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1. Introdu
tionS
ien
e is perhaps the most 
omplex of intelle
tual a
tivities, and itsstudy has traditionally been the realm of historians and philosophers.However, re
ent advan
es in 
ognitive s
ien
e|parti
ularly in arti�
ialintelligen
e and 
ognitive psy
hology|have provided new approa
hesand fresh insights into the nature of s
ien
e. Whereas early work inthe philosophi
al tradition emphasized the evaluation of laws and the-ories (e.g., Popper, 1965), re
ent resear
h in the paradigm of 
ogni-tive s
ien
e has emphasized s
ienti�
 dis
overy , in
luding the a
tivitiesof theory formation, law indu
tion, and experimentation. Moreover,the early philosophi
al approa
hes fo
used on the stru
ture of s
ienti�
knowledge, whereas re
ent work has fo
used on the pro
ess of s
ien-ti�
 thought and on des
ribing these a
tivities in 
omputational terms.The aim of this 
hapter is to provide an overview of this 
omputationalresear
h on s
ienti�
 dis
overy.Three basi
 developments have led to progress in this area during thepast de
ade. First, 
ognitive psy
hology has made signi�
ant advan
esin its understanding of 
omplex human behavior, whi
h have en
ouragedpsy
hologists to study domains su
h as s
ienti�
 reasoning (e.g., Ghol-son, Shadish, Neimeyer, & Houts, 1989; Mynatt, Doherty, & Tweney,1978, this volume; Shrager & Klahr, 1986). Se
ond, the �eld of arti�-
ial intelligen
e has evolved into a mature dis
ipline and has exploreda variety of 
omputational approa
hes to representation, performan
e,
2 Shrager and Langleyand learning (e.g., Weld & de Kleer, 1990). Finally, many philosophersof s
ien
e have adopted a histori
al and psy
hologi
al perspe
tive ons
ien
e, fo
using less on normative and stru
tural theories and more onhow dis
overies a
tually take pla
e (e.g., Darden, this volume; Kuhn,1962; Lakatos, 1970; Thagard & Nowak, this volume).These advan
es have supplied the data and te
hniques needed to
onstru
t detailed 
omputational models of the a
quisition of knowl-edge in s
ienti�
 domains. Resear
h goals and methods di�er, withsome resear
hers giving detailed a

ounts of histori
al dis
overies, oth-ers studying subje
ts' behavior in simulated s
ienti�
 settings, and stillothers|
aring less for histori
al or psy
hologi
al adequa
y|proposingalgorithms with desirable 
omputational properties. Taken together,these di�erent emphases provide a multifa
eted view of s
ienti�
 dis-
overy, giving a broader and deeper understanding than was possibleeven a few years ago.We begin our survey of 
omputational models of dis
overy by iden-tifying some 
omponents of s
ienti�
 behavior and proposing an asso-
iated vo
abulary. We then review re
ent progress in 
omputationalapproa
hes to dis
overy, using our framework to des
ribe developmentsduring the past �ve years. Finally, we 
onsider some open problemsin s
ienti�
 dis
overy that do not fall within the framework and thathave not been modeled in existing systems. We argue that these issuesshould re
eive signi�
ant attention in future resear
h.2. Components of S
ienti�
 BehaviorIn order to dis
uss 
omputational theories of s
ienti�
 behavior, weneed a vo
abulary with whi
h to des
ribe their 
omponents. In English,su
h terms as dis
overy and theory formation des
ribe the diverse and
omplex behavior of a s
ientist at work, but in a vague and ill-de�nedmanner.1 One advantage of 
omputational approa
hes is that they for
ethe resear
her to provide pre
ise spe
i�
ations of data stru
tures andalgorithms. Unfortunately, the goal of implementation often leads oneto adopt narrow de�nitions of 
on
epts that potentially have a mu
hwider s
ope.1. We will assume that the s
ientist is working alone in a given domain and that heor she has instruments available to manipulate and observe the domain. Later,we will re
onsider these assumptions.



Computational Approa
hes to Dis
overy 3Following the tradition in arti�
ial intelligen
e, we divide s
ienti�
behavior into knowledge stru
tures and the pro
esses or a
tivities thattransform them. Although narrow de�nitions are ne
essary to produ
e
omputational models, they are not required in a survey. Therefore,we will restri
t ourselves to de�nitions of knowledge stru
tures that areindependent of parti
ular representations, and to de�nitions of a
tivitiesthat fo
us on input/output relations rather than on spe
i�
 methods.Even at this level, 
lear de�nitions are diÆ
ult to provide, and thereader should treat the statements that follow as tentative formulations.In addition, the list of 
omponents is 
learly in
omplete, being limitedto aspe
ts that have been addressed in existing models.In the following dis
ussion, we assume that the s
ientist is working insome parti
ular �eld and more spe
i�
ally on some problem in a par-ti
ular domain within that �eld. For instan
e, the domain of neutrinointera
tions lies within the �eld of nu
lear physi
s. We further assumethat the s
ientist is operating in a laboratory or in some other relatively
ontrolled setting (as opposed to �eld work), and we refer to parti
ulararrangements of the setting, su
h as a spe
i�
 experimental arrange-ment, as a situation. All of this together will be 
alled the s
ienti�
environment.2.1 S
ienti�
 Knowledge Stru
turesBefore we 
an talk about a
tivities, we must identify the knowledgestru
tures that are inspe
ted and manipulated. Together with the phys-i
al setting, these 
omponents 
onstitute the raw materials and theprodu
ts of s
ien
e. In a given 
omputational model, a number of thesestru
tures are 
ast in some spe
i�
 representational framework, but inour quest for generality we will avoid 
ommitment to parti
ular repre-sentational assumptions. We des
ribe the basi
 knowledge stru
turesbelow.Observations (or data) represent re
ordings of the environment made bysensors or measuring instruments. For instan
e, in his studies of heat,Joseph Bla
k (1728{1799) re
orded the temperatures of obje
ts beforeand after he heated them. Ea
h of these re
ordings was an observation.Taxonomies de�ne or des
ribe 
on
epts for a domain, along with spe-
ialization relations among them. One example is the taxonomy forbiologi
al organisms, whi
h are grouped into spe
ies, genera, families,
4 Shrager and Langleyand so forth. Another is the grouping of 
hemi
al substan
es into a
ids,bases, and salts, and the subdivision of bases into alkalis and metals.Taxonomies spe
ify the 
on
epts used in stating laws and theories, andin giving units to observations.Laws are statements that summarize relations among observed vari-ables, obje
ts, or events. For example, Bla
k's heat law states that ifone mixes two substan
es, the temperature of one substan
e in
reasesand the temperature of the other de
reases until they rea
h equilibrium.It also des
ribes a pre
ise numeri
 relation among the initial and �naltemperatures. The �rst statement is qualitative in form, whereas thelatter is quantitative. Some laws may be quite general, whereas oth-ers may be very spe
i�
, potentially 
omposed entirely of 
onstants orground terms.Theories represent hypotheses about the stru
tures or pro
esses in theenvironment. They di�er from laws in making referen
e to unobservableobje
ts or me
hanisms. For instan
e, the 
alori
 theory stated that allmaterial obje
ts 
ontained a substan
e 
alled 
alori
 and that heatinginvolved a transfer of 
alori
 to the heated obje
t. A theory is stated interms of 
on
epts from the taxonomy.Ba
kground knowledge is a set of beliefs or knowledge about the envi-ronment aside from those that are spe
i�
ally under study. Su
h knowl-edge di�ers from theories or laws, in that the s
ientist holds ba
kgroundknowledge with relative 
ertainty rather than as the subje
t of a
tiveevaluation. Statements that begin as theories or laws may eventually
ome to a
t as ba
kground knowledge. For instan
e, Bla
k probablyassumed that pla
ing a 
ame under an obje
t would in
rease its tem-perature.Models are des
riptions of the environmental 
onditions, both overt andhidden, for an experimental or observational setting. Thus, a model isrequired to indi
ate the manner in whi
h a law or theory applies to aparti
ular situation. For instan
e, one might attempt to understand aparti
ular physi
al situation in terms of fri
tionless pulleys 
onne
tedby massless strings, thus enabling the appli
ation of simple Newtonianme
hani
al theories.Explanations are narratives that 
onne
t a theory to a law by a 
hain ofinferen
es appropriate to the �eld. In su
h 
ases, we say that the the-ory explains the law. For instan
e, the 
alori
 theory explains Bla
k's
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hes to Dis
overy 5observation that obje
ts of di�erent temperature move toward equilib-rium when pla
ed in 
onta
t. In some dis
iplines, inferen
e 
hains mustbe dedu
tive or mathemati
al, but many �elds san
tion other forms ofexplanation.Predi
tions represent expe
tations about the behavior of the environ-ment under spe
i�
 
onditions. One predi
tion that follows from the
alori
 theory is that a heat sour
e will eventually stop transferring heatsin
e ultimately the sour
e will run out of 
alori
. For instan
e, if rub-bing two obje
ts together adds heat to the surrounding air, eventuallythis heating e�e
t will halt. Postdi
tions are analogous to predi
tions,ex
ept that the s
ientist generates them after making the observationshe or she intends the postdi
tions to explain. Su

essful predi
tions andpostdi
tions lend support to the theory or law that produ
ed them.Anomalies des
ribe laws that 
annot be explained by a theory, or ob-servations that 
annot be predi
ted by a law. For instan
e, supposeone �nds that the heating e�e
t 
ontinues no matter how long one rubstwo obje
ts together. This �nding is an anomaly with respe
t to the
alori
 theory sin
e that theory leads to no laws that a

ord with theobservation.Although ea
h of the above 
on
epts plays an important role in s
ien-ti�
 thought and a
tion, many developers of spe
i�
 dis
overy systemshave 
ollapsed some of them and left others impli
it. For instan
e,rather than being stored as a separate stru
ture, a theory might be im-plemented as an a
tive subset of the ba
kground knowledge. Similarly,predi
tions need not be expli
itly represented for one to obtain obser-vations that violate the theory. To our knowledge, no existing dis
overysystem expli
itly in
orporates all of these 
on
epts.Before pro
eeding to the a
tivities of the s
ientist, we should notesome 
on
epts that we have expli
itly left out of the foregoing analysis.These in
lude hypotheses, explorations, instruments, and representa-tions, as well as many others. Although these are important aspe
ts ofs
ien
e, we believe that the 
on
epts des
ribed above provide a satis-fa
tory basis for a 
on
rete dis
ussion of s
ienti�
 behavior.2.2 S
ienti�
 A
tivitiesKnowledge stru
tures alone 
annot provide a 
omplete a

ount of s
i-en
e. Pro
esses and a
tivities that use the stru
tures in the setting
6 Shrager and Langleyunder study are essential to the produ
tion of s
ienti�
 knowledge. Inthis subse
tion, we propose a set of a
tivities that des
ribe the 
lassi
alview of s
ien
e, though we will broaden this set later in the 
hapter.Many philosophers have either expli
itly or impli
itly proposed 
ate-gories of s
ienti�
 a
tivities (e.g., Feyerabend, 1975; Ha
king, 1983;Lakatos, 1976; Popper, 1965; Suppe, 1977), but only a few 
ompu-tationalists have expli
itly addressed this issue (e.g., Falkenhainer &Rajamoney, 1988).We have attempted to des
ribe a
tivities that lie at approximatelythe same level. We have also aimed for fun
tional de�nitions that arespe
i�ed in terms of the knowledge stru
tures ea
h a
tivity inspe
tsand a�e
ts. Any given 
omputational system will use a spe
i�
 methodto implement su
h a
tivities, but we have intentionally avoided givingparti
ular methods in our de�nitions. We des
ribe the basi
 s
ienti�
a
tivities below.The observation pro
ess inspe
ts the environmental setting by trainingan instrument, sometimes simply the agent's senses, on that setting.The result is a 
on
rete des
ription of the setting, expressed in termsfrom the agent's taxonomy and guided by the model of the setting. Sin
eone 
an observe many things in any given situation, the observer mustsele
t some aspe
ts to re
ord and some to ignore. For example, JosephBla
k observed a setting in whi
h two 
uids were brought into 
onta
t.Using a thermometer and a 
lo
k, he measured the temperature of ea
h
uid at su

essive points in time. From this a
tivity, he obtained dataproviding a set of 
on
rete des
riptions of the setting.Taxonomy formation (and revision) involves the organization of obser-vations into 
lasses and sub
lasses, along with the de�nition of those
lasses. This pro
ess may operate on, or take into a

ount, an existingtaxonomy or ba
kground knowledge. For instan
e, early 
hemists or-ganized 
ertain 
hemi
als into the 
lasses of a
ids, alkalis, and salts tosummarize regularities in their taste and behavior. As time went on,they re�ned this taxonomy and modi�ed the de�nitions of ea
h 
lass.Another example of 
hanging taxonomies involves the distin
tion be-tween heat and temperature, whi
h s
ientists had initially 
onfounded(Carey & Wiser, 1983).Indu
tive law formation (and revision) involves the generation of empir-i
al laws that 
over observed data. The laws are stated using terms from
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hes to Dis
overy 7the agent's taxonomy and are 
onstrained by a model of the setting andpossibly by the s
ientist's ba
kground knowledge. In some 
ases, thes
ientist may generate an entirely new law; in others, an existing lawmay be modi�ed or extended. For instan
e, Bla
k arrived at his law ofspe
i�
 heat to summarize the temperature 
hanges he observed in hisheat experiments. Similarly, based on systemati
 experiments with thepressure and volume of gases in 
ontainers, Robert Boyle (1627{1691)indu
ed a law that related these two variables.Theory formation (and revision) stands in the same relation to empiri
allaws as does law formation to data. Given one or more laws, this a
tivitygenerates a theory from whi
h one 
an derive the laws for a given modelby explanation. The theory is stated using terms from the domain'staxonomy and may be in
uen
ed by its ba
kground knowledge. Thus, atheory inter
onne
ts a set of laws into a uni�ed theoreti
al a

ount. Forexample, Boyle's law des
ribes the inverse relation between the pressureand volume of a gas, whereas Charles' law states the dire
t relation ofits temperature and pressure. The kineti
 theory of gases provides anelegant explanation for both laws in terms of Newtonian intera
tionsamong mole
ules. Theory revision takes into a

ount an anomalousphenomenon or law that 
annot be explained by an existing theory.The revised theory should explain the anomalous phenomenon whilemaintaining the ability to 
over existing laws, although this is often notpossible.Dedu
tive law formation produ
es laws by a se
ond route, starting witha theory and using an explanatory framework to dedu
e both a law andan explanation of how that law derives from the theory. Re
all that laws
an be 
omposed entirely of ground terms, so this pro
ess 
an 
reatevery spe
i�
 laws that lend themselves to predi
tion and thus aid intheory evaluation. For instan
e, Einstein's theory of general relativityled to an inferred law about the orbit of Mer
ury. However, not all su
hderived laws will be testable.The explanation pro
ess 
onne
ts a theory to a law by a narrative whosegeneral form is given by the �eld's explanatory framework. In the 
on-text of evaluation (des
ribed below), if su
h a narrative 
an be produ
ed,support may be lent to the theory or law from whi
h the predi
tionarose. If no su
h narrative 
an be produ
ed|that is, if explanationfails|then an anomaly results. The explanation pro
ess 
an also aidtheory revision by verifying that the revised theory 
an be 
onne
ted
8 Shrager and Langleyto known laws in the domain.2 Explanation di�ers from dedu
tive lawformation, in that explanation attempts to a

ount for a law that isalready known.The predi
tion pro
ess takes a law and a model of the setting, andprodu
es a predi
tion about what will be observed. This often involvesthe results of intentional experimental manipulation, but it 
an alsoo

ur in observational domains. For example, one 
an use the ideal gaslaw to predi
t that, upon 
ompressing a 
ylinder of gas, its temperaturewill rise. One 
an also use Kepler's laws of planetary motion to predi
tthat an e
lipse will o

ur at a 
ertain time. The analogous pro
ess ofpostdi
tion takes pla
e in 
ases where the s
ientist must a

ount foran existing observation. Predi
tion and postdi
tion stand in the samerelation to ea
h other as dedu
tive law formation and explanation.Experimental design generates models of settings in whi
h observationsare to be made. Typi
ally, sele
ted aspe
ts of the model (the indepen-dent variables) are systemati
ally varied to determine their e�e
t onother aspe
ts (the dependent variables). This design pro
ess may takeexisting laws or theories into a

ount, or it may be more exploratory innature. Thus, Bla
k de
ided to systemati
ally vary the substan
es usedin his experiments to determine their e�e
ts on rates of temperature
hange. If 
ompeting theories are 
onsidered in experimental design,they generally make di�erent predi
tions.Themanipulation pro
ess 
onstru
ts a physi
al setting that 
orresponds(to whatever extent possible) to a desired model. Thus, the s
ientistmanipulates the environment in order to implement a given experimen-tal design. For instan
e, Bla
k instantiated his experimental designfor studying temperature phenomena by physi
ally heating various sub-stan
es.Evaluation, 
omparing a predi
tion with observations, generally followsexperimental design and observation. Sin
e predi
tions 
an vary in theirlevel of detail, evaluation may vary in what is a

epted. This produ
eseither a su

essful postdi
tion or an anomaly , whi
h may serve to stim-ulate further theory or law formation or revision. For instan
e, the2. A subtlety of the present de�nition arises from the fa
t that we have de�nedthe explanatory pro
ess to operate on laws, whereas one may sometimes want toexplain pre
ise observations as well. However, re
all that laws 
an vary in theirlevel of generality, so that one 
an easily transform observations into very spe
i�
laws, and vi
e versa.



Computational Approa
hes to Dis
overy 9anomalous behavior of rubbed obje
ts (as des
ribed above) shed doubton the 
alori
 theory.For the sake of simpli
ity, we have omitted a number of importanta
tivities from the above framework. These in
lude: the pro
ess ofa

epting a tentatively held theory, thus adding it to one's ba
kgroundknowledge; the pro
ess of s
ienti�
 revolution, in whi
h one revises anentire theoreti
al framework; model formation and revision, in whi
hone generates or revises a model that 
onne
ts a theory and its laws toan experimental setting; and a
tivities attending the important so
ialand embodied aspe
ts of s
ienti�
 a
tivity, su
h as 
ommuni
ation, notetaking, per
eption, and the 
onstru
tion of measurement instruments.In Se
tion 4, we will return to the last of these topi
s in an e�ort toexpand the traditional view of s
ienti�
 behavior.In any parti
ular resear
h endeavor, many of the a
tivities des
ribed,as well as those that we have omitted, will be 
omposed into greaterunits at various levels, ranging from daily a
tions to weekly plans to re-sear
h programmes that 
over months or years. Spe
i�
 
omputationalmodels implement 
ertain 
ombinations of these a
tivities. In survey-ing the past de
ade of resear
h on 
omputational models of dis
overy,we will dis
uss the parti
ular knowledge stru
tures and a
tivities thatresear
hers have implemented.3. Re
ent Resear
h on Ma
hine Dis
overyWe have 
hosen to divide resear
h on s
ienti�
 dis
overy into two broadperiods. The �rst interval, during whi
h 
ognitive s
ientists developedthe �rst 
omputational models of the dis
overy pro
ess, extends fromthe late 1970s through 1984. Below we provide a brief review of workfrom this period. During the se
ond period, from 1984 through thepresent, resear
hers expanded on this early work along a variety of di-mensions. We review this work in more detail, drawing from the 
on-
epts spe
i�ed in the previous se
tion.3.1 Early Computational Resear
h on Dis
overyEarly work on 
omputational approa
hes to dis
overy fo
used on �ndingempiri
al regularities su
h as taxonomies and laws. This was a naturalstarting point, sin
e empiri
al dis
overy tends to o

ur in the early
10 Shrager and Langleystages of a s
ienti�
 dis
ipline. Thus, it should require less domainknowledge and permit the use of general heuristi
s.Lenat's (1979) AM was one of the earliest dis
overy systems, op-erating in the domain of elementary number theory. This domain isunusual when viewed in the light of more re
ent work, in that one 
angenerate data internally rather than observing them in a real or sim-ulated environment. The user provided AM with an initial taxonomyof mathemati
al 
on
epts, whi
h it pro
eeded to extend and revise bymutation. Upon de�ning a new 
on
ept, the system used the de�nitionto generate examples, whi
h it then used to dire
t the sear
h for other
on
epts. AM 
ould also posit that two 
on
epts were equivalent eventhough they had di�erent de�nitions, as well as noti
e relations amongdi�erent 
on
epts. Thus, the system 
ould dis
over 
ertain 
lasses ofqualitative laws, revise its taxonomy, 
reate new terms, and observeexamples of these terms. However, it la
ked 
omponents for experimen-tation, explanation, predi
tion, theory formation, and evaluation.Another early dis
overy system was Langley, Zytkow, Bradshaw, andSimon's (1983) Ba
on, whi
h fo
used on the indu
tion of numeri
 lawsfrom experimental data.3 This program was provided with a set of in-dependent and dependent variables, whi
h it used to 
arry out simpleexperiments drawing on simulated data, and whi
h it used to organizeresults into a taxonomi
 hierar
hy. On
e Ba
on had gathered datafor a given node in its hierar
hy, it sear
hed for 
onstant values of de-pendent terms or relations between independent and dependent terms.In the former 
ase, it augmented the node's des
ription with that 
on-stan
y; in the latter 
ase, it de�ned new terms as produ
ts or ratios ofexisting terms and 
ontinued the sear
h. The system propagated 
on-stant values to higher levels in its hierar
hy, where it treated them asdependent values in its sear
h for higher-level numeri
 laws. Ba
on'smain 
ontribution was in the area of quantitative dis
overy and termde�nition, though it also in
luded user-spe
i�ed methods for experimen-tation, taxonomy formation, and observation. Like AM, it 
ontained noexpli
it 
omponents for explanation, predi
tion, theory formation, orevaluation.3. Langley et al.'s approa
h was in
uen
ed by earlier work on fun
tion dis
overy byHuesmann and Cheng (1973) and by Gerwin (1975). Langley, Simon, Bradshaw,and Zytkow (1987) provide a more detailed des
ription of the BACON system.
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hes to Dis
overy 11Langley et al. (1983) des
ribed two additional systems that addressdi�erent aspe
ts of the dis
overy pro
ess. Glauber 
arried out a formof taxonomy formation that also produ
ed simple qualitative laws re-lating the 
ategories it de�ned.4 Stahl formulated simple stru
turaltheories of 
hemi
al substan
es based on observed rea
tions, 
arryingout a revision pro
ess upon en
ountering anomalous observations that
ould not be explained by existing theories. Neither system 
ontainedexpli
it methods for experimentation, predi
tion, or evaluation.At the level of our framework, AM andBa
on 
over similar aspe
ts ofthe s
ienti�
 pro
ess. Although both systems ta
kled important aspe
tsof s
ienti�
 dis
overy, they also ignored many 
omponents of the overallpro
ess and thus 
onstituted initial forays rather than integrated mod-els. During the past �ve years, resear
h on 
omputational approa
hes tos
ienti�
 dis
overy has produ
ed a number of advan
es over this earlywork. One 
an divide these developments into progress in knowledgerepresentation, progress on methods for dis
overy, and progress on theintegration of these methods. In the remainder of this se
tion, we dis
ussea
h of these in turn, providing examples from the re
ent literature.3.2 Progress on S
ienti�
 Knowledge Stru
turesThe most basi
 advan
es in ma
hine dis
overy have involved the rep-resentation of observations, laws, models, and theories. Early workassumed simple des
riptions of obje
ts and events in terms of numeri
attributes or, at best, relations among obje
ts. Qualitative and quan-titative representations were entirely separate, and there existed no ex-pli
it representation for temporal information. However, a number ofre
ent dis
overy systems have drawn heavily on Forbus' (1985) work onqualitative pro
ess representations. This approa
h represents events asa sequen
e of qualitative states, with ea
h state des
ribing an intervalof time during whi
h the signs of derivatives remain 
onstant. Forbus'framework also lets one represent theories about pro
esses in qualitativeterms and provides me
hanisms for making qualitative predi
tions.At least four resear
hers have in
orporated this qualitative pro
essrepresentation dire
tly into their dis
overy systems. For instan
e, Falken-hainer's Phineas (this volume) uses qualitative data to retrieve and4. More re
ently, Jones (1986) has des
ribed an in
remental version of GLAUBERthat 
ontains expli
it 
omponents for experimentation, predi
tion, andevaluation.

12 Shrager and Langleymat
h against promising ba
kground knowledge, then forms a new pro-
ess theory by analogy with this knowledge. O'Rorke, Morris, and S
hu-lenberg (this volume) represent data and theories in a similar form butuse anomalies to drive the pro
ess of theory revision. Rajamoney'sCoast (this volume) uses a qualitative representation for models butuses qualitative anomalies to 
onstrain the experimentation pro
ess.5Finally, Nordhausen and Langley's IDS (this volume) uses Forbus' for-malism to represent both observations and qualitative laws, in
ludingones that involve relations among su

essive states.Another representational advan
e involves the storage of justi�
ationson theories that aid in the pro
esses of theory evaluation and revision.For instan
e, Thagard and Nowak (this volume) expli
itly representthe arguments for and against 
ompeting theories, using this informa-tion in their evaluation me
hanism. In a similar manner, Pazzani andFlower (this volume) make an analogy between theory evaluation andargumentation, proposing the use of expli
it arguments and 
ounterar-guments in evaluating theories. Rose and Langley (1986) take a relatedapproa
h in their Stahlp system, indexing observations by the theoriesthey support and retrieving them when anomalies 
all the theory intoquestion. Rajamoney's Coast (this volume) employs a similar strategybut stores only some of the eviden
e for a given theory to use duringlater revisions.A �nal representational innovation 
on
erns the role of imagery. Miller(1986) and Tweney (this volume) argue for the 
entral role of imagery ins
ienti�
 thinking and 
all for resear
h on 
omputational approa
hes tothis topi
. A number of resear
hers in qualitative reasoning are expli
-itly working on the problem of spatial reasoning (e.g., Nielsen, 1988),and Shrager's work (this volume) 
onstitutes a novel approa
h, introdu
-ing a representation of s
ienti�
 knowledge that is grounded in sensory-motor operations. The use of qualitative pro
ess formalisms also bearson this topi
, in that one 
an \run" qualitative simulations to \envision"what may follow from given starting 
onditions. These are only begin-nings, but they 
onsiderably extend the simplisti
 mathemati
s-baseds
hemes that predominated in the early work on dis
overy.5. Kulkarni and Simon (this volume) and Karp (this volume) also employ qualitativerepresentations in the design of experiments, but they do not expli
itly work inForbus' framework.
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hes to Dis
overy 133.3 Progress on Dis
overy-Related A
tivitiesIn terms of s
ienti�
 a
tivities, the most impressive advan
es have o
-
urred with respe
t to the formation and revision of theories. Falken-hainer's work on analogy des
ribes one approa
h to theory formation,in whi
h knowledge of other domains is transferred to the one understudy. Kulkarni and Simon, O'Rorke et al., and Rajamoney all fo
us ontheory revision, showing how anomalies 
an lead to modi�
ation of aninitial theory and its gradual improvement over time. Karp's Hypgeneuses similar methods to deal with the related problem of model revision,and Darden (this volume) dis
usses similar issues in her histori
al anal-ysis. Rose (1989) des
ribes a uni�ed approa
h to in
rementally revisingboth theories and observations. Contrasting approa
hes to theory revi-sion have been proposed that rely on 
on
eptual 
ombination (Holland,Holyoak, Nisbett, & Thagard, 1986; Shrager, 1987), and Shrager's work(this volume) follows this approa
h in novel dire
tions.Another area of progress has involved experimentation. Klahr, Dun-bar, and Fay (this volume), following upon the theory formation studiesof Shrager and Klahr (1986), have 
arried out detailed studies of the ex-perimentation strategies of humans in understanding 
omplex devi
es,extending previous work (e.g., Mynatt, Doherty, & Tweney, 1978) inimportant ways. The 
omputational models of Kulkarni and Simon,Rajamoney, and Karp have all fo
used on experimentation, and theirapproa
hes share some important similarities. Ea
h of their systemsmakes predi
tions, notes anomalies, uses the latter to generate alterna-tive hypotheses, and then designs experiments to dis
riminate amongthe 
ompetitors.Although a smaller fra
tion of resear
hers have fo
used on empiri-
al dis
overy than in earlier days, advan
es have also o

urred alongthis front. One development is the work on \
on
eptual 
lustering"by Stepp (1984), Lebowitz (1987), and Fisher (1987), whi
h organizesobservations into taxonomies of 
on
epts des
ribed at varying levels ofabstra
tion. Another area 
on
erns improved methods for dis
overingnumeri
 laws, su
h as those des
ribed by Falkenhainer and Mi
halski(1986), Kokar (1986), and Zytkow (1987). More re
ently, Nordhausenand Langley (this volume) have reported novel methods in both areas,along with te
hniques for dis
overing qualitative laws. Zytkow (this vol-ume) outlines a method for quantitative dis
overy that takes advantageof domain models to parse numeri
 laws into useful 
omponents. Both
14 Shrager and Langleyapproa
hes rely on more powerful representations of observations andlaws than were used in earlier work. Another line of resear
h by Ep-stein (1987), Shen (1990), and Sims and Bresina (1989) has 
ontinuedin the AM tradition, re�ning Lenat's approa
h and applying it to newmathemati
al domains.Finally, resear
h has also progressed in the area of evaluation. Tha-gard and Nowak (this volume) des
ribe a method for evaluating therelative quality of two theories in terms of ea
h theory's ability to ex-plain a variety of phenomena. Taking a di�erent approa
h, Cheeseman(this volume) proposes Bayesian probabilisti
 
riteria for evaluating tax-onomies and laws. Both approa
hes seem likely to �nd their way intofuture dis
overy systems, where they 
ould be used to dire
t the sear
hfor improved laws and theories.3.4 Progress on Integrated Approa
hes to Dis
overyAnother important trend has been the evolution toward integrated dis-
overy systems. A number of resear
hers have 
ombined nontrivial 
om-ponents of the dis
overy pro
ess, produ
ing synergisti
 e�e
ts from theirintera
tions. One 
an view these e�orts as steps along the path towarda 
omplete theory of s
ienti�
 dis
overy that des
ribes not only basi
a
tivities but also the relations among them.One relatively 
omplete integration of a
tivities is embodied in Shra-ger's (1987) IE system, whi
h 
arried out experiments on simulations ofa 
omplex devi
e and formed \mental models" of the devi
e by 
on
ep-tual 
ombination. The system performed explorations and experiments(both involving predi
tion) on the simulated devi
e and 
arried out ex-er
ises in order to test the 
ompleteness of its theory. Although Shragerwas 
on
erned mainly with IE's \view appli
ation" method for theoryreformulation, the model also in
luded simple versions of analogi
al the-ory extension and postdi
tion.Another example is Nordhausen and Langley's work, whi
h integratestaxonomy formation, qualitative law dis
overy, and numeri
 law dis-
overy. Their IDS system in
rementally organizes observed qualitativestates into a taxonomi
 hierar
hy and then formulates qualitative lawsin terms of temporal relations between 
lasses of states. It also usesthese qualitative laws to provide 
ontext for numeri
 relations and to
onstrain the sear
h for the latter.
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overy 15A third 
ase is Kulkarni and Simon's Kekada, whi
h integrates the-ory revision, predi
tion, experimentation, and evaluation. Their systembegins with a partial theory and an anomaly, whi
h Kekada attemptsto explain by elaborating the theory. This leads to a number of alterna-tive hypotheses, whi
h the system evaluates by designing and runningexperiments. If Kekada en
ounters some new anomaly along the way,it shifts attention and follows this path instead.6These three systems are not the only ones that attempt to integrateaspe
ts of the dis
overy pro
ess, but they provide prototypi
al exam-ples of this trend. If one 
ompares the above des
riptions of IE, IDS,and Kekada with the earlier 
hara
terizations of AM and Ba
on, there
ent progress toward integrated models of s
ienti�
 dis
overy be
omesapparent. However, it is also 
lear that mu
h work remains before we ar-rive at a model that fully integrates even the in
omplete set of pro
essesin
luded in the framework from Se
tion 2.4. Open Issues in S
ienti�
 Dis
overyIn 
losing, we 
onsider two important aspe
ts of intelle
tual a
tivity|embedding and embodiment|that have signi�
ant bearing on s
ien
ebut that have not been addressed by existing 
omputational models.Brie
y, s
ien
e takes pla
e in a world that is o

upied by the s
ientist,by the physi
al system under study, and by other agents, and this worldhas inde�nite ri
hness of physi
al stru
ture and 
onstraint. Thus thes
ientist is an embodied agent embedded in a physi
al and so
ial world.Embodiment brings to the fore 
omponents of s
ienti�
 behavior thatare easily ignored when the model exists entirely within a 
omputer,where all aspe
ts of the environment are 
ontrollable, where observation
an take pla
e by dire
t referen
e to data stru
tures, and where theenvironment has �nite and known 
omplexity. Embedding highlightsissues that have been traditionally ignored by models that fo
us on theintelle
tual a
tivity of individual s
ientists rather than on 
ommunities.In this se
tion, we 
onsider some results of embedding and embodimentthat have generally been ignored in 
omputational models of s
ienti�
behavior (see also the 
ritique of Tweney, this volume). We end by6. Rajamoney's COAST and Karp's HYPGENE also 
ombine predi
tion, experimen-tation, and revision, but they fo
us on individual steps in this pro
ess rather thanon the 
ontinuing 
y
le.

16 Shrager and Langleydis
ussing some promising approa
hes toward 
reating 
omputationala

ounts for these 
omponents.4.1 External Representations and Resear
h ProgramsAs s
ienti�
 domains be
ome in
reasingly data intensive, external rep-resentations 
ome to play a 
entral role in the resear
h pro
ess. Forinstan
e, notebooks and graphi
s are widely used in many dis
iplinesas memory aids and, more importantly, as aids to dis
overy throughdata organization. In addition, su
h re
ords help in resear
h planning,in whi
h s
ientists sequen
e their a
tivities within the larger s
ienti�

ontext. Several resear
hers (Darden, this volume; Gorman & Carlson,in press; Tweney, this volume) have studied the use of laboratory notesand re
ords, along with their in
uen
e on s
ienti�
 reasoning. Theiranalyses suggest that these external re
ords have a major in
uen
e onthe dis
overy pro
ess. Kulkarni and Simon (this volume) are 
on
ernedwith programs of resear
h, but they do not model the role of externalre
ords in the planning pro
ess.Given the importan
e of notebooks, graphi
s, and similar re
ords, itmay seem astonishing that none of the existing 
omputational modelsof dis
overy in
orporate su
h devi
es. Part of the reason 
omes fromunrealisti
 assumptions about the memory and speed of 
omputationalsystems. For instan
e, Langley et al.'s Ba
on has no need to plotits data sin
e it 
an retain as many observations as ne
essary in work-ing memory and s
an the data rapidly. Although no 
omputationalmodels of dis
overy have taken seriously the fun
tion of external repre-sentations, some work has been done in other areas of 
ognitive s
ien
e(e.g., Larkin & Simon, 1987; Shrager, 1989). Also, Shrager's theoryof grounded representation (this volume) partially addresses this issue,in that it is designed to operate with external stimuli as well as withinternal sensory 
ontent.4.2 Per
eption and Measurement InstrumentsThe measurement pro
ess alone o

upies a major fra
tion of s
ientists'time and energy, leaving pre
ious little remaining time for the intel-le
tual a
tivities that we 
onsidered in Se
tion 2. However, existingmodels of s
ienti�
 dis
overy are disembodied; they assume immediateand unproblemati
 a

ess to observations. Even in models that expli
-
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hes to Dis
overy 17itly separate the external setting from the agent's internal knowledge,the environment is suÆ
iently 
onstrained that issues of attention andper
eption are avoided. In addition to measuring simple quantities, s
i-entists must also 
onne
t observables to theoreti
al terms if the latterare to be operational. Re
ent resear
h on attention in 
on
ept learning(Billman & Heit, 1988; Gennari, 1989) has started to address some ofthese issues, but mu
h more remains to be done.Moreover, even the earliest histories of dis
overy involve some formsof instrumentation. Many authors (e.g., Feyerabend, 1975; Giere, 1988;Ha
king, 1983) have noted the importan
e of measurement instrumentsin the s
ienti�
 pro
ess, but 
omputational models have ignored this as-pe
t of resear
h. As with per
eption, this oversight is understandable, inpart be
ause instrument 
onstru
tion is largely a physi
al phenomenonthat is diÆ
ult to model without solving diÆ
ult problems in roboti
sor building ri
h simulations. One approa
h that shows some promiseis Nordhausen and Langley's (this volume) method for postulating in-trinsi
 properties, whi
h provides a method for 
omputing features ofnew obje
ts based on their behavior in familiar qualitative histories.E�e
tively, these abstra
t histories des
ribe \instruments" that let onemeasure properties like boiling point or spe
i�
 heat.4.3 Laboratories, Collaboration, and Communi
ationMost modern s
ien
e is too large and too expensive an undertaking foran independent resear
her to su

eed, making it essential that s
ientists
ollaborate. Although there are many alternative organizations for jointresear
h, the most 
ommon is the laboratory, in whi
h a small numberof resear
hers 
ollaborate on a small set of problems. Laboratories gen-erally exist at a single lo
ation and in
lude s
ientists at di�erent levels ofexpertise, from students to senior resear
hers. In addition, di�erent lab-oratories often work on the same or 
losely related problems. In some
ases, this work is 
ompetitive, but in other 
ases there is signi�
ant
ooperation, with division of labor and open intera
tions.Collaboration of any sort requires some form of 
ommuni
ation amongs
ientists, and it takes no statisti
al sophisti
ation to 
on
lude that s
i-entists spend mu
h of their time talking, reading, and writing. Thesesorts of 
ommuni
ation provide another example of external represen-tations in whi
h graphi
s, mathemati
al expression, and language play
entral roles. Within a laboratory, 
ommuni
ation often o

urs verbally
18 Shrager and Langleybefore anything rea
hes the formal s
ienti�
 literature. Tweney (thisvolume) has argued that Faraday enri
hed his understanding of one do-main from his ongoing resear
h in other domains, but su
h enri
hmentis surely is not restri
ted to the mental a
tivities of individual s
ien-tists. Formal 
ommuni
ation is essential for the broader disseminationof ideas, making reading and writing 
entral s
ienti�
 a
tivities.Existing 
omputational models of dis
overy have avoided the 
ollab-orative and 
ommuni
ative aspe
ts of s
ienti�
 resear
h, fo
using on in-dividual s
ientists' behavior and ignoring group intera
tions. This wasa natural development, given the traditional fo
us of 
ognitive s
ien
eon the 
ognitive pro
esses of individuals. However, the so
ial organiza-tion of s
ien
e in the laboratory and in broader 
ontexts has a majorin
uen
e on the nature of s
ien
e, and future modeling e�orts shouldmove toward in
orporating aspe
ts of this stru
ture.74.4 Toward a Fuller Computational A

ount of Dis
overyIn summary, a
tual s
ien
e o

urs in the 
ontext of a physi
al worldand in the 
ontext of other agents, but existing 
omputational a

ountsof dis
overy have avoided these major issues. The reason for this biasis straightforward. The methods and theories of 
ognitive s
ien
e wereoriginally designed to model individual 
ognition, and the 
omputa-tional work on dis
overy has relied heavily on these tools. A deeperunderstanding of embodiment will require 
onsiderable resear
h in AIand 
ognitive psy
hology, and the embedded nature of s
ien
e awaits ad-ditional work in so
iology, anthropology, and psy
hology. Nevertheless,some preliminary results hold out hope for advan
es in these areas.For instan
e, the a
tive resear
h area of \distributed arti�
ial intel-ligen
e" fo
uses on understanding the ways that multiple agents 
anintera
t in 
ommunities. Several 
olle
tions are available on this topi
(see Gasser & Huhns, 1989; Huberman & Hogg, 1988), and resear
hers7. Ex
ellent 
olle
tions have re
ently appeared on the so
iology of s
ienti�
 pra
ti
eand knowledge (see Fuller, De May, Shinn, & Woolgar, 1989). Readers of this
hapter will be parti
ularly interested in a spe
ial issue of So
ial Studies of S
ien
e(volume 19, number 4), in whi
h several authors respond to Slezak (1989), whoargues that the su

ess of BACON and similar dis
overy programs \[provide℄dramati
 
on�rmation [of the view that℄ there are prin
iples of rationality and a`s
ienti�
 method' whi
h are independent of so
ial fa
tors."
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overy 19in this �eld expli
itly draw upon results in the so
ial s
ien
es, espe
iallyfrom e
onomi
s and s
ienti�
 reasoning. There is also hope that psy
ho-anthropologi
al approa
hes (e.g., Latour & Woolgar, 1979; Lyn
h, 1985;Pi
kering, 1984) will explain 
ertain so
ial aspe
ts of s
ien
e, espe
iallythe role of 
ommuni
ation. However, to date these a

ounts have beendes
riptive rather than 
omputational. The literature on distributedarti�
ial intelligen
e also deals with issues of 
ommuni
ation but fo
useson the nature of the information passed rather than on the pro
essesof individual agents a
ting in the 
ommunity. Overall, there has beenlittle 
omputational work on the 
ommuni
ative intera
tions of agentswith one another. Thagard and Nowak's work (this volume) on thea

eptan
e of revolutions most 
losely speaks to the issues of intera
tionsamong resear
hers, but their paradigm does not model the ri
hness anddetailed fun
tions of s
ienti�
 
ommuni
ation.Resear
h on embodied agents has also made progress, not only intraditional approa
hes to roboti
s but also in the interfa
e between AI,ma
hine learning, and roboti
s. For instan
e, Laird, Yager, Tu
k, andHu
ka (1989) des
ribe a system that improves its ability to use a robotarm with experien
e. The work of Iba and Langley (1987) on mo-tor learning provides an additional example of this en
ouraging trend.More relevant to s
ienti�
 dis
overy are re
ent attempts (Zytkow, Zhu,& Hussam, in press) to employ AI methods to 
ontrol roboti
 equip-ment for 
hemi
al experimentation. In addition, some resear
hers (seeShrager, this volume) have taken per
eption as a 
entral problem andhave attempted to explain 
omplex intelle
tual a
tivity in terms of sen-sation and a
tion. Other resear
hers have even attempted to deal withthe issues of physi
al and so
ial environments simultaneously, as Co-hen, Greenberg, Hart, and Howe (1989) have done in their work on
ooperative �re �ghting in a simulated (burning) forest.We believe that an important sour
e for models of embedding andembodiment in s
ien
e will 
ome from an unexpe
ted dire
tion: the de-velopmental psy
hology of so
ialization, whi
h studies the ways in whi
ha 
hild learns to be
ome a part of his or her 
ulture (e.g., Bruner, 1985;Kuhn, Amsel, & O'Loughlin, 1988; Vygotsky, 1962). Insights into thispro
ess may provide hypotheses about the paths through whi
h grad-uate students and junior s
ientists be
ome members of their s
ienti�
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ommunity|mastering the ways of thinking, operating, and 
ommuni-
ating that 
onstitute the institution of s
ien
e.85. Con
lusionIn e�e
t, this 
hapter has attempted to de�ne a new �eld of study|the
omputational modeling of s
ienti�
 behavior. Despite its relativelyre
ent development, this resear
h area has already made signi�
antprogress on issues that philosophers of s
ien
e have traditionally ig-nored. In parti
ular, the �eld has emphasized the nature of dis
overyrather than evaluation, and it has dealt with the pro
esses that underlies
ien
e as well as the representation of knowledge. The result has been arapidly growing set of 
omputational models that deal with many fa
etsof the s
ienti�
 enterprise.Although the existing models are best viewed as embodying tenta-tive hypotheses about the nature of s
ien
e, it is also 
lear that thepast de
ade has seen real progress. Current systems still ignore manyimportant aspe
ts of dis
overy and theory formation, but idealizationsare a 
entral part of s
ien
e; we should no more expe
t our 
omputersimulations to a

ount for every aspe
t of dis
overy than we expe
tour physi
al or 
hemi
al theories to explain every aspe
t of the physi
alworld. What we 
an expe
t is in
remental progress toward fuller modelsand deeper understanding, and that is pre
isely what has o

urred inthe developing 
omputational \s
ien
e of s
ien
e."The past few years have seen notable developments, not only in therepresentations and pro
esses used to model s
ienti�
 dis
overy andtheory formation but also in their integration into a 
oherent framework.We will not make spe
i�
 predi
tions about the outlook for extendingthe 
omputational paradigm into the more diÆ
ult areas of embeddedand embodied s
ien
e. However, the paths toward these goals seem linedwith fertile resear
h questions waiting to be addressed. Progress alongthese paths will 
ertainly tax our existing theories and methodology,but it should also bear ri
h rewards.8. Luhrmann's (1989) insightful psy
hoethnography of British wit
h
raft provides a
arefully resear
hed example of a sort of so
ialization that she 
alls \interpretivedrift." The analogy between be
oming a s
ientist and be
oming a wit
h runsmore deeply than one might think. Both deal with belief and a
tion, and bothhave signi�
ant rites of passage. Most of the stru
tures and a
tivities that wehave identi�ed as typi
al of s
ien
e apply equally well to wit
h
raft, and even tomore 
ommonpla
e a
tivities (Pazzani & Flowers, this volume).
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