
Chapter 1Computational Approahesto Sienti� DisoveryJeff ShragerPat Langley

1. IntrodutionSiene is perhaps the most omplex of intelletual ativities, and itsstudy has traditionally been the realm of historians and philosophers.However, reent advanes in ognitive siene|partiularly in arti�ialintelligene and ognitive psyhology|have provided new approahesand fresh insights into the nature of siene. Whereas early work inthe philosophial tradition emphasized the evaluation of laws and the-ories (e.g., Popper, 1965), reent researh in the paradigm of ogni-tive siene has emphasized sienti� disovery , inluding the ativitiesof theory formation, law indution, and experimentation. Moreover,the early philosophial approahes foused on the struture of sienti�knowledge, whereas reent work has foused on the proess of sien-ti� thought and on desribing these ativities in omputational terms.The aim of this hapter is to provide an overview of this omputationalresearh on sienti� disovery.Three basi developments have led to progress in this area during thepast deade. First, ognitive psyhology has made signi�ant advanesin its understanding of omplex human behavior, whih have enouragedpsyhologists to study domains suh as sienti� reasoning (e.g., Ghol-son, Shadish, Neimeyer, & Houts, 1989; Mynatt, Doherty, & Tweney,1978, this volume; Shrager & Klahr, 1986). Seond, the �eld of arti�-ial intelligene has evolved into a mature disipline and has exploreda variety of omputational approahes to representation, performane,
2 Shrager and Langleyand learning (e.g., Weld & de Kleer, 1990). Finally, many philosophersof siene have adopted a historial and psyhologial perspetive onsiene, fousing less on normative and strutural theories and more onhow disoveries atually take plae (e.g., Darden, this volume; Kuhn,1962; Lakatos, 1970; Thagard & Nowak, this volume).These advanes have supplied the data and tehniques needed toonstrut detailed omputational models of the aquisition of knowl-edge in sienti� domains. Researh goals and methods di�er, withsome researhers giving detailed aounts of historial disoveries, oth-ers studying subjets' behavior in simulated sienti� settings, and stillothers|aring less for historial or psyhologial adequay|proposingalgorithms with desirable omputational properties. Taken together,these di�erent emphases provide a multifaeted view of sienti� dis-overy, giving a broader and deeper understanding than was possibleeven a few years ago.We begin our survey of omputational models of disovery by iden-tifying some omponents of sienti� behavior and proposing an asso-iated voabulary. We then review reent progress in omputationalapproahes to disovery, using our framework to desribe developmentsduring the past �ve years. Finally, we onsider some open problemsin sienti� disovery that do not fall within the framework and thathave not been modeled in existing systems. We argue that these issuesshould reeive signi�ant attention in future researh.2. Components of Sienti� BehaviorIn order to disuss omputational theories of sienti� behavior, weneed a voabulary with whih to desribe their omponents. In English,suh terms as disovery and theory formation desribe the diverse andomplex behavior of a sientist at work, but in a vague and ill-de�nedmanner.1 One advantage of omputational approahes is that they forethe researher to provide preise spei�ations of data strutures andalgorithms. Unfortunately, the goal of implementation often leads oneto adopt narrow de�nitions of onepts that potentially have a muhwider sope.1. We will assume that the sientist is working alone in a given domain and that heor she has instruments available to manipulate and observe the domain. Later,we will reonsider these assumptions.



Computational Approahes to Disovery 3Following the tradition in arti�ial intelligene, we divide sienti�behavior into knowledge strutures and the proesses or ativities thattransform them. Although narrow de�nitions are neessary to produeomputational models, they are not required in a survey. Therefore,we will restrit ourselves to de�nitions of knowledge strutures that areindependent of partiular representations, and to de�nitions of ativitiesthat fous on input/output relations rather than on spei� methods.Even at this level, lear de�nitions are diÆult to provide, and thereader should treat the statements that follow as tentative formulations.In addition, the list of omponents is learly inomplete, being limitedto aspets that have been addressed in existing models.In the following disussion, we assume that the sientist is working insome partiular �eld and more spei�ally on some problem in a par-tiular domain within that �eld. For instane, the domain of neutrinointerations lies within the �eld of nulear physis. We further assumethat the sientist is operating in a laboratory or in some other relativelyontrolled setting (as opposed to �eld work), and we refer to partiulararrangements of the setting, suh as a spei� experimental arrange-ment, as a situation. All of this together will be alled the sienti�environment.2.1 Sienti� Knowledge StruturesBefore we an talk about ativities, we must identify the knowledgestrutures that are inspeted and manipulated. Together with the phys-ial setting, these omponents onstitute the raw materials and theproduts of siene. In a given omputational model, a number of thesestrutures are ast in some spei� representational framework, but inour quest for generality we will avoid ommitment to partiular repre-sentational assumptions. We desribe the basi knowledge struturesbelow.Observations (or data) represent reordings of the environment made bysensors or measuring instruments. For instane, in his studies of heat,Joseph Blak (1728{1799) reorded the temperatures of objets beforeand after he heated them. Eah of these reordings was an observation.Taxonomies de�ne or desribe onepts for a domain, along with spe-ialization relations among them. One example is the taxonomy forbiologial organisms, whih are grouped into speies, genera, families,
4 Shrager and Langleyand so forth. Another is the grouping of hemial substanes into aids,bases, and salts, and the subdivision of bases into alkalis and metals.Taxonomies speify the onepts used in stating laws and theories, andin giving units to observations.Laws are statements that summarize relations among observed vari-ables, objets, or events. For example, Blak's heat law states that ifone mixes two substanes, the temperature of one substane inreasesand the temperature of the other dereases until they reah equilibrium.It also desribes a preise numeri relation among the initial and �naltemperatures. The �rst statement is qualitative in form, whereas thelatter is quantitative. Some laws may be quite general, whereas oth-ers may be very spei�, potentially omposed entirely of onstants orground terms.Theories represent hypotheses about the strutures or proesses in theenvironment. They di�er from laws in making referene to unobservableobjets or mehanisms. For instane, the alori theory stated that allmaterial objets ontained a substane alled alori and that heatinginvolved a transfer of alori to the heated objet. A theory is stated interms of onepts from the taxonomy.Bakground knowledge is a set of beliefs or knowledge about the envi-ronment aside from those that are spei�ally under study. Suh knowl-edge di�ers from theories or laws, in that the sientist holds bakgroundknowledge with relative ertainty rather than as the subjet of ativeevaluation. Statements that begin as theories or laws may eventuallyome to at as bakground knowledge. For instane, Blak probablyassumed that plaing a ame under an objet would inrease its tem-perature.Models are desriptions of the environmental onditions, both overt andhidden, for an experimental or observational setting. Thus, a model isrequired to indiate the manner in whih a law or theory applies to apartiular situation. For instane, one might attempt to understand apartiular physial situation in terms of fritionless pulleys onnetedby massless strings, thus enabling the appliation of simple Newtonianmehanial theories.Explanations are narratives that onnet a theory to a law by a hain ofinferenes appropriate to the �eld. In suh ases, we say that the the-ory explains the law. For instane, the alori theory explains Blak's



Computational Approahes to Disovery 5observation that objets of di�erent temperature move toward equilib-rium when plaed in ontat. In some disiplines, inferene hains mustbe dedutive or mathematial, but many �elds santion other forms ofexplanation.Preditions represent expetations about the behavior of the environ-ment under spei� onditions. One predition that follows from thealori theory is that a heat soure will eventually stop transferring heatsine ultimately the soure will run out of alori. For instane, if rub-bing two objets together adds heat to the surrounding air, eventuallythis heating e�et will halt. Postditions are analogous to preditions,exept that the sientist generates them after making the observationshe or she intends the postditions to explain. Suessful preditions andpostditions lend support to the theory or law that produed them.Anomalies desribe laws that annot be explained by a theory, or ob-servations that annot be predited by a law. For instane, supposeone �nds that the heating e�et ontinues no matter how long one rubstwo objets together. This �nding is an anomaly with respet to thealori theory sine that theory leads to no laws that aord with theobservation.Although eah of the above onepts plays an important role in sien-ti� thought and ation, many developers of spei� disovery systemshave ollapsed some of them and left others impliit. For instane,rather than being stored as a separate struture, a theory might be im-plemented as an ative subset of the bakground knowledge. Similarly,preditions need not be expliitly represented for one to obtain obser-vations that violate the theory. To our knowledge, no existing disoverysystem expliitly inorporates all of these onepts.Before proeeding to the ativities of the sientist, we should notesome onepts that we have expliitly left out of the foregoing analysis.These inlude hypotheses, explorations, instruments, and representa-tions, as well as many others. Although these are important aspets ofsiene, we believe that the onepts desribed above provide a satis-fatory basis for a onrete disussion of sienti� behavior.2.2 Sienti� AtivitiesKnowledge strutures alone annot provide a omplete aount of si-ene. Proesses and ativities that use the strutures in the setting
6 Shrager and Langleyunder study are essential to the prodution of sienti� knowledge. Inthis subsetion, we propose a set of ativities that desribe the lassialview of siene, though we will broaden this set later in the hapter.Many philosophers have either expliitly or impliitly proposed ate-gories of sienti� ativities (e.g., Feyerabend, 1975; Haking, 1983;Lakatos, 1976; Popper, 1965; Suppe, 1977), but only a few ompu-tationalists have expliitly addressed this issue (e.g., Falkenhainer &Rajamoney, 1988).We have attempted to desribe ativities that lie at approximatelythe same level. We have also aimed for funtional de�nitions that arespei�ed in terms of the knowledge strutures eah ativity inspetsand a�ets. Any given omputational system will use a spei� methodto implement suh ativities, but we have intentionally avoided givingpartiular methods in our de�nitions. We desribe the basi sienti�ativities below.The observation proess inspets the environmental setting by trainingan instrument, sometimes simply the agent's senses, on that setting.The result is a onrete desription of the setting, expressed in termsfrom the agent's taxonomy and guided by the model of the setting. Sineone an observe many things in any given situation, the observer mustselet some aspets to reord and some to ignore. For example, JosephBlak observed a setting in whih two uids were brought into ontat.Using a thermometer and a lok, he measured the temperature of eahuid at suessive points in time. From this ativity, he obtained dataproviding a set of onrete desriptions of the setting.Taxonomy formation (and revision) involves the organization of obser-vations into lasses and sublasses, along with the de�nition of thoselasses. This proess may operate on, or take into aount, an existingtaxonomy or bakground knowledge. For instane, early hemists or-ganized ertain hemials into the lasses of aids, alkalis, and salts tosummarize regularities in their taste and behavior. As time went on,they re�ned this taxonomy and modi�ed the de�nitions of eah lass.Another example of hanging taxonomies involves the distintion be-tween heat and temperature, whih sientists had initially onfounded(Carey & Wiser, 1983).Indutive law formation (and revision) involves the generation of empir-ial laws that over observed data. The laws are stated using terms from



Computational Approahes to Disovery 7the agent's taxonomy and are onstrained by a model of the setting andpossibly by the sientist's bakground knowledge. In some ases, thesientist may generate an entirely new law; in others, an existing lawmay be modi�ed or extended. For instane, Blak arrived at his law ofspei� heat to summarize the temperature hanges he observed in hisheat experiments. Similarly, based on systemati experiments with thepressure and volume of gases in ontainers, Robert Boyle (1627{1691)indued a law that related these two variables.Theory formation (and revision) stands in the same relation to empiriallaws as does law formation to data. Given one or more laws, this ativitygenerates a theory from whih one an derive the laws for a given modelby explanation. The theory is stated using terms from the domain'staxonomy and may be inuened by its bakground knowledge. Thus, atheory interonnets a set of laws into a uni�ed theoretial aount. Forexample, Boyle's law desribes the inverse relation between the pressureand volume of a gas, whereas Charles' law states the diret relation ofits temperature and pressure. The kineti theory of gases provides anelegant explanation for both laws in terms of Newtonian interationsamong moleules. Theory revision takes into aount an anomalousphenomenon or law that annot be explained by an existing theory.The revised theory should explain the anomalous phenomenon whilemaintaining the ability to over existing laws, although this is often notpossible.Dedutive law formation produes laws by a seond route, starting witha theory and using an explanatory framework to dedue both a law andan explanation of how that law derives from the theory. Reall that lawsan be omposed entirely of ground terms, so this proess an reatevery spei� laws that lend themselves to predition and thus aid intheory evaluation. For instane, Einstein's theory of general relativityled to an inferred law about the orbit of Merury. However, not all suhderived laws will be testable.The explanation proess onnets a theory to a law by a narrative whosegeneral form is given by the �eld's explanatory framework. In the on-text of evaluation (desribed below), if suh a narrative an be produed,support may be lent to the theory or law from whih the preditionarose. If no suh narrative an be produed|that is, if explanationfails|then an anomaly results. The explanation proess an also aidtheory revision by verifying that the revised theory an be onneted
8 Shrager and Langleyto known laws in the domain.2 Explanation di�ers from dedutive lawformation, in that explanation attempts to aount for a law that isalready known.The predition proess takes a law and a model of the setting, andprodues a predition about what will be observed. This often involvesthe results of intentional experimental manipulation, but it an alsoour in observational domains. For example, one an use the ideal gaslaw to predit that, upon ompressing a ylinder of gas, its temperaturewill rise. One an also use Kepler's laws of planetary motion to preditthat an elipse will our at a ertain time. The analogous proess ofpostdition takes plae in ases where the sientist must aount foran existing observation. Predition and postdition stand in the samerelation to eah other as dedutive law formation and explanation.Experimental design generates models of settings in whih observationsare to be made. Typially, seleted aspets of the model (the indepen-dent variables) are systematially varied to determine their e�et onother aspets (the dependent variables). This design proess may takeexisting laws or theories into aount, or it may be more exploratory innature. Thus, Blak deided to systematially vary the substanes usedin his experiments to determine their e�ets on rates of temperaturehange. If ompeting theories are onsidered in experimental design,they generally make di�erent preditions.Themanipulation proess onstruts a physial setting that orresponds(to whatever extent possible) to a desired model. Thus, the sientistmanipulates the environment in order to implement a given experimen-tal design. For instane, Blak instantiated his experimental designfor studying temperature phenomena by physially heating various sub-stanes.Evaluation, omparing a predition with observations, generally followsexperimental design and observation. Sine preditions an vary in theirlevel of detail, evaluation may vary in what is aepted. This produeseither a suessful postdition or an anomaly , whih may serve to stim-ulate further theory or law formation or revision. For instane, the2. A subtlety of the present de�nition arises from the fat that we have de�nedthe explanatory proess to operate on laws, whereas one may sometimes want toexplain preise observations as well. However, reall that laws an vary in theirlevel of generality, so that one an easily transform observations into very spei�laws, and vie versa.



Computational Approahes to Disovery 9anomalous behavior of rubbed objets (as desribed above) shed doubton the alori theory.For the sake of simpliity, we have omitted a number of importantativities from the above framework. These inlude: the proess ofaepting a tentatively held theory, thus adding it to one's bakgroundknowledge; the proess of sienti� revolution, in whih one revises anentire theoretial framework; model formation and revision, in whihone generates or revises a model that onnets a theory and its laws toan experimental setting; and ativities attending the important soialand embodied aspets of sienti� ativity, suh as ommuniation, notetaking, pereption, and the onstrution of measurement instruments.In Setion 4, we will return to the last of these topis in an e�ort toexpand the traditional view of sienti� behavior.In any partiular researh endeavor, many of the ativities desribed,as well as those that we have omitted, will be omposed into greaterunits at various levels, ranging from daily ations to weekly plans to re-searh programmes that over months or years. Spei� omputationalmodels implement ertain ombinations of these ativities. In survey-ing the past deade of researh on omputational models of disovery,we will disuss the partiular knowledge strutures and ativities thatresearhers have implemented.3. Reent Researh on Mahine DisoveryWe have hosen to divide researh on sienti� disovery into two broadperiods. The �rst interval, during whih ognitive sientists developedthe �rst omputational models of the disovery proess, extends fromthe late 1970s through 1984. Below we provide a brief review of workfrom this period. During the seond period, from 1984 through thepresent, researhers expanded on this early work along a variety of di-mensions. We review this work in more detail, drawing from the on-epts spei�ed in the previous setion.3.1 Early Computational Researh on DisoveryEarly work on omputational approahes to disovery foused on �ndingempirial regularities suh as taxonomies and laws. This was a naturalstarting point, sine empirial disovery tends to our in the early
10 Shrager and Langleystages of a sienti� disipline. Thus, it should require less domainknowledge and permit the use of general heuristis.Lenat's (1979) AM was one of the earliest disovery systems, op-erating in the domain of elementary number theory. This domain isunusual when viewed in the light of more reent work, in that one angenerate data internally rather than observing them in a real or sim-ulated environment. The user provided AM with an initial taxonomyof mathematial onepts, whih it proeeded to extend and revise bymutation. Upon de�ning a new onept, the system used the de�nitionto generate examples, whih it then used to diret the searh for otheronepts. AM ould also posit that two onepts were equivalent eventhough they had di�erent de�nitions, as well as notie relations amongdi�erent onepts. Thus, the system ould disover ertain lasses ofqualitative laws, revise its taxonomy, reate new terms, and observeexamples of these terms. However, it laked omponents for experimen-tation, explanation, predition, theory formation, and evaluation.Another early disovery system was Langley, Zytkow, Bradshaw, andSimon's (1983) Baon, whih foused on the indution of numeri lawsfrom experimental data.3 This program was provided with a set of in-dependent and dependent variables, whih it used to arry out simpleexperiments drawing on simulated data, and whih it used to organizeresults into a taxonomi hierarhy. One Baon had gathered datafor a given node in its hierarhy, it searhed for onstant values of de-pendent terms or relations between independent and dependent terms.In the former ase, it augmented the node's desription with that on-stany; in the latter ase, it de�ned new terms as produts or ratios ofexisting terms and ontinued the searh. The system propagated on-stant values to higher levels in its hierarhy, where it treated them asdependent values in its searh for higher-level numeri laws. Baon'smain ontribution was in the area of quantitative disovery and termde�nition, though it also inluded user-spei�ed methods for experimen-tation, taxonomy formation, and observation. Like AM, it ontained noexpliit omponents for explanation, predition, theory formation, orevaluation.3. Langley et al.'s approah was inuened by earlier work on funtion disovery byHuesmann and Cheng (1973) and by Gerwin (1975). Langley, Simon, Bradshaw,and Zytkow (1987) provide a more detailed desription of the BACON system.



Computational Approahes to Disovery 11Langley et al. (1983) desribed two additional systems that addressdi�erent aspets of the disovery proess. Glauber arried out a formof taxonomy formation that also produed simple qualitative laws re-lating the ategories it de�ned.4 Stahl formulated simple struturaltheories of hemial substanes based on observed reations, arryingout a revision proess upon enountering anomalous observations thatould not be explained by existing theories. Neither system ontainedexpliit methods for experimentation, predition, or evaluation.At the level of our framework, AM andBaon over similar aspets ofthe sienti� proess. Although both systems takled important aspetsof sienti� disovery, they also ignored many omponents of the overallproess and thus onstituted initial forays rather than integrated mod-els. During the past �ve years, researh on omputational approahes tosienti� disovery has produed a number of advanes over this earlywork. One an divide these developments into progress in knowledgerepresentation, progress on methods for disovery, and progress on theintegration of these methods. In the remainder of this setion, we disusseah of these in turn, providing examples from the reent literature.3.2 Progress on Sienti� Knowledge StruturesThe most basi advanes in mahine disovery have involved the rep-resentation of observations, laws, models, and theories. Early workassumed simple desriptions of objets and events in terms of numeriattributes or, at best, relations among objets. Qualitative and quan-titative representations were entirely separate, and there existed no ex-pliit representation for temporal information. However, a number ofreent disovery systems have drawn heavily on Forbus' (1985) work onqualitative proess representations. This approah represents events asa sequene of qualitative states, with eah state desribing an intervalof time during whih the signs of derivatives remain onstant. Forbus'framework also lets one represent theories about proesses in qualitativeterms and provides mehanisms for making qualitative preditions.At least four researhers have inorporated this qualitative proessrepresentation diretly into their disovery systems. For instane, Falken-hainer's Phineas (this volume) uses qualitative data to retrieve and4. More reently, Jones (1986) has desribed an inremental version of GLAUBERthat ontains expliit omponents for experimentation, predition, andevaluation.

12 Shrager and Langleymath against promising bakground knowledge, then forms a new pro-ess theory by analogy with this knowledge. O'Rorke, Morris, and Shu-lenberg (this volume) represent data and theories in a similar form butuse anomalies to drive the proess of theory revision. Rajamoney'sCoast (this volume) uses a qualitative representation for models butuses qualitative anomalies to onstrain the experimentation proess.5Finally, Nordhausen and Langley's IDS (this volume) uses Forbus' for-malism to represent both observations and qualitative laws, inludingones that involve relations among suessive states.Another representational advane involves the storage of justi�ationson theories that aid in the proesses of theory evaluation and revision.For instane, Thagard and Nowak (this volume) expliitly representthe arguments for and against ompeting theories, using this informa-tion in their evaluation mehanism. In a similar manner, Pazzani andFlower (this volume) make an analogy between theory evaluation andargumentation, proposing the use of expliit arguments and ounterar-guments in evaluating theories. Rose and Langley (1986) take a relatedapproah in their Stahlp system, indexing observations by the theoriesthey support and retrieving them when anomalies all the theory intoquestion. Rajamoney's Coast (this volume) employs a similar strategybut stores only some of the evidene for a given theory to use duringlater revisions.A �nal representational innovation onerns the role of imagery. Miller(1986) and Tweney (this volume) argue for the entral role of imagery insienti� thinking and all for researh on omputational approahes tothis topi. A number of researhers in qualitative reasoning are expli-itly working on the problem of spatial reasoning (e.g., Nielsen, 1988),and Shrager's work (this volume) onstitutes a novel approah, introdu-ing a representation of sienti� knowledge that is grounded in sensory-motor operations. The use of qualitative proess formalisms also bearson this topi, in that one an \run" qualitative simulations to \envision"what may follow from given starting onditions. These are only begin-nings, but they onsiderably extend the simplisti mathematis-basedshemes that predominated in the early work on disovery.5. Kulkarni and Simon (this volume) and Karp (this volume) also employ qualitativerepresentations in the design of experiments, but they do not expliitly work inForbus' framework.



Computational Approahes to Disovery 133.3 Progress on Disovery-Related AtivitiesIn terms of sienti� ativities, the most impressive advanes have o-urred with respet to the formation and revision of theories. Falken-hainer's work on analogy desribes one approah to theory formation,in whih knowledge of other domains is transferred to the one understudy. Kulkarni and Simon, O'Rorke et al., and Rajamoney all fous ontheory revision, showing how anomalies an lead to modi�ation of aninitial theory and its gradual improvement over time. Karp's Hypgeneuses similar methods to deal with the related problem of model revision,and Darden (this volume) disusses similar issues in her historial anal-ysis. Rose (1989) desribes a uni�ed approah to inrementally revisingboth theories and observations. Contrasting approahes to theory revi-sion have been proposed that rely on oneptual ombination (Holland,Holyoak, Nisbett, & Thagard, 1986; Shrager, 1987), and Shrager's work(this volume) follows this approah in novel diretions.Another area of progress has involved experimentation. Klahr, Dun-bar, and Fay (this volume), following upon the theory formation studiesof Shrager and Klahr (1986), have arried out detailed studies of the ex-perimentation strategies of humans in understanding omplex devies,extending previous work (e.g., Mynatt, Doherty, & Tweney, 1978) inimportant ways. The omputational models of Kulkarni and Simon,Rajamoney, and Karp have all foused on experimentation, and theirapproahes share some important similarities. Eah of their systemsmakes preditions, notes anomalies, uses the latter to generate alterna-tive hypotheses, and then designs experiments to disriminate amongthe ompetitors.Although a smaller fration of researhers have foused on empiri-al disovery than in earlier days, advanes have also ourred alongthis front. One development is the work on \oneptual lustering"by Stepp (1984), Lebowitz (1987), and Fisher (1987), whih organizesobservations into taxonomies of onepts desribed at varying levels ofabstration. Another area onerns improved methods for disoveringnumeri laws, suh as those desribed by Falkenhainer and Mihalski(1986), Kokar (1986), and Zytkow (1987). More reently, Nordhausenand Langley (this volume) have reported novel methods in both areas,along with tehniques for disovering qualitative laws. Zytkow (this vol-ume) outlines a method for quantitative disovery that takes advantageof domain models to parse numeri laws into useful omponents. Both
14 Shrager and Langleyapproahes rely on more powerful representations of observations andlaws than were used in earlier work. Another line of researh by Ep-stein (1987), Shen (1990), and Sims and Bresina (1989) has ontinuedin the AM tradition, re�ning Lenat's approah and applying it to newmathematial domains.Finally, researh has also progressed in the area of evaluation. Tha-gard and Nowak (this volume) desribe a method for evaluating therelative quality of two theories in terms of eah theory's ability to ex-plain a variety of phenomena. Taking a di�erent approah, Cheeseman(this volume) proposes Bayesian probabilisti riteria for evaluating tax-onomies and laws. Both approahes seem likely to �nd their way intofuture disovery systems, where they ould be used to diret the searhfor improved laws and theories.3.4 Progress on Integrated Approahes to DisoveryAnother important trend has been the evolution toward integrated dis-overy systems. A number of researhers have ombined nontrivial om-ponents of the disovery proess, produing synergisti e�ets from theirinterations. One an view these e�orts as steps along the path towarda omplete theory of sienti� disovery that desribes not only basiativities but also the relations among them.One relatively omplete integration of ativities is embodied in Shra-ger's (1987) IE system, whih arried out experiments on simulations ofa omplex devie and formed \mental models" of the devie by onep-tual ombination. The system performed explorations and experiments(both involving predition) on the simulated devie and arried out ex-erises in order to test the ompleteness of its theory. Although Shragerwas onerned mainly with IE's \view appliation" method for theoryreformulation, the model also inluded simple versions of analogial the-ory extension and postdition.Another example is Nordhausen and Langley's work, whih integratestaxonomy formation, qualitative law disovery, and numeri law dis-overy. Their IDS system inrementally organizes observed qualitativestates into a taxonomi hierarhy and then formulates qualitative lawsin terms of temporal relations between lasses of states. It also usesthese qualitative laws to provide ontext for numeri relations and toonstrain the searh for the latter.



Computational Approahes to Disovery 15A third ase is Kulkarni and Simon's Kekada, whih integrates the-ory revision, predition, experimentation, and evaluation. Their systembegins with a partial theory and an anomaly, whih Kekada attemptsto explain by elaborating the theory. This leads to a number of alterna-tive hypotheses, whih the system evaluates by designing and runningexperiments. If Kekada enounters some new anomaly along the way,it shifts attention and follows this path instead.6These three systems are not the only ones that attempt to integrateaspets of the disovery proess, but they provide prototypial exam-ples of this trend. If one ompares the above desriptions of IE, IDS,and Kekada with the earlier haraterizations of AM and Baon, thereent progress toward integrated models of sienti� disovery beomesapparent. However, it is also lear that muh work remains before we ar-rive at a model that fully integrates even the inomplete set of proessesinluded in the framework from Setion 2.4. Open Issues in Sienti� DisoveryIn losing, we onsider two important aspets of intelletual ativity|embedding and embodiment|that have signi�ant bearing on sienebut that have not been addressed by existing omputational models.Briey, siene takes plae in a world that is oupied by the sientist,by the physial system under study, and by other agents, and this worldhas inde�nite rihness of physial struture and onstraint. Thus thesientist is an embodied agent embedded in a physial and soial world.Embodiment brings to the fore omponents of sienti� behavior thatare easily ignored when the model exists entirely within a omputer,where all aspets of the environment are ontrollable, where observationan take plae by diret referene to data strutures, and where theenvironment has �nite and known omplexity. Embedding highlightsissues that have been traditionally ignored by models that fous on theintelletual ativity of individual sientists rather than on ommunities.In this setion, we onsider some results of embedding and embodimentthat have generally been ignored in omputational models of sienti�behavior (see also the ritique of Tweney, this volume). We end by6. Rajamoney's COAST and Karp's HYPGENE also ombine predition, experimen-tation, and revision, but they fous on individual steps in this proess rather thanon the ontinuing yle.

16 Shrager and Langleydisussing some promising approahes toward reating omputationalaounts for these omponents.4.1 External Representations and Researh ProgramsAs sienti� domains beome inreasingly data intensive, external rep-resentations ome to play a entral role in the researh proess. Forinstane, notebooks and graphis are widely used in many disiplinesas memory aids and, more importantly, as aids to disovery throughdata organization. In addition, suh reords help in researh planning,in whih sientists sequene their ativities within the larger sienti�ontext. Several researhers (Darden, this volume; Gorman & Carlson,in press; Tweney, this volume) have studied the use of laboratory notesand reords, along with their inuene on sienti� reasoning. Theiranalyses suggest that these external reords have a major inuene onthe disovery proess. Kulkarni and Simon (this volume) are onernedwith programs of researh, but they do not model the role of externalreords in the planning proess.Given the importane of notebooks, graphis, and similar reords, itmay seem astonishing that none of the existing omputational modelsof disovery inorporate suh devies. Part of the reason omes fromunrealisti assumptions about the memory and speed of omputationalsystems. For instane, Langley et al.'s Baon has no need to plotits data sine it an retain as many observations as neessary in work-ing memory and san the data rapidly. Although no omputationalmodels of disovery have taken seriously the funtion of external repre-sentations, some work has been done in other areas of ognitive siene(e.g., Larkin & Simon, 1987; Shrager, 1989). Also, Shrager's theoryof grounded representation (this volume) partially addresses this issue,in that it is designed to operate with external stimuli as well as withinternal sensory ontent.4.2 Pereption and Measurement InstrumentsThe measurement proess alone oupies a major fration of sientists'time and energy, leaving preious little remaining time for the intel-letual ativities that we onsidered in Setion 2. However, existingmodels of sienti� disovery are disembodied; they assume immediateand unproblemati aess to observations. Even in models that expli-



Computational Approahes to Disovery 17itly separate the external setting from the agent's internal knowledge,the environment is suÆiently onstrained that issues of attention andpereption are avoided. In addition to measuring simple quantities, si-entists must also onnet observables to theoretial terms if the latterare to be operational. Reent researh on attention in onept learning(Billman & Heit, 1988; Gennari, 1989) has started to address some ofthese issues, but muh more remains to be done.Moreover, even the earliest histories of disovery involve some formsof instrumentation. Many authors (e.g., Feyerabend, 1975; Giere, 1988;Haking, 1983) have noted the importane of measurement instrumentsin the sienti� proess, but omputational models have ignored this as-pet of researh. As with pereption, this oversight is understandable, inpart beause instrument onstrution is largely a physial phenomenonthat is diÆult to model without solving diÆult problems in robotisor building rih simulations. One approah that shows some promiseis Nordhausen and Langley's (this volume) method for postulating in-trinsi properties, whih provides a method for omputing features ofnew objets based on their behavior in familiar qualitative histories.E�etively, these abstrat histories desribe \instruments" that let onemeasure properties like boiling point or spei� heat.4.3 Laboratories, Collaboration, and CommuniationMost modern siene is too large and too expensive an undertaking foran independent researher to sueed, making it essential that sientistsollaborate. Although there are many alternative organizations for jointresearh, the most ommon is the laboratory, in whih a small numberof researhers ollaborate on a small set of problems. Laboratories gen-erally exist at a single loation and inlude sientists at di�erent levels ofexpertise, from students to senior researhers. In addition, di�erent lab-oratories often work on the same or losely related problems. In someases, this work is ompetitive, but in other ases there is signi�antooperation, with division of labor and open interations.Collaboration of any sort requires some form of ommuniation amongsientists, and it takes no statistial sophistiation to onlude that si-entists spend muh of their time talking, reading, and writing. Thesesorts of ommuniation provide another example of external represen-tations in whih graphis, mathematial expression, and language playentral roles. Within a laboratory, ommuniation often ours verbally
18 Shrager and Langleybefore anything reahes the formal sienti� literature. Tweney (thisvolume) has argued that Faraday enrihed his understanding of one do-main from his ongoing researh in other domains, but suh enrihmentis surely is not restrited to the mental ativities of individual sien-tists. Formal ommuniation is essential for the broader disseminationof ideas, making reading and writing entral sienti� ativities.Existing omputational models of disovery have avoided the ollab-orative and ommuniative aspets of sienti� researh, fousing on in-dividual sientists' behavior and ignoring group interations. This wasa natural development, given the traditional fous of ognitive sieneon the ognitive proesses of individuals. However, the soial organiza-tion of siene in the laboratory and in broader ontexts has a majorinuene on the nature of siene, and future modeling e�orts shouldmove toward inorporating aspets of this struture.74.4 Toward a Fuller Computational Aount of DisoveryIn summary, atual siene ours in the ontext of a physial worldand in the ontext of other agents, but existing omputational aountsof disovery have avoided these major issues. The reason for this biasis straightforward. The methods and theories of ognitive siene wereoriginally designed to model individual ognition, and the omputa-tional work on disovery has relied heavily on these tools. A deeperunderstanding of embodiment will require onsiderable researh in AIand ognitive psyhology, and the embedded nature of siene awaits ad-ditional work in soiology, anthropology, and psyhology. Nevertheless,some preliminary results hold out hope for advanes in these areas.For instane, the ative researh area of \distributed arti�ial intel-ligene" fouses on understanding the ways that multiple agents aninterat in ommunities. Several olletions are available on this topi(see Gasser & Huhns, 1989; Huberman & Hogg, 1988), and researhers7. Exellent olletions have reently appeared on the soiology of sienti� pratieand knowledge (see Fuller, De May, Shinn, & Woolgar, 1989). Readers of thishapter will be partiularly interested in a speial issue of Soial Studies of Siene(volume 19, number 4), in whih several authors respond to Slezak (1989), whoargues that the suess of BACON and similar disovery programs \[provide℄dramati on�rmation [of the view that℄ there are priniples of rationality and a`sienti� method' whih are independent of soial fators."



Computational Approahes to Disovery 19in this �eld expliitly draw upon results in the soial sienes, espeiallyfrom eonomis and sienti� reasoning. There is also hope that psyho-anthropologial approahes (e.g., Latour & Woolgar, 1979; Lynh, 1985;Pikering, 1984) will explain ertain soial aspets of siene, espeiallythe role of ommuniation. However, to date these aounts have beendesriptive rather than omputational. The literature on distributedarti�ial intelligene also deals with issues of ommuniation but fouseson the nature of the information passed rather than on the proessesof individual agents ating in the ommunity. Overall, there has beenlittle omputational work on the ommuniative interations of agentswith one another. Thagard and Nowak's work (this volume) on theaeptane of revolutions most losely speaks to the issues of interationsamong researhers, but their paradigm does not model the rihness anddetailed funtions of sienti� ommuniation.Researh on embodied agents has also made progress, not only intraditional approahes to robotis but also in the interfae between AI,mahine learning, and robotis. For instane, Laird, Yager, Tuk, andHuka (1989) desribe a system that improves its ability to use a robotarm with experiene. The work of Iba and Langley (1987) on mo-tor learning provides an additional example of this enouraging trend.More relevant to sienti� disovery are reent attempts (Zytkow, Zhu,& Hussam, in press) to employ AI methods to ontrol roboti equip-ment for hemial experimentation. In addition, some researhers (seeShrager, this volume) have taken pereption as a entral problem andhave attempted to explain omplex intelletual ativity in terms of sen-sation and ation. Other researhers have even attempted to deal withthe issues of physial and soial environments simultaneously, as Co-hen, Greenberg, Hart, and Howe (1989) have done in their work onooperative �re �ghting in a simulated (burning) forest.We believe that an important soure for models of embedding andembodiment in siene will ome from an unexpeted diretion: the de-velopmental psyhology of soialization, whih studies the ways in whiha hild learns to beome a part of his or her ulture (e.g., Bruner, 1985;Kuhn, Amsel, & O'Loughlin, 1988; Vygotsky, 1962). Insights into thisproess may provide hypotheses about the paths through whih grad-uate students and junior sientists beome members of their sienti�
20 Shrager and Langleyommunity|mastering the ways of thinking, operating, and ommuni-ating that onstitute the institution of siene.85. ConlusionIn e�et, this hapter has attempted to de�ne a new �eld of study|theomputational modeling of sienti� behavior. Despite its relativelyreent development, this researh area has already made signi�antprogress on issues that philosophers of siene have traditionally ig-nored. In partiular, the �eld has emphasized the nature of disoveryrather than evaluation, and it has dealt with the proesses that underliesiene as well as the representation of knowledge. The result has been arapidly growing set of omputational models that deal with many faetsof the sienti� enterprise.Although the existing models are best viewed as embodying tenta-tive hypotheses about the nature of siene, it is also lear that thepast deade has seen real progress. Current systems still ignore manyimportant aspets of disovery and theory formation, but idealizationsare a entral part of siene; we should no more expet our omputersimulations to aount for every aspet of disovery than we expetour physial or hemial theories to explain every aspet of the physialworld. What we an expet is inremental progress toward fuller modelsand deeper understanding, and that is preisely what has ourred inthe developing omputational \siene of siene."The past few years have seen notable developments, not only in therepresentations and proesses used to model sienti� disovery andtheory formation but also in their integration into a oherent framework.We will not make spei� preditions about the outlook for extendingthe omputational paradigm into the more diÆult areas of embeddedand embodied siene. However, the paths toward these goals seem linedwith fertile researh questions waiting to be addressed. Progress alongthese paths will ertainly tax our existing theories and methodology,but it should also bear rih rewards.8. Luhrmann's (1989) insightful psyhoethnography of British withraft provides aarefully researhed example of a sort of soialization that she alls \interpretivedrift." The analogy between beoming a sientist and beoming a with runsmore deeply than one might think. Both deal with belief and ation, and bothhave signi�ant rites of passage. Most of the strutures and ativities that wehave identi�ed as typial of siene apply equally well to withraft, and even tomore ommonplae ativities (Pazzani & Flowers, this volume).
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