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Abstract
This paper presents a novel approach to the acquisition of language models from corpora. The
framework builds on Cobweb, an early system for constructing taxonomic hierarchies of proba-
bilistic concepts that used a tabular, attribute-value encoding of training cases and concepts, making
it unsuitable for sequential input like language. In response, we explore three new extensions to
Cobweb—the Word, Leaf, and Path variants. These systems encode each training case as an anchor
word and surrounding context words, and they store probabilistic descriptions of concepts as dis-
tributions over anchor and context information. As in the original Cobweb, a performance element
sorts a new instance downward through the hierarchy and uses the final node to predict missing
features. Learning is interleaved with performance, updating concept probabilities and hierarchy
structure as classification occurs. Thus, the new approaches process training cases in an incremen-
tal, online manner that it very different from most methods for statistical language learning. We
examine how well the three variants place synonyms together and keep homonyms apart, their abil-
ity to recall synonyms as a function of training set size, and their training efficiency. Finally, we
discuss related work on incremental learning and directions for further research.

1. Introduction

The past decade has seen substantial progress in the development of practical language modeling
approaches. For example, the influential Word2Vec system (Mikolov et al., 2013a,b) demonstrated
that one can extract meaningful semantic information, in the form of low-dimensional word em-
beddings, by analyzing words and their surrounding contexts. The increased availability of massive
training corpora, inexpensive memory storage, and very rapid computing abilities has fueled trans-
formation of this early approach into sophisticated techniques for learning large language models,
which are now used widely to extract and store semantic content from text.

Although these systems are widely viewed as successful, they have some important drawbacks.
First, they require substantial training data and computational resources. For example, the GPT-3
system was trained on a giant corpus that represents a sizable portion of the internet (Brown et al.,
2020). Some estimates suggest that its computing costs for training were as high as $12 million
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(Wiggers, 2020). In addition, systems like GPT utilize batch learning, which means that they train
on all available data at once and thus cannot update their model efficiently in light of new cases.
Furthermore, French (1999) has shown that neural network approaches, which include Word2Vec
and GPT, often experience catastrophic forgetting—where they lose access to the results of early
learning if given new cases. As a result, when new instances become available, the systems must be
retrained on both old and new cases, which adds to development and maintenance costs.

Recent efforts have tried to offset these expenses by exploring how language models that are
trained on large corpora might be subsequently “fine tuned” using data from a target domain (Devlin
et al., 2018). This approach aims to boost accuracy on the target task by extracting and transferring
general knowledge from a large corpus to the target, while lowering overall costs by reusing a
previously trained model. Despite the excitement around large pre-trained language models, a recent
study by Krishna et al. (2022) suggests that little knowledge actually transfers through fine tuning;
their work suggests that the main factor that aids performance is data from the target domain.1 By
only using target domain data, this approach reduces the data needed to build a language model by
factors from 10 to 500, but it still requires large training sets to achieve reasonable performance.
Regardless of the pre-training scheme used, if new data becomes available regularly and models are
repeatedly fine tuned with new data, then they are still likely to encounter catastrophic forgetting.

These challenges present major barriers to widespread adoption of such learning technology. To
overcome these drawbacks, we propose a new approach to language induction that takes inspira-
tion from human learning. We aspire to build a new class of induction systems that adhere to the
constraints Langley (2022) has enumerated, in particular that they acquire modular structures in
a piecemeal and incremental way that builds on prior knowledge to guide learning, so they can
acquire expertise rapidly from reasonably few training cases. There has been some research into
systems that adhere to these constraints (e.g., Mitchell et al., 2018), but the area deserves far more
attention, especially considering the challenges faced by popular language learning techniques.

The basis for our response is Fisher’s (1987) Cobweb, an early system for unsupervised learning
of probabilistic concept hierarchies that was inspired by psychological findings on human catego-
rization. In the next section, we review the framework’s core assumptions about representation,
performance, and learning. Next we present three adaptations of Cobweb that let it process words
and their surrounding contexts, which we will see differ mainly in their representation of learned
categories. After this, we report empirical studies of the variants’ behaviors, focusing on their
ability to recognize synonyms and distinguish homonyms but also examining their computational
complexity. We conclude by discussing related work and outlining priorities for future research.

2. A Brief Review of Cobweb

Cobweb (Fisher, 1987) is an early system for unsupervised learning that constructs a taxonomic
hierarchy of concepts from instances that are presented sequentially, incorporating insights from
analyses of human categorization (Corter & Gluck, 1992). Both instances and concepts are de-

1. Specifically, their experiments show that language models created using data from the target domain for both pre-
training and tuning (with no pre-trained model) achieve comparable performance to ones constructed by taking a
pre-trained language model and then tuning it in the target setting.
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Figure 1. An example of how an initial Cobweb hierarchy (a) is updated (b) after incorporating the instance
shown at the top of (a). Each instance is described by attributes and their associated values. Concepts extend
this representation to maintain attribute-value counts, which can be used to compute the probability of each
attribute value conditioned on the category.

scribed by tables of attribute values. Instances assign a single value to each attribute, as seen in the
top of Figure 1 (a), which shows an instance for a red square. In contrast, concepts store multiple
possible values for each attribute, along with counts that specify the probabilities for different at-
tribute values, as seen in the figure’s other tables. This probabilistic concept representation makes
Cobweb robust in the face of uncertainty and noise. Equally important is the ability to store cat-
egories at different levels of generality and to organize them in a taxonomic hierarchy, which has
major implications for performance and learning.

The basic performance mechanism involves sorting a new instance downward through the prob-
abilistic concept hierarchy. Starting at the root note, Cobweb recursively considers whether to direct
the case to one of the children or whether to stop at the current node. When this process terminates,
it uses the final concept’s probability table to predict the values for any missing attributes. For ex-
ample, imagine we have an instance whose shape is a circle and we want to predict its color. To sort
this case through the concept hierarchy shown in Figure 1(b), we would start at the root and find
that the rightmost child best describes it. This child does not have any children, so categorization
would halt and Cobweb would predict red as the color based on the stored probability table.

During learning, Cobweb follows a similar process, but it updates the counts stored at a given
concept node to reflect attribute values of the new instance assigned to it. In addition to considering
adding the instance to each existing child concept, the system also considers three restructuring
operations: creating a new concept as a child of the current one; creating a new child that merges
two concepts that best describe the instance and then adding it to this new merged node, with the
two existing concepts becoming its children; and splitting a child and promoting its children to
become children of the current node and repeating the categorization process at the current node.
These operations let Cobweb update its conceptual organization to better reflect new instances that
it encounters and mitigate the effects of training order, which can influence the hierarchy structure.
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As an example, suppose a new instance (a red square) is added to the hierarchy in Figure 1(a).
Cobweb starts at the root and updates its counts to include the instance description. Next, it deter-
mines that the leftmost child (representing green squares) best matches the case. Because this child
is a leaf, it incorporates the instance into it by creating a new node that combines counts from the
leaf with ones from the new case. The system then stores two children of this category—the previ-
ous leaf and a new concept based on the instance. This process yields the updated concept hierarchy
in Figure 1(b). One interesting observation is that leaves of the tree always denote unique instances,
whereas intermediate nodes encode probabilistic summaries of instances that fall beneath them. By
retaining these instances in the hierarchy, Cobweb can efficiently reorganize its knowledge in light
of new experience without having to review all previous training cases.

During both performance and learning, Cobweb must decide which operations to carry out
during sorting. To guide decision making, it uses category utility (Fisher, 1987; Corter & Gluck,
1992), a measure related closely to mutual information and similar to the information-gain metric
used in decision-tree induction (Quinlan, 1986). The function is defined as:∑n

k=1 P (Ck)
[∑

i

∑
j P (Ai = Vij |Ck)

2 −
∑

i

∑
j P (Ai = Vij)

2
]

n
.

In plain terms, the
∑

i

∑
j P (Ai = Vij |Ck)

2 term denotes the number of attributes that we expect
to guess correctly for a given child Ck, assuming the system guesses an attribute value according to
observed probabilities stored in Ck and this guess is correct according to that same probability. Sim-
ilarly, the

∑
i

∑
j P (Ai = Vij)

2 term refers to the expected number of correct guesses in the parent.
The numerator represents the average increase in the number of attribute values correctly guessed
in the children versus the parent, weighted by the probability of each child. The function divides
this score by the number of children (n), which lets it compare candidates with different numbers
of children (e.g., adding to a node vs. creating a new node). To use category utility for decision
making, Cobweb simulates each operation, computes the metric over resulting decompositions, and
selects the alternative that yields the highest score, with ties broken randomly.

The learning process is inherently efficient because it makes uses of a tree structure. Fisher
(1987) shows that it takes O(B2 × logB(n) × AV ) steps to incorporate a new instance into the
hierarchy, where B is the average branching factor of the tree, n is the number of previously clas-
sified instances, and AV is the number of attribute values that appear across these instances.2

When applied to processing a set of N instances incrementally, the overall run time becomes
O(N × B2 × logB(N) × AV ). These computational characteristics offer support for efficient
on-line learning, making the approach worth renewed attention, especially for large training sets.

In summary, Cobweb provides a rich framework for investigating different aspects of concept
formation, which has led to many extensions and variants. For example, Cobweb/3 (McKusick &
Thompson, 1990) extends the original framework, which only supports nominal attributes, to han-
dle numeric attributes by assuming normal distributions over their values. Other variants, such as
Labyrinth (Thompson & Langley, 1991) and Trestle (MacLellan et al., 2016), have explored exten-

2. Our Cobweb implementation includes an optimization that reduces this to O(B × logB(n)×AV ), but we have not
yet published this result, so we include the higher estimate here.
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sions that support structured, relational representations through the use of structure-mapping mech-
anisms. A more recent system, Convolutional Cobweb (MacLellan & Thakur, 2022), combines the
framework with convolutional processing to learn visual concepts. Iba and Langley (2011) review
a variety of other efforts that fall within this paradigm.

3. Contextual Extensions to Cobweb

Despite the diversity of the Cobweb family and its many attractive features, no previous work has
explored using it to acquire statistical language models. Our approach to adapting the system to
this task takes inspiration from how Word2Vec (Mikolov et al., 2013a) captures contextual word
regularities. Briefly, this system learns mappings from single words to points in a low-dimensional
embedding space that, ideally, project words with similar meanings to nearby points. The semantics
of a target or anchor word are defined with respect to its context, that is, the words that appear in
its vicinity. In operational terms, an anchor’s context is a window of surrounding words, such as the
four words before it and the four words after it.

There are two schemes for inducing word embeddings with Word2Vec: Contextual Bag-of-
Words (CBOW) and Skip-Grams. The CBOW approach aims to find an embedding over the context
words that predicts the anchor word. In contrast, the Skip-Gram framework learns an embedding
over anchor words that is useful for predicting words that appear in their context. As per the bag-
of-words label, the order of words in the context window does not matter to CBOW. This does
not matter much for Skip-Gram, either, although it slightly favors choices that better predict words
close to anchors. Mikolov et al. (2013a) shows that both approaches produce viable embeddings,
with CBOW faring better on some criteria (e.g., syntactic accuracy) and Skip-Gram better on others
(e.g., semantic accuracy). In this section, we explore how to incorporate ideas from both CBOW
and Skip-Gram into Cobweb. One important limitation of Word2Vec is that it maps every word to a
single point in the embedding space. This means that it cannot represent different senses of a word,
which is ironic given that these are closely linked to context.

Mikolov et al. (2013a) show that both approaches require O(N ×E×Q) steps during training,
where N is the number of words in the training corpus, E is the number of training epochs used, and
Q, which is specific to each approach, captures the time to process a single anchor and its context.
For CBOW, Q is W ×D +D × log2(V ), where W is the number of words in the context window,
D is the number of dimensions in the embedding, and V is the size of the vocabulary (the number
of unique words). For Skip-Gram, Q is W × (D+D× log2(V ), where W is the maximum distance
of context words from the anchor that are used for prediction, a window that is typically slightly
larger than the W term used in the CBOW approach. If we use Word2Vec for on-line learning, then
it will be far less efficient because we must retrain it on all the words after encountering each new
training case. Used in this way, the training time for Word2Vec becomes O(N2 × E ×Q).

Analysis of this earlier research suggested three different approaches to learning distributional
knowledge about language with Cobweb, which we will refer to as the Word, Leaf, and Path
variants. As we discuss in the remainder of the section, the first combines ideas from both Word2Vec
techniques within the framework of probabilistic concept hierarchies. The other variants build on
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Figure 2. An example sentence with the anchor word highlighted in blue and the context words highlighted
in yellow. The bottom left table shows a Word instance that encodes the highlighted text from the example,
whereas the table on the right is a Word concept that incorporates this instance.

this initial scheme and introduce progressively more sophisticated ways to incorporate information
about word contexts during both performance and learning.

3.1 The Cobweb Word System

As noted above, the CBOW version of Word2Vec learns embeddings for predicting the anchor word
given its context, whereas the Skip-Gram approach finds embeddings for predicting the context
words given the anchor. Our first Cobweb variant learns a concept hierarchy that optimizes jointly
for prediction of both anchor and context words—effectively combining the CBOW and Skip-Gram
criteria. This requires changes to Cobweb’s structures, particularly its representation for instances.

As in Word2Vec, we wanted a bag-of-words approach to encode the words in a context window
around an anchor. To support this, we modified Cobweb’s instance representation to maintain count
statistics over attribute values, making instances similar to concepts. This updated representation
makes it possible to specify how frequently words appear in an instance’s context. Figure 2 shows
an example sentence, with the anchor highlighted in blue and the context highlighted in yellow, as
well as what the example looks like when represented as a Word instance. As this example shows,
we track count statistics over the attribute values. The anchor word always has a probability of 1/1
because there is always a single word in the anchor position—this makes it akin to the nominal
attributes in the original Cobweb instance representation which do not maintain count statistics
because their values are always implicitly 1/1.

However, tracking for the context attribute is different; the new instance representation lets the
Word variant track of how frequently words appear across the context. In our example, “the” ap-
pears three times across the eight context words, and we can see how the instances store counts for
this element. In essence, the probability mass for each attribute value, which in the original Cobweb
system would always be concentrated in a single value, can now be distributed over multiple ele-
ments. An important feature of this altered representation is that it does not keep track of the order
in which the context words appear.

6
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No changes were required for the concept representation nor were any changes required to
Cobweb’s performance or learning mechanisms. However, we modified how the system updates
concepts to support the new instance representation so that it handles concept statistics properly.
Figure 2 shows an example of a Word concept that contains the instance for our earlier example
along with one other instance. As we can see, the denominator for the anchor values is 2, as the
concept is summarizing over two instances. However, the denominator for context values is 16
because the system has seen a total of 16 context elements over these two instances.3

We made no changes to the way category utility is calculated, but the semantics of the context
elements differ slightly from those in the original Cobweb. We maintain a single attribute to rep-
resent the context elements, rather than a context attribute for each context word slot. This lets the
variant ignore the order of context words. Additionally, we can use the concept’s context counts to
compute a probability distribution over words that might appear in any given context slot. We could
use this probability distribution to predict the values of multiple context words because the proba-
bility distribution over each context word is the same. Our choice to have a single context attribute
also has the side effect of weighting equally the tasks of predicting the anchor and the context, as
category utility allows at most one correct guess per attribute.4

3.2 The Cobweb Leaf System

A major insight of Word2Vec is that it represents words by their embeddings, which are in turn based
on the context in which these words typically appear. The Word system fails to take advantage
of this insight, instead representing words by their unique identifiers (i.e., the word strings). In
Word2Vec, this would be akin to using a ‘hot-one’ encoding for words rather than their embedding.
The Leaf variant aims to remedy this shortcoming by altering the Word system’s representation and
processing mechanisms. Rather than representing context words by their unique strings, the Leaf
approach replaces words in the instance with concept labels from its taxonomic hierarchy. Figure
3 shows our example text annotated with concept labels from the Leaf system’s hierarchy, with
every concept label corresponding to a terminal node. The system does not use nonterminal nodes
because they change constantly as new instances are processed—which makes them an unstable
representation for later learning, so relying on leaf nodes offers greater stability.

This new representation requires changes in the way that the Leaf system processes examples at
both performance and learning time. First, when a sequence of words is processed, it iterates over
the words three times to converge on a set of concept labels. In the first pass, it creates an instance
for each word in which that word is the anchor and the context is empty, because on the first pass
concept labels for adjacent words are not yet available. At this stage, any words that have never
been seen before are dropped because the variant has no way to represent them, even though this
decreases the number of words in the context. The generated instances are then categorized into
the hierarchy in a non-modifying way, so that counts are not updated and no nodes are created or
destroyed. During categorization, the instance is restricted to categorization paths that contain the

3. Sometimes instances will have fewer context words when they represent examples near the edges of the text.
4. We might also imagine an approach that weights the context attribute by the window size in the category utility

calculations to simulate predicting each of the context words, but this seems like it would lean too heavily towards
predicting the context elements over the anchor.
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Figure 3. An annotated version of the example text showing the concept labels that are associated with each
word along with the Leaf instance that describes this example. Notice, that the same word (e.g., “the”) is not
always mapped to the same concept label.

target anchor word. This prevents an issue that frequently occurs for newer words where the system
represents them with concepts that describe other words. This sorting process proceeds all the way
to a terminal node in the hierarchy. The resulting concept is returned so it can be used to represent
that word. This process repeats two more times, where the instances generated for categorizing each
word instead contain context labels from the previous pass, as in the example from Figure 3.

This iterative process generates concept labels for each word token that take into account both
the token and its surrounding context, similar to word embeddings. However, one key difference is
that Word2Vec maps every word to a single point in the embedding space. This makes it impossible
to represent homonyms—words with the same spelling but different meanings. In contrast, our Leaf
system can generate multiple nodes in the concept hierarchy to encode different senses of a word
that are identified by their specific contexts. This is highlighted in the example from Figure 3, where
the word “the” does not always map to the same concept label.5

Once an instance has been generated via this iterative process, performance and learning operate
in the same way as for the Word variant; it tracks counts over concepts just as the other scheme tracks
counts over words. However, during preliminary testing we noted that a new leaf is created in the
concept tree for every instance incorporated. Many of these leaves correspond to the same anchor
word in slightly different contexts, with these leaves typically being grouped close to one another in
the hierarchy. Our initial system often picked an arbitrary leaf to denote a given context word when
generating the instance description. This makes learning relationships between anchors and their
context challenging because the context features are inconsistent across instances. To overcome
this issue, we implemented a simple approach to prune groups of similar concepts into a single leaf
node. During learning, if an instance is categorized to a leaf with the same anchor word, the leaf’s
counts are updated instead of forking to create a new instance. This reduces tree size drastically,
with the number of leaves being approximately equal to the vocabulary size rather than the number
of word tokens in the training corpus, and it improves the categorization time.

5. Note that “the” is not a typical example of a homonym, but it serves to demonstrate the basic idea.
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3.3 The Cobweb Path System

Despite the specialized concept pruning technique we developed for the Leaf system, we found that
it still has a tendency to create too many concepts to represent a given word. Further, we wanted our
approach to be able to leverage the conceptual similarity of words that appear in a given context.
For example, if we have seen that a word B appears in the context of word A and we know that C
is conceptually similar to B (e.g., a synonym), then we want to be able to treat C as similar to B
when it appears in A’s context. This is something that is implicitly afforded by word embeddings
like Word2Vec, where similar words appear close to one another in the embedding space and those
behave similarly when they appear in the context of an anchor.

Our third and final approach, the Path system, aims to support this capability. The key insight
of this variant is to represent words not just by the leaf concept they map to, but by the entire path
through the hierarchy to get to that leaf. The general idea is that if different nodes are conceptually
related, than they will be grouped together in the hierarchy and have similar overlapping ancestors.
Representing context words by their conceptual paths should overcome the challenges we encoun-
tered in the leaf system and enable it to better support synonym effects in the context.

To support this capability, we extend the instance and concept representations used by the Leaf
variant. These earlier representations, shown in Figure 3, contain the labels for the terminal leaves
each word was categorized as. The Path system extends the instance description by walking through
the ancestors of each leaf concept and tracking count statistics on these ancestors as well. As a
result, higher concepts, which are shared by more leaves tend to have higher frequency counts. For
example, Figure 3 would include a value for the root concept with a count of 8/8 since it applies to
every word in the context. It is worth noting that the count statistics no longer will produce a valid
probability distribution over the context elements, we will address this in a moment with an updated
category utility calculation.

The performance mechanism for the Path system is nearly identical to that of the Leaf variant,
but now it operates over the extended instance and concept representations that track both the termi-
nal and nonterminal concept counts. The biggest change to the approach was made to the learning
mechanism. The main reason that the Leaf system uses terminal concepts to represent words is
that these nodes might be moved around but they are never deleted. However, this is not the case
for nonterminal concepts, which are constantly getting split/deleted and created as new instances
are incorporated into the tree. To facilitate keeping the count tables up to date, every concept now
maintains a list of pointers to all of the concepts that refer to it. If a concept is deleted, then all ref-
erences to it are removed from the count tables of all the other concepts that reference it. Similarly,
if a concept is merged (which creates a new parent to that concept), then the concepts that refer to
it are updated to add the new parent and its counts are updated to reflect the current concept. This
produces an effect that when two concepts that appear in a given count table are merged, a parent
entry is created that ultimately has the sum of their counts. While tracking cross links between con-
cepts adds complexity, it presents exciting possibilities, such as enabling our system to dynamically
update the conceptual representation of previously seen words.

As mentioned previously, the count statistics for context elements no longer produce a valid
probability distribution. The key issue is that now context elements can take on multiple concept
labels (for each concept along the leaf’s path) rather than a single label. To support this multi-label
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idea, we re-interpret the task of predicting concept labels as predicting whether or not each attribute
is associated with a given context element. This yields an updated category utility calculation be-
tween a parent C and its children C1, ...Cn,∑n

k=1 P (Ck) [EC(Ck)− EC(C)]

n
,

where

EC(C) =
∑

A∈Canchors

[
P (A|C)2

]
+

∑
L∈Ccontext

[
P (L|C)2 + P (¬L|C)2

# concepts in tree

]
+

# concepts not in C
# concepts in tree

.

EC provides the formula for the expected number of correct guesses that will be made given a
concept C. The P (A|C)2 applies to the anchor values and is identical to how category utility is
calculated in the original Cobweb formulation. P (L|C) and P (¬L|C) represent the probability
that a concept label appears or does not appear within the context; they sum to 1. The middle term
calculates the number of concept labels that this concept has seen that we can expect to correctly
guess. The third term accounts for all of the concept labels that do not appear in the concept; we
expect to correctly guess that they will not appear because they have zero probability given the
concept label. We divide the second and third terms by the number of concepts in the tree, so that
the total number of expected correct guesses over all the concept labels can never exceed 1, making
it have comparable weight to anchor.

Combining these features lets the new system learn word representations that take into account
both the word and its context. This approach supports the ability to account for the conceptual simi-
larity of words that appear within an anchor word’s context by tracking and using path information.
It also supports the ability to dynamically update the underlying representations of words as new
words are encountered without having to revisit previously seen words. This is in direct alignment
with our goal of supporting efficient, human-like learning of language models in an incremental and
continual fashion.

4. Experimental Evaluation

As a basis for our evaluation, we started with all 1040 sentences from the publicly released Mi-
crosoft sentence completion challenge data set, which are extracted from Sir Arthur Conan Doyle’s
Sherlock Holmes stories. We preprocessed these sentences to remove punctuation and stop words.
Finally, we removed all sentences that had a length shorter than ten words, so that we have suf-
ficient context for categorizing words. We leveraged the resulting 374 sentences to conduct three
evaluations: synonym grouping, homonym grouping, and synonym recall.

4.1 Synonym Grouping

To evaluate each system’s ability to group synonyms, we randomly selected 200 sentences as well
as the five words that occur most frequently across these sentences (after removing stop words). We
duplicate each sentence five times and in each case we replaced any occurrences of the words in our
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top-five set with a variant that includes the copy number (e.g., “door” becomes “door-1”, “door-2”,
. . . , “door-5”). In this synthetic data set, which totals 1000 sentences, the different variations of the
top-5 words effectively represent synonyms of one another because they share identical contexts.

To evaluate each approach, we built a concept hierarchy by randomly shuffling the training sen-
tences and then sequentially incorporating them. We analyzed the hierarchical concept organization
that was produced by each approach to determine if synonyms were grouped together. To quanti-
tatively evaluate the groupings, we used a measure called Adjusted Rand Index (ARI) (Hubert &
Arabie, 1985). This measure, which ranges from −1 to 1, compares clusterings to see how well
they agree. The measure corrects for chance, so a random clustering will produce a score of 0, a
perfect match will produce a score of 1, and a poor match will produce a −1.

As a ground truth for our evaluation we labeled each instance that had a synonym variant as an
anchor using the word it was based on. The system never sees the base words, only the variants, so
this is an unsupervised learning task. The ARI measure supports comparison of two flat clusterings,
it does not directly support evaluation of hierarchical clusterings. To get flat cluster assignments out
of each approach, we successively split nodes at the root of the concept hierarchy, always splitting
the node that yields the highest category utility. After each split, we generated a flat clustering of
all the instances using the cluster label just below the root. We compared the cluster organization of
the synonym variants at the root with the ground truth labels for the base synonyms using ARI. We
repeated this process, successively splitting clusters at the root until the ARI score was maximized.
This maximum score, which is a measure of the best flat clustering we might extract from our
hierarchy, provides a measure of synonym grouping. We repeated our evaluation 6 times, starting
with a different set of 200 randomly selected sentences each time.

4.2 Homonym Grouping

Our second evaluation looked at how well our systems are able to distinguish between homonyms.
Similar to the synonym grouping test, we randomly selected 200 sentences as well as the five words
that occur most frequently across these sentences (after removing stop words). We duplicated each
sentence five times, but rather than replacing the occurrences of our top-five words with variants,
we replace all the other words with variants that include a copy number. Note, if a sentence contains
more than one top-five word, then each keeps their original form and are not converted into variants.
The result is a set of 1000 sentences where the top five words each appear in five distinct contexts.

To assess the groupings, we applied an approach very similar to the synonym evaluation. How-
ever, in this case the ground truth labels for each instance with a homonym anchor is produced by
appending the homonym to the number attached to all words in its context. For example, if tor
was our homonym/anchor and it appeared in the sentence, “I-1, found-1 the-1 black-1 tor upon-1
which-1 I-1 had-1”, then the ground truth label for this instance would be “tor-1”. The system only
ever sees the unique word (“tor”), whereas the ground truth labels identify which homonym it is
(“tor-1”), so this is an unsupervised learning task. Similar to the synonym grouping task, we con-
verted the hierarchical organization into flat clusterings that could be evaluated with ARI and chose
the clustering with the highest score. We repeated our evaluation 6 times starting with a different
set of 200 random sentences each time.
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Figure 4. Adjusted Rand Index score (ranges from -1 to 1, 0 is chance) on the synonym (a) and homonym (b)
grouping evaluations. The bar graphs show the average across 6 runs along with 95% confidence intervals.

4.3 Synonym Recall

Our third assessment was a synonym recall test. For this evaluation, we selected the first 400 sen-
tences as well as the 50 top words that occur most frequently across the entire corpus (after stop
word removal). We then applied the same synonym generation process used for the synonym group-
ing task, which duplicates the sentences five times and replaces any occurrences of the top-50 words
with variants based on the copy number. This produces a data set containing 2000 sentences. Next,
we randomly shuffled these sentences and categorized them using the respective system to build up
a categorization tree. Whenever we encountered a variant of one of our top-50 synonyms, we first
categorize it in a non-modifying way. Using the returned concept, we compute the probability that
it would generate the anchor word or one of its synonyms. This probability provides a measure
of whether the incoming instance would be properly categorized. We record this probability along
with how many times the word or one of its synonyms has been seen before. Finally, the instance
is then incorporated into the tree in a modifying way (i.e., with learning turned on). Using recorded
probabilities and counts, we can generate learning curves that show how each system’s recall of
relevant concepts improves with experience.

We also attempted to evaluate Word2Vec on a similar task, so we can compare it to our ap-
proaches. To provide a somewhat comparable measure, we used a Word2Vec model to predict the
anchor word given the context words and summed the prediction probabilities for the anchor word
and of its synonyms. Note, this comparison somewhat advantages our approaches, which can use
the anchor word as part of its instance description to retrieve the relevant concept; there is no way
to make use of the anchor word in this way within Word2Vec.6

6. We tried adding the anchor word to the context word list, but performance was similar, so we do not report results.

12
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Figure 5. Average probability for the anchor word or one of its synonyms with respect to the number of
previously seen instances for that word/synonym; the shaded regions denote 95% confidence intervals.

To generate our results, we use an existing implementation of Word2Vec made available through
the Gensim package (Řehůřek, 2022). This implementation has a number of hyperparameters that
we had to choose for our evaluation. We chose to use the CBOW approach, as this was the default
for the package. Similar to our Cobweb approaches, we set the window size to 4. We used a
embedding size of 32 and a learning rate of 0.05. As our evaluation is an incremental learning task,
for each sentence we trained Word2Vec on all previously seen sentences and applied it to predict
synonyms in the current sentence (previously unseen). For each training step, we trained the model
for 100 epochs. We then generated a prediction using the standard CBOW approach of predicting
the anchor word using the words in the context window.

4.4 Experimental Results

First, we applied our three approaches to the grouping tasks. Figure 4 shows the average grouping
scores and 95% bootstrap confidence intervals (from 6 independent runs) for the synonym (a) and
homonym (b) tasks. These results suggest that the leaf system has close to chance performance
(ARI is approximately zero) on both tasks. However, the Path and Word variants do substantially
better than chance. On the homonym task, the Path system seems to almost perfectly separate the
homonyms (ARI is approximately one). There appears to be a trade off, with the Path approach
doing better on the homonym task and the Word variant doing better on the synonym task.

13
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Table 1. Asymptotic time needed to incrementally train on a corpus of text.

Approach Asymptotic Run Time
Word2Vec-CBOW O(N2 × E × (W ×D +D × log2(V )))

Word2Vec-Skip-Gram O(N2 × E × (W × (D +D × log2(V )))
Cobweb-Word O(N ×B2 × logB(N)× V )
Cobweb-Leaf O(N ×B2 × logB(N)× (V +N))
Cobweb-Path O(N ×B2 × logB(N)× (V + C))

Next, we conducted the synonym recall test. Figure 5 shows the result of this evaluation. The
Word system has good overall performance, quickly improving as the number of instances experi-
enced increases. The Leaf approach, on the other hand, improves very slowly. This may be a result
of the difficulty the system has with mapping the same context words to different concept labels.
The Path system has the fastest improvement; this is likely due to this approach’s ability to better
represent the similarities between context words using paths and to dynamically update its represen-
tation given new experiences. Finally, we found that Word2Vec has performance that is comparable
to the Leaf system. This suggests that our approaches do at least as well as Word2Vec, with the
Word and Path variants doing substantially better.

To explore the efficiency of our new approaches, we analyzed their run time during incremental
training. The original Cobweb approach has a run time of O(N × B2 × logB(N) × AV ). In the
case of the Word system, the number of attribute values is directly proportional to the size of the
vocabulary V. Therefore its run time is O(N ×B2 × logB(N)× V ). In contrast, the leaf approach
has an attribute value for every possible anchor word (V, the vocabulary of unique words that appear
in the corpus) and at most an entry for every possible leaf concept (approximated with N because
every instance becomes a leaf) for the context elements. Therefore, the leaf approach’s run time is
O(N×B2× logB(N)×(V +N)) Finally, the path system might have an entry for every concept in
the tree, so its attribute value table is even larger. Its run time is O(N ×B2× logB(N)× (V +C)),
where C is the number of nodes in the concept tree. Table 1 summarizes these run times and
compares them with the Word2Vec training times. Looking across these run times, we can see
that the Word approach is the most efficient. It is even faster than Word2Vec, which is generally
described as a very efficient language modeling system. The Leaf system has a similar complexity
to the Word2Vec (with the N2 term dominating). The Path approach also has a similar complexity.
Although C is typically larger than N, C is an upper bound for the number of concept labels stored
in a node—typically this value is much smaller.

4.5 General Discussion

Our results show that the Path and Word approaches are able to group synonyms and homonyms
substantially better than chance, with the Path variant achieving near perfect performance on the
homonym task. Additionally, the Path and Word systems both do quite well on the synonym recall
test. We expected that that the Path approach would yield the best performance on all three tasks
and were surprised to find that the Word system also has robust performance across these tasks. We
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were also surprised to see what looks like a trade off between the Path and Word approaches on
the Synonym and Homonym grouping tasks. In general, these results are promising suggesting that
they are generating reasonable organizations of their experiences that support recall.

A key characteristic of the Word system is that it is not learning an intermediate representation
for the context words, it uses the word counts directly. On the synonym grouping task, where many
of the same combinations of words appear, we believe that the Word approach’s fixed representa-
tion may yield an advantage. However, we believe that the Path system will have better relative
performance when we apply it to more natural data that is not constructed by duplicating sentences
multiple times. This is something we should explore in future work.

The Path system achieves a near perfect score (ARI is approximately one) on the homonym
grouping task, whereas the Word variant’s performance is well above chance (ARI is approximately
0.25). We suspect that the Path system’s representation is responsible for this difference. Context
words for homonyms appear very infrequently. The Word approach matches context elements by
their specific strings, and the sparsity hinders learning. In contrast, the Path variant is able to identify
similarities between different context elements (when they share paths), which makes it more robust
to sparse context elements. As a result, it is better able to distinguish homonyms. It is worth
mentioning that Word2Vec does not support the ability to represent homonyms, every word maps to
a single point in the embedding. Thus, our systems have exceeded Word2Vec in this respect.

On the synonym recall test, we find that the Path system has the most rapid progress. We suspect
this is because the system is able to adjust its representation to support learning and recall. The
downside of this dynamic representation is that it may make it harder to learn over them, especially
when they are changing. We suspect this is why we see better performance from the Path system on
this task, but better performance from the Word variant on the synonym grouping tasks. We find that
the Leaf system has comparable performance to Word2Vec, and that the Word and Path approaches
perform substantially better. The amount of data we provide Word2Vec is substantially lower than
what is typically used for this approach. Our results highlight the advantage of our new Cobweb
variants, suggesting some can learn more efficiently than Word2Vec.

Overall, we find that the Leaf system performs poorly. The clusterings it produces on the syn-
onym and homonym tasks score barely above chance. On the synonym recall task, it continues to
improve but progress is very slow. The low performance is likely because the leaf concepts are
too granular, with many of them representing the same word. Despite this, we are optimistic that a
variant of this approach that uses a more abstract concept representation for context words (i.e., non-
terminals rather than terminals) will yield better results. We are particularly interested in exploring
approaches to identifying a level of representation that yields robust behavior (e.g., combines nodes
that represent the same concept, but still effectively distinguishes among concepts).

Finally, our run-time analysis shows that our new approaches have the potential to be very
efficient. Most of our approaches are more efficient than Word2Vec, which is characterized as a
very efficient language modeling approach (Mikolov et al., 2013a). The key feature of our Cobweb
variants are their ability to learn incrementally from new training examples; in contrast, Word2Vec
must retrain on all data (old and new) whenever new information becomes available Although our
current implementations (which are in Python) are slower than the highly optimized Word2Vec
approach, they should be as (or more) efficient than Word2Vec once they are optimized.
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5. Related Research

To our knowledge, there are few recent systems that learn language models while adhering to the
human-like constraints proposed by Langley (2022). A notable counterexample is Mitchell et al.’s
(2018) Never Ending Language Learner (NELL), which crawls the Web to acquire, in an incre-
mental manner, an ever expanding knowledge base. NELL takes a top-down approach to extracting
content about the world from text, whereas our approach operates from the bottom up, attempting
to extract the semantics of words from their surrounding context. We view the two approaches
as complementary and one can imagine hybrid approaches that combine top-down and bottom-up
processing to support continual language learning.

McLure et al.’s (2010) SAGE is another incremental concept learner that shares many features
with Cobweb. We are not aware of its application to learning word meanings, but we may be able
to adapt many ideas presented here, especially the Word and Leaf approaches, into that framework.
However, SAGE lacks the hierarchical organization of categories that is central to Cobweb, so it
may be less straightforward to translate ideas from the Path variant, which leverages this structure.
At the same time, McLure et al.’s system operates over relational descriptions, which could benefit
future versions of our systems. In general, we believe that there are many opportunities to leverage
mechanisms for incremental concept formation, like those that underlie SAGE and Cobweb, as the
basis for more efficient language learning.

A common approach in the language modeling community, although very different from ours,
starts with pre-trained language models and then tunes them for a target domain (Devlin et al., 2018).
This amortizes the costs incurred when training large models by reusing them across domains on the
hope that domain general knowledge from them will apply and transfer to new settings. In theory,
this should reduce the training data needed for new tasks. Interestingly, a recent study by Krishna
et al. (2022) found that pre-training and tuning on the same data from a target domain (with no pre-
trained language model) yields comparable performance to tuning a pre-trained model on the target
data. This suggests that little expertise transfers from pre-trained models and Krishna et al. argue
that using them is less beneficial than pre-training, which conditions weights for effective tuning.
Thus, pre-trained language models may less useful than acquiring larger training sets for target
domains. Even so, performance remains proportional to number of cases from the target domain,
and these data sets are often orders of magnitude larger than those used in the Cobweb studies. Thus,
we believe our distinctive approach offers exciting avenues for more efficient language learning.

Finally, we should discuss Convolutional Cobweb (MacLellan & Thakur, 2022), another varia-
tion on probabilistic concept formation that induces visual concepts. Although this system does not
acquire language models, it also represents context, although it operates over images (2D arrays)
rather than text (1D sequences). Convolutional Cobweb classifies each pixel based on that pixel’s
value and the values of pixels in its surrounding context. As in the Leaf variant, it replaces pixels
with the leaf concepts to which they are sorted and uses the resulting description to classify the en-
tire image. One key difference is that during categorization Convolutional Cobweb replaces the leaf
concept labels dynamically with ancestors that are just below the root. This change avoids many of
the issues encountered with the Leaf approach, which maintained many distinct labels to encode the
same words. There should be substantial opportunities for cross pollination between the systems.
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Thus, we plan to investigate how ideas from the current work can improve visual concept formation
and how the Word, Leaf, and Path systems can incorporate ideas from Convolutional Cobweb..

6. Conclusion

In this paper, we presented three extensions to Cobweb—the Word, Leaf, and Path variants—that
combine Word2Vec’s ideas about word context with Cobweb’s human-like concept formation to
support efficient acquisition of language models. We investigated how well these approaches group
synonyms and homonyms and we showed that, although the Leaf system does little better than
chance, the Word and Path variants do reasonable jobs of placing synonyms together and keeping
homonyms apart. We also conducted a synonym recall test and found that the latter systems also do
well on this task, with the Leaf approach again lagging behind. In addition, we evaluated Word2Vec
on a task similar to synonym recall to see how it compares to our new approaches. The preliminary
results suggest that the Word and Path variants show potential for far more efficient learning than
Word2Vec in that they showing better synonym recall with fewer training cases.

In summary, our research highlights promising new directions for research on incremental,
human-like language learning. The Word variant, which did better than expected, holds special
potential for future efforts on language modeling. The Path variant also offers a novel method for
dynamically updating the underlying representation during incremental learning. We believe the
current work sets the stage for innovative approaches to statistical language learning that differ con-
siderably from current language inducers and we hope that it inspires further research on human-like
learning. Just as Word2Vec led, over the past decade, to large language models with impressive abil-
ities, we hope that our contextual extensions to Cobweb will develop into large-scale human-like
language systems that exhibit efficient, incremental, and continual learning.
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