hierarchy become
less plastic with increasing experience? Certainly, in clusters of concepts
near the root of the hierarchy, new examples will be unlikely to become
a new singleton concept. At the leaves, the structure will be more fluid
regardless of how much experience is captured in the hierarchy as a
whole. Because new examples trigger merging and splitting, and because
the influence of a single instance near the top of the hierarchy will be
minimal later in training, such reorganizations should take place more
frequently near the leaves. Future work should evaluate and characterize
the reorganizations according to level and timing.
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1t is also well established that the order in which a learner observes
srimuli significantly impacts what is learned. Another line of explor-
ation would look at order effects. Clearly, humans are influenced by the
order of training stimuli and we should try to characterize the nature
of those effects (Clapper & Bower, 2002; Langley, 1995). We can use
CoBWEB to articulate hypotheses regarding the order effects that we
would expect to find in humans. Given a specific task with, say, three
categories of stimuli, we could present examples for two of the categor-
jes and vary the onset for introducing instances from the third cat-
egory. This evaluation would aim to characterize the influence of novel
but meaningful stimuli as a function of their position in the training
sequence.

As an implemented system, some components exist not as commit-
ments of the model but to make things work; if such components can-
not be integrated with the model they should be pruned. An example of
this appears in M&ANDER, which Iba (1991) developed to acquire and
improve motor skills through observation and practice. The approach
employed inner concept hierarchies within each motor skill concept;
these private hierarchies captured the temporal structure of a given
motor program. This approach should be generalized so that a single
hierarchy organizes both complete motor skills as well as their temporal
components.

In addition to investigating model features, COBWEB systems can be
applied to various problems of practical value. For example, MAEANDER
has been employed to analyse telemetry from the NASA space shuttle
(Iba, 1993) and to the early detection of faults in industrial pumps. Also,
many extensions to the basic COBWEB system were designed to sup-
port abilities required by intelligent agents operating in physical environ-
ments, including categorization and learning with continuous attributes
(Gennari, Langley, & Fisher, 1989), structured objects (Thompson &
Langley, 1991), motor skills (Iba, 1991), and plan knowledge (Langley &
Allen, 1993). We believe the application of models to real-world prob-
lems has the benefit of refining their explicit and implicit assumptions.
The successful applications of COBWEB models to such tasks and the
richness of their accounts of psychological phenomena, demonstrate the
potential of the theoretical framework.
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