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1. Introduction

Science is perhaps the most complex of intellectual activities, and its
study has traditionally been the realm of historians and philosophers.
However, recent advances in cognitive science particularly in artificial
intelligence and cognitive psychology have provided new approaches
and fresh insights into the nature of science. Whereas early work in
the philosophical tradition emphasized the evaluation of laws and the-
ories (e.g., Popper, 1965), recent research in the paradigm of cogni-
tive science has emphasized scientific discovery, including the activities
of theory formation, law induction, and experimentation. Moreover,
the early philosophical approaches focused on the structure of scientific
knowledge, whereas recent work has focused on the process of scien-
tific thought and on describing these activities in computational terms.
The aim of this chapter is to provide an overview of this computational
research on scientific discovery.

Three basic developments have led to progress in this area during the
past decade. First, cognitive psychology has made significant advances
in its understanding of complex human behavior, which have encouraged
psychologists to study domains such as scientific reasoning (e.g., Ghol-
son, Shadish, Neimeyer, & Houts, 1989; Mynatt, Doherty, & Tweney,
1978, this volume; Shrager & Klahr, 1986). Second, the field of artifi-

cial intelligence has evolved into a mature discipline and has explored
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and learning (e.g., Weld & de Kleer, 1990). Finally, many philosophers
of science have adopted a historical and psychological perspective on
science, focusing less on normative and structural theories and more on
how discoveries actually take place (e.g., Darden, this volume; Kuhn,
1962; Lakatos, 1970; Thagard & Nowak, this volume).

These advances have supplied the data and techniques needed to
construct detailed computational models of the acquisition of knowl-
edge in scientific domains. Research goals and methods differ, with
some researchers giving detailed accounts of historical discoveries, oth-
ers studying subjects’ behavior in simulated scientific settings, and still
others caring less for historical or psychological adequacy proposing
algorithms with desirable computational properties. Taken together,
these different emphases provide a multifaceted view of scientific dis-
covery, giving a broader and deeper understanding than was possible
even a few years ago.

We begin our survey of computational models of discovery by iden-
tifying some components of scientific behavior and proposing an asso-
ciated vocabulary. We then review recent progress in computational
approaches to discovery, using our framework to describe developments
during the past five years. Finally, we consider some open problems
in scientific discovery that do not fall within the framework and that
have not been modeled in existing systems. We argue that these issues
should receive significant attention in future research.

2. Components of Scientific Behavior

In order to discuss computational theories of scientific behavior, we
need a vocabulary with which to describe their components. In English,
such terms as discovery and theory formation describe the diverse and
complex behavior of a scientist at work, but in a vague and ill-defined
manner." One advantage of computational approaches is that they force
the researcher to provide precise specifications of data structures and
algorithms. Unfortunately, the goal of implementation often leads one
to adopt narrow definitions of concepts that potentially have a much
wider scope.

1. We will assume that the scientist is working alone in a given domain and that he
or she has instruments available to manipulate and observe the domain. Later,
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Following the tradition in artificial intelligence, we divide scientific
behavior into knowledge structures and the processes or activities that
transform them. Although narrow definitions are necessary to produce
computational models, they are not required in a survey. Therefore,
we will restrict ourselves to definitions of knowledge structures that are
independent of particular representations, and to definitions of activities
that focus on input/output relations rather than on specific methods.
Even at this level, clear definitions are difficult to provide, and the
reader should treat the statements that follow as tentative formulations.
In addition, the list of components is clearly incomplete, being limited
to aspects that have been addressed in existing models.

In the following discussion, we assume that the scientist is working in
some particular field and more specifically on some problem in a par-
ticular domain within that field. For instance, the domain of neutrino
interactions lies within the field of nuclear physics. We further assume
that the scientist is operating in a laboratory or in some other relatively
controlled setting (as opposed to field work), and we refer to particular
arrangements of the setting, such as a specific experimental arrange-
ment, as a situation. All of this together will be called the scientific
environment.

2.1 Scientific Knowledge Structures

Before we can talk about activities, we must identify the knowledge
structures that are inspected and manipulated. Together with the phys-
ical setting, these components constitute the raw materials and the
products of science. In a given computational model, a number of these
structures are cast in some specific representational framework, but in
our quest for generality we will avoid commitment to particular repre-
sentational assumptions. We describe the basic knowledge structures
below.

Observations (or data) represent recordings of the environment made by
sensors or measuring instruments. For instance, in his studies of heat,
Joseph Black (1728-1799) recorded the temperatures of objects before
and after he heated them. Each of these recordings was an observation.

Tazonomies define or describe concepts for a domain, along with spe-
cialization relations among them. One example is the taxonomy for
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and so forth. Another is the grouping of chemical substances into acids,
bases, and salts, and the subdivision of bases into alkalis and metals.
Taxonomies specify the concepts used in stating laws and theories, and
in giving units to observations.

Laws are statements that summarize relations among observed vari-
ables, objects, or events. For example, Black’s heat law states that if
one mixes two substances, the temperature of one substance increases
and the temperature of the other decreases until they reach equilibrium.
It also describes a precise numeric relation among the initial and final
temperatures. The first statement is qualitative in form, whereas the
latter is quantitative. Some laws may be quite general, whereas oth-
ers may be very specific, potentially composed entirely of constants or
ground terms.

Theories represent hypotheses about the structures or processes in the
environment. They differ from laws in making reference to unobservable
objects or mechanisms. For instance, the caloric theory stated that all
material objects contained a substance called caloric and that heating
involved a transfer of caloric to the heated object. A theory is stated in
terms of concepts from the taxonomy.

Background knowledge is a set of beliefs or knowledge about the envi-
ronment aside from those that are specifically under study. Such knowl-
edge differs from theories or laws, in that the scientist holds background
knowledge with relative certainty rather than as the subject of active
evaluation. Statements that begin as theories or laws may eventually
come to act as background knowledge. For instance, Black probably
assumed that placing a flame under an object would increase its tem-
perature.

Models are descriptions of the environmental conditions, both overt and
hidden, for an experimental or observational setting. Thus, a model is
required to indicate the manner in which a law or theory applies to a
particular situation. For instance, one might attempt to understand a
particular physical situation in terms of frictionless pulleys connected
by massless strings, thus enabling the application of simple Newtonian
mechanical theories.

Ezplanations are narratives that connect a theory to a law by a chain of
inferences appropriate to the field. In such cases, we say that the the-
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observation that objects of different temperature move toward equilib-
rium when placed in contact. In some disciplines, inference chains must
be deductive or mathematical, but many fields sanction other forms of
explanation.

Predictions represent expectations about the behavior of the environ-
ment under specific conditions. One prediction that follows from the
caloric theory is that a heat source will eventually stop transferring heat
since ultimately the source will run out of caloric. For instance, if rub-
bing two objects together adds heat to the surrounding air, eventually
this heating effect will halt. Postdictions are analogous to predictions,
except that the scientist generates them after making the observations
he or she intends the postdictions to explain. Successful predictions and
postdictions lend support to the theory or law that produced them.

Anomalies describe laws that cannot be explained by a theory, or ob-
servations that cannot be predicted by a law. For instance, suppose
one finds that the heating effect continues no matter how long one rubs
two objects together. This finding is an anomaly with respect to the
caloric theory since that theory leads to no laws that accord with the
observation.

Although each of the above concepts plays an important role in scien-
tific thought and action, many developers of specific discovery systems
have collapsed some of them and left others implicit. For instance,
rather than being stored as a separate structure, a theory might be im-
plemented as an active subset of the background knowledge. Similarly,
predictions need not be explicitly represented for one to obtain obser-
vations that violate the theory. To our knowledge, no existing discovery
system explicitly incorporates all of these concepts.

Before proceeding to the activities of the scientist, we should note
some concepts that we have explicitly left out of the foregoing analysis.
These include hypotheses, explorations, instruments, and representa-
tions, as well as many others. Although these are important aspects of
science, we believe that the concepts described above provide a satis-
factory basis for a concrete discussion of scientific behavior.

2.2 Scientific Activities

Knowledge structures alone cannot provide a complete account of sci-
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under study are essential to the production of scientific knowledge. In
this subsection, we propose a set of activities that describe the classical
view of science, though we will broaden this set later in the chapter.
Many philosophers have either explicitly or implicitly proposed cate-
gories of scientific activities (e.g., Feyerabend, 1975; Hacking, 1983;
Lakatos, 1976; Popper, 1965; Suppe, 1977), but only a few compu-
tationalists have explicitly addressed this issue (e.g., Falkenhainer &
Rajamoney, 1988).

We have attempted to describe activities that lie at approximately
the same level. We have also aimed for functional definitions that are
specified in terms of the knowledge structures each activity inspects
and affects. Any given computational system will use a specific method
to implement such activities, but we have intentionally avoided giving
particular methods in our definitions. We describe the basic scientific
activities below.

The observation process inspects the environmental setting by training
an instrument, sometimes simply the agent’s senses, on that setting.
The result is a concrete description of the setting, expressed in terms
from the agent’s taxonomy and guided by the model of the setting. Since
one can observe many things in any given situation, the observer must
select some aspects to record and some to ignore. For example, Joseph
Black observed a setting in which two fluids were brought into contact.
Using a thermometer and a clock, he measured the temperature of each
fluid at successive points in time. From this activity, he obtained data
providing a set of concrete descriptions of the setting.

Tazonomy formation (and revision) involves the organization of obser-
vations into classes and subclasses, along with the definition of those
classes. This process may operate on, or take into account, an existing
taxonomy or background knowledge. For instance, early chemists or-
ganized certain chemicals into the classes of acids, alkalis, and salts to
summarize regularities in their taste and behavior. As time went on,
they refined this taxonomy and modified the definitions of each class.
Another example of changing taxonomies involves the distinction be-
tween heat and temperature, which scientists had initially confounded
(Carey & Wiser, 1983).

Inductive law formation (and revision) involves the generation of empir-
ical laws that cover observed data. The laws are stated using terms from
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the agent’s taxonomy and are constrained by a model of the setting and
possibly by the scientist’s background knowledge. In some cases, the
scientist may generate an entirely new law; in others, an existing law
may be modified or extended. For instance, Black arrived at his law of
specific heat to summarize the temperature changes he observed in his
heat experiments. Similarly, based on systematic experiments with the
pressure and volume of gases in containers, Robert Boyle (1627 1691)
induced a law that related these two variables.

Theory formation (and revision) stands in the same relation to empirical
laws as does law formation to data. Given one or more laws, this activity
generates a theory from which one can derive the laws for a given model
by explanation. The theory is stated using terms from the domain’s
taxonomy and may be influenced by its background knowledge. Thus, a
theory interconnects a set of laws into a unified theoretical account. For
example, Boyle’s law describes the inverse relation between the pressure
and volume of a gas, whereas Charles’ law states the direct relation of
its temperature and pressure. The kinetic theory of gases provides an
elegant explanation for both laws in terms of Newtonian interactions
among molecules. Theory revision takes into account an anomalous
phenomenon or law that cannot be explained by an existing theory.
The revised theory should explain the anomalous phenomenon while
maintaining the ability to cover existing laws, although this is often not
possible.

Deductive law formation produces laws by a second route, starting with
a theory and using an explanatory framework to deduce both a law and
an explanation of how that law derives from the theory. Recall that laws
can be composed entirely of ground terms, so this process can create
very specific laws that lend themselves to prediction and thus aid in
theory evaluation. For instance, Einstein’s theory of general relativity
led to an inferred law about the orbit of Mercury. However, not all such
derived laws will be testable.

The explanation process connects a theory to a law by a narrative whose
general form is given by the field’s explanatory framework. In the con-
text of evaluation (described below), if such a narrative can be produced,
support may be lent to the theory or law from which the prediction
arose. If no such narrative can be produced—that is, if explanation
fails—then an anomaly results. The explanation process can also aid
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to known laws in the domain.? Explanation differs from deductive law
formation, in that explanation attempts to account for a law that is
already known.

The prediction process takes a law and a model of the setting, and
produces a prediction about what will be observed. This often involves
the results of intentional experimental manipulation, but it can also
occur in observational domains. For example, one can use the ideal gas
law to predict that, upon compressing a cylinder of gas, its temperature
will rise. One can also use Kepler’s laws of planetary motion to predict
that an eclipse will occur at a certain time. The analogous process of
postdiction takes place in cases where the scientist must account for
an existing observation. Prediction and postdiction stand in the same
relation to each other as deductive law formation and explanation.

Ezperimental design generates models of settings in which observations
are to be made. Typically, selected aspects of the model (the indepen-
dent variables) are systematically varied to determine their effect on
other aspects (the dependent variables). This design process may take
existing laws or theories into account, or it may be more exploratory in
nature. Thus, Black decided to systematically vary the substances used
in his experiments to determine their effects on rates of temperature
change. If competing theories are considered in experimental design,
they generally make different predictions.

The manipulation process constructs a physical setting that corresponds
(to whatever extent possible) to a desired model. Thus, the scientist
manipulates the environment in order to implement a given experimen-
tal design. For instance, Black instantiated his experimental design
for studying temperature phenomena by physically heating various sub-
stances.

Evaluation, comparing a prediction with observations, generally follows
experimental design and observation. Since predictions can vary in their
level of detail, evaluation may vary in what is accepted. This produces
either a successful postdiction or an anomaly, which may serve to stim-
ulate further theory or law formation or revision. For instance, the

2. A subtlety of the present definition arises from the fact that we have defined
the explanatory process to operate on laws, whereas one may sometimes want to
explain precise observations as well. However, recall that laws can vary in their
level of generality, so that one can easily transform observations into very specific
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anomalous behavior of rubbed objects (as described above) shed doubt
on the caloric theory.

For the sake of simplicity, we have omitted a number of important
activities from the above framework. These include: the process of
accepting a tentatively held theory, thus adding it to one’s background
knowledge; the process of scientific revolution, in which one revises an
entire theoretical framework; model formation and revision, in which
one generates or revises a model that connects a theory and its laws to
an experimental setting; and activities attending the important social
and embodied aspects of scientific activity, such as communication, note
taking, perception, and the construction of measurement instruments.
In Section 4, we will return to the last of these topics in an effort to
expand the traditional view of scientific behavior.

In any particular research endeavor, many of the activities described,
as well as those that we have omitted, will be composed into greater
units at various levels, ranging from daily actions to weekly plans to re-
search programmes that cover months or years. Specific computational
models implement certain combinations of these activities. In survey-
ing the past decade of research on computational models of discovery,
we will discuss the particular knowledge structures and activities that
researchers have implemented.

3. Recent Research on Machine Discovery

We have chosen to divide research on scientific discovery into two broad
periods. The first interval, during which cognitive scientists developed
the first computational models of the discovery process, extends from
the late 1970s through 1984. Below we provide a brief review of work
from this period. During the second period, from 1984 through the
present, researchers expanded on this early work along a variety of di-
mensions. We review this work in more detail, drawing from the con-
cepts specified in the previous section.

3.1 Early Computational Research on Discovery

Early work on computational approaches to discovery focused on finding
empirical regularities such as taxonomies and laws. This was a natural
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stages of a scientific discipline. Thus, it should require less domain
knowledge and permit the use of general heuristics.

Lenat’s (1979) AM was one of the earliest discovery systems, op-
erating in the domain of elementary number theory. This domain is
unusual when viewed in the light of more recent work, in that one can
generate data internally rather than observing them in a real or sim-
ulated environment. The user provided AM with an initial taxonomy
of mathematical concepts, which it proceeded to extend and revise by
mutation. Upon defining a new concept, the system used the definition
to generate examples, which it then used to direct the search for other
concepts. AM could also posit that two concepts were equivalent even
though they had different definitions, as well as notice relations among
different concepts. Thus, the system could discover certain classes of
qualitative laws, revise its taxonomy, create new terms, and observe
examples of these terms. However, it lacked components for experimen-
tation, explanation, prediction, theory formation, and evaluation.

Another early discovery system was Langley, Zytkow, Bradshaw, and
Simon’s (1983) BACON, which focused on the induction of numeric laws
from experimental data.? This program was provided with a set of in-
dependent and dependent variables, which it used to carry out simple
experiments drawing on simulated data, and which it used to organize
results into a taxonomic hierarchy. Once BAcCON had gathered data
for a given node in its hierarchy, it searched for constant values of de-
pendent terms or relations between independent and dependent terms.
In the former case, it augmented the node’s description with that con-
stancy; in the latter case, it defined new terms as products or ratios of
existing terms and continued the search. The system propagated con-
stant values to higher levels in its hierarchy, where it treated them as
dependent values in its search for higher-level numeric laws. BACON’s
main contribution was in the area of quantitative discovery and term
definition, though it also included user-specified methods for experimen-
tation, taxonomy formation, and observation. Like AM, it contained no
explicit components for explanation, prediction, theory formation, or
evaluation.

3. Langley et al.’s approach was influenced by earlier work on function discovery by
Huesmann and Cheng (1973) and by Gerwin (1975). Langley, Simon, Bradshaw,
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Langley et al. (1983) described two additional systems that address
different aspects of the discovery process. GLAUBER carried out a form
of taxonomy formation that also produced simple qualitative laws re-
lating the categories it defined. STAHL formulated simple structural
theories of chemical substances based on observed reactions, carrying
out a revision process upon encountering anomalous observations that
could not be explained by existing theories. Neither system contained
explicit methods for experimentation, prediction, or evaluation.

At the level of our framework, AM and BACON cover similar aspects of
the scientific process. Although both systems tackled important aspects
of scientific discovery, they also ignored many components of the overall
process and thus constituted initial forays rather than integrated mod-
els. During the past five years, research on computational approaches to
scientific discovery has produced a number of advances over this early
work. Omne can divide these developments into progress in knowledge
representation, progress on methods for discovery, and progress on the
integration of these methods. In the remainder of this section, we discuss
each of these in turn, providing examples from the recent literature.

3.2 Progress on Scientific Knowledge Structures

The most basic advances in machine discovery have involved the rep-
resentation of observations, laws, models, and theories. Early work
assumed simple descriptions of objects and events in terms of numeric
attributes or, at best, relations among objects. Qualitative and quan-
titative representations were entirely separate, and there existed no ex-
plicit representation for temporal information. However, a number of
recent discovery systems have drawn heavily on Forbus’ (1985) work on
qualitative process representations. This approach represents events as
a sequence of qualitative states, with each state describing an interval
of time during which the signs of derivatives remain constant. Forbus’
framework also lets one represent theories about processes in qualitative
terms and provides mechanisms for making qualitative predictions.

At least four researchers have incorporated this qualitative process
representation directly into their discovery systems. For instance, Falken-
hainer’s PHINEAS (this volume) uses qualitative data to retrieve and

4. More recently, Jones (1986) has described an incremental version of GLAUBER
that contains explicit components for experimentation, prediction, and

12 SHRAGER AND LANGLEY

match against promising background knowledge, then forms a new pro-
cess theory by analogy with this knowledge. O’Rorke, Morris, and Schu-
lenberg (this volume) represent data and theories in a similar form but
use anomalies to drive the process of theory revision. Rajamoney’s
CoAsT (this volume) uses a qualitative representation for models but
uses qualitative anomalies to constrain the experimentation process.?
Finally, Nordhausen and Langley’s IDS (this volume) uses Forbus’ for-
malism to represent both observations and qualitative laws, including
ones that involve relations among successive states.

Another representational advance involves the storage of justifications
on theories that aid in the processes of theory evaluation and revision.
For instance, Thagard and Nowak (this volume) explicitly represent
the arguments for and against competing theories, using this informa-
tion in their evaluation mechanism. In a similar manner, Pazzani and
Flower (this volume) make an analogy between theory evaluation and
argumentation, proposing the use of explicit arguments and counterar-
guments in evaluating theories. Rose and Langley (1986) take a related
approach in their STAHLp system, indexing observations by the theories
they support and retrieving them when anomalies call the theory into
question. Rajamoney’s COAST (this volume) employs a similar strategy
but stores only some of the evidence for a given theory to use during
later revisions.

A final representational innovation concerns the role of imagery. Miller
(1986) and Tweney (this volume) argue for the central role of imagery in
scientific thinking and call for research on computational approaches to
this topic. A number of researchers in qualitative reasoning are explic-
itly working on the problem of spatial reasoning (e.g., Nielsen, 1988),
and Shrager’s work (this volume) constitutes a novel approach, introduc-
ing a representation of scientific knowledge that is grounded in sensory-
motor operations. The use of qualitative process formalisms also bears
on this topic, in that one can “run” qualitative simulations to “envision”
what may follow from given starting conditions. These are only begin-
nings, but they considerably extend the simplistic mathematics-based
schemes that predominated in the early work on discovery.

5. Kulkarni and Simon (this volume) and Karp (this volume) also employ qualitative
representations in the design of experiments, but they do not explicitly work in
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3.3 Progress on Discovery-Related Activities

In terms of scientific activities, the most impressive advances have oc-
curred with respect to the formation and revision of theories. Falken-
hainer’s work on analogy describes one approach to theory formation,
in which knowledge of other domains is transferred to the one under
study. Kulkarni and Simon, O’Rorke et al., and Rajamoney all focus on
theory revision, showing how anomalies can lead to modification of an
initial theory and its gradual improvement over time. Karp’s HYPGENE
uses similar methods to deal with the related problem of model revision,
and Darden (this volume) discusses similar issues in her historical anal-
ysis. Rose (1989) describes a unified approach to incrementally revising
both theories and observations. Contrasting approaches to theory revi-
sion have been proposed that rely on conceptual combination (Holland,
Holyoak, Nisbett, & Thagard, 1986; Shrager, 1987), and Shrager’s work
(this volume) follows this approach in novel directions.

Another area of progress has involved experimentation. Klahr, Dun-
bar, and Fay (this volume), following upon the theory formation studies
of Shrager and Klahr (1986), have carried out detailed studies of the ex-
perimentation strategies of humans in understanding complex devices,
extending previous work (e.g., Mynatt, Doherty, & Tweney, 1978) in
important ways. The computational models of Kulkarni and Simon,
Rajamoney, and Karp have all focused on experimentation, and their
approaches share some important similarities. Each of their systems
makes predictions, notes anomalies, uses the latter to generate alterna-
tive hypotheses, and then designs experiments to discriminate among
the competitors.

Although a smaller fraction of researchers have focused on empiri-
cal discovery than in earlier days, advances have also occurred along
this front. One development is the work on “conceptual clustering”
by Stepp (1984), Lebowitz (1987), and Fisher (1987), which organizes
observations into taxonomies of concepts described at varying levels of
abstraction. Another area concerns improved methods for discovering
numeric laws, such as those described by Falkenhainer and Michalski
(1986), Kokar (1986), and Zytkow (1987). More recently, Nordhausen
and Langley (this volume) have reported novel methods in both areas,
along with techniques for discovering qualitative laws. Zytkow (this vol-
ume) outlines a method for quantitative discovery that takes advantage
of domain models to parse numeric laws into useful components. Both
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approaches rely on more powerful representations of observations and
laws than were used in earlier work. Another line of research by Ep-
stein (1987), Shen (1990), and Sims and Bresina (1989) has continued
in the AM tradition, refining Lenat’s approach and applying it to new
mathematical domains.

Finally, research has also progressed in the area of evaluation. Tha-
gard and Nowak (this volume) describe a method for evaluating the
relative quality of two theories in terms of each theory’s ability to ex-
plain a variety of phenomena. Taking a different approach, Cheeseman
(this volume) proposes Bayesian probabilistic criteria for evaluating tax-
onomies and laws. Both approaches seem likely to find their way into
future discovery systems, where they could be used to direct the search
for improved laws and theories.

3.4 Progress on Integrated Approaches to Discovery

Another important trend has been the evolution toward integrated dis-
covery systems. A number of researchers have combined nontrivial com-
ponents of the discovery process, producing synergistic effects from their
interactions. One can view these efforts as steps along the path toward
a complete theory of scientific discovery that describes not only basic
activities but also the relations among them.

One relatively complete integration of activities is embodied in Shra-
ger’s (1987) IE system, which carried out experiments on simulations of
a complex device and formed “mental models” of the device by concep-
tual combination. The system performed explorations and experiments
(both involving prediction) on the simulated device and carried out ex-
ercises in order to test the completeness of its theory. Although Shrager
was concerned mainly with TE’s “view application” method for theory
reformulation, the model also included simple versions of analogical the-
ory extension and postdiction.

Another example is Nordhausen and Langley’s work, which integrates
taxonomy formation, qualitative law discovery, and numeric law dis-
covery. Their IDS system incrementally organizes observed qualitative
states into a taxonomic hierarchy and then formulates qualitative laws
in terms of temporal relations between classes of states. It also uses
these qualitative laws to provide context for numeric relations and to
constrain the search for the latter.
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A third case is Kulkarni and Simon’s KEKADA, which integrates the-
ory revision, prediction, experimentation, and evaluation. Their system
begins with a partial theory and an anomaly, which KEKADA attempts
to explain by elaborating the theory. This leads to a number of alterna-
tive hypotheses, which the system evaluates by designing and running
experiments. If KEKADA encounters some new anomaly along the way,
it shifts attention and follows this path instead.5

These three systems are not the only ones that attempt to integrate
aspects of the discovery process, but they provide prototypical exam-
ples of this trend. If one compares the above descriptions of IE, IDS,
and KEKADA with the earlier characterizations of AM and BACON, the
recent progress toward integrated models of scientific discovery becomes
apparent. However, it is also clear that much work remains before we ar-
rive at a model that fully integrates even the incomplete set of processes
included in the framework from Section 2.

4. Open Issues in Scientific Discovery

In closing, we consider two important aspects of intellectual activity—
embedding and embodiment—that have significant bearing on science
but that have not been addressed by existing computational models.
Briefly, science takes place in a world that is occupied by the scientist,
by the physical system under study, and by other agents, and this world
has indefinite richness of physical structure and constraint. Thus the
scientist is an embodied agent embedded in a physical and social world.

Embodiment brings to the fore components of scientific behavior that
are easily ignored when the model exists entirely within a computer,
where all aspects of the environment are controllable, where observation
can take place by direct reference to data structures, and where the
environment has finite and known complexity. Embedding highlights
issues that have been traditionally ignored by models that focus on the
intellectual activity of individual scientists rather than on communities.
In this section, we consider some results of embedding and embodiment
that have generally been ignored in computational models of scientific
behavior (see also the critique of Tweney, this volume). We end by

6. Rajamoney’s COAST and Karp’s HYPGENE also combine prediction, experimen-
tation, and revision, but they focus on individual steps in this process rather than
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discussing some promising approaches toward creating computational
accounts for these components.

4.1 External Representations and Research Programs

As scientific domains become increasingly data intensive, external rep-
resentations come to play a central role in the research process. For
instance, notebooks and graphics are widely used in many disciplines
as memory aids and, more importantly, as aids to discovery through
data organization. In addition, such records help in research planning,
in which scientists sequence their activities within the larger scientific
context. Several researchers (Darden, this volume; Gorman & Carlson,
in press; Tweney, this volume) have studied the use of laboratory notes
and records, along with their influence on scientific reasoning. Their
analyses suggest that these external records have a major influence on
the discovery process. Kulkarni and Simon (this volume) are concerned
with programs of research, but they do not model the role of external
records in the planning process.

Given the importance of notebooks, graphics, and similar records, it
may seem astonishing that none of the existing computational models
of discovery incorporate such devices. Part of the reason comes from
unrealistic assumptions about the memory and speed of computational
systems. For instance, Langley et al.’s BACON has no need to plot
its data since it can retain as many observations as necessary in work-
ing memory and scan the data rapidly. Although no computational
models of discovery have taken seriously the function of external repre-
sentations, some work has been done in other areas of cognitive science
(e.g., Larkin & Simon, 1987; Shrager, 1989). Also, Shrager’s theory
of grounded representation (this volume) partially addresses this issue,
in that it is designed to operate with external stimuli as well as with
internal sensory content.

4.2 Perception and Measurement Instruments

The measurement process alone occupies a major fraction of scientists’
time and energy, leaving precious little remaining time for the intel-
lectual activities that we considered in Section 2. However, existing
models of scientific discovery are disembodied; they assume immediate
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itly separate the external setting from the agent’s internal knowledge,
the environment is sufficiently constrained that issues of attention and
perception are avoided. In addition to measuring simple quantities, sci-
entists must also connect observables to theoretical terms if the latter
are to be operational. Recent research on attention in concept learning
(Billman & Heit, 1988; Gennari, 1989) has started to address some of
these issues, but much more remains to be done.

Moreover, even the earliest histories of discovery involve some forms
of instrumentation. Many authors (e.g., Feyerabend, 1975; Giere, 1988;
Hacking, 1983) have noted the importance of measurement instruments
in the scientific process, but computational models have ignored this as-
pect of research. As with perception, this oversight is understandable, in
part because instrument construction is largely a physical phenomenon
that is difficult to model without solving difficult problems in robotics
or building rich simulations. One approach that shows some promise
is Nordhausen and Langley’s (this volume) method for postulating in-
trinsic properties, which provides a method for computing features of
new objects based on their behavior in familiar qualitative histories.
Effectively, these abstract histories describe “instruments” that let one
measure properties like boiling point or specific heat.

4.3 Laboratories, Collaboration, and Communication

Most modern science is too large and too expensive an undertaking for
an independent researcher to succeed, making it essential that scientists
collaborate. Although there are many alternative organizations for joint
research, the most common is the laboratory, in which a small number
of researchers collaborate on a small set of problems. Laboratories gen-
erally exist at a single location and include scientists at different levels of
expertise, from students to senior researchers. In addition, different lab-
oratories often work on the same or closely related problems. In some
cases, this work is competitive, but in other cases there is significant
cooperation, with division of labor and open interactions.

Collaboration of any sort requires some form of communication among
scientists, and it takes no statistical sophistication to conclude that sci-
entists spend much of their time talking, reading, and writing. These
sorts of communication provide another example of external represen-
tations in which graphics, mathematical expression, and language play
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before anything reaches the formal scientific literature. Tweney (this
volume) has argued that Faraday enriched his understanding of one do-
main from his ongoing research in other domains, but such enrichment
is surely is not restricted to the mental activities of individual scien-
tists. Formal communication is essential for the broader dissemination
of ideas, making reading and writing central scientific activities.

Existing computational models of discovery have avoided the collab-
orative and communicative aspects of scientific research, focusing on in-
dividual scientists’ behavior and ignoring group interactions. This was
a natural development, given the traditional focus of cognitive science
on the cognitive processes of individuals. However, the social organiza-
tion of science in the laboratory and in broader contexts has a major
influence on the nature of science, and future modeling efforts should
move toward incorporating aspects of this structure.”

4.4 Toward a Fuller Computational Account of Discovery

In summary, actual science occurs in the context of a physical world
and in the context of other agents, but existing computational accounts
of discovery have avoided these major issues. The reason for this bias
is straightforward. The methods and theories of cognitive science were
originally designed to model individual cognition, and the computa-
tional work on discovery has relied heavily on these tools. A deeper
understanding of embodiment will require considerable research in Al
and cognitive psychology, and the embedded nature of science awaits ad-
ditional work in sociology, anthropology, and psychology. Nevertheless,
some preliminary results hold out hope for advances in these areas.

For instance, the active research area of “distributed artificial intel-
ligence” focuses on understanding the ways that multiple agents can
interact in communities. Several collections are available on this topic
(see Gasser & Huhns, 1989; Huberman & Hogg, 1988), and researchers

7. Excellent collections have recently appeared on the sociology of scientific practice
and knowledge (see Fuller, De May, Shinn, & Woolgar, 1989). Readers of this
chapter will be particularly interested in a special issue of Social Studies of Science
(volume 19, number 4), in which several authors respond to Slezak (1989), who
argues that the success of BACON and similar discovery programs “[provide]
dramatic confirmation [of the view that] there are principles of rationality and a
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in this field explicitly draw upon results in the social sciences, especially
from economics and scientific reasoning. There is also hope that psycho-
anthropological approaches (e.g., Latour & Woolgar, 1979; Lynch, 1985;
Pickering, 1984) will explain certain social aspects of science, especially
the role of communication. However, to date these accounts have been
descriptive rather than computational. The literature on distributed
artificial intelligence also deals with issues of communication but focuses
on the nature of the information passed rather than on the processes
of individual agents acting in the community. Overall, there has been
little computational work on the communicative interactions of agents
with one another. Thagard and Nowak’s work (this volume) on the
acceptance of revolutions most closely speaks to the issues of interactions
among researchers, but their paradigm does not model the richness and
detailed functions of scientific communication.

Research on embodied agents has also made progress, not only in
traditional approaches to robotics but also in the interface between Al,
machine learning, and robotics. For instance, Laird, Yager, Tuck, and
Hucka (1989) describe a system that improves its ability to use a robot
arm with experience. The work of Iba and Langley (1987) on mo-
tor learning provides an additional example of this encouraging trend.
More relevant to scientific discovery are recent attempts (Zytkow, Zhu,
& Hussam, in press) to employ Al methods to control robotic equip-
ment for chemical experimentation. In addition, some researchers (see
Shrager, this volume) have taken perception as a central problem and
have attempted to explain complex intellectual activity in terms of sen-
sation and action. Other researchers have even attempted to deal with
the issues of physical and social environments simultaneously, as Co-
hen, Greenberg, Hart, and Howe (1989) have done in their work on
cooperative fire fighting in a simulated (burning) forest.

We believe that an important source for models of embedding and
embodiment in science will come from an unexpected direction: the de-
velopmental psychology of socialization, which studies the ways in which
a child learns to become a part of his or her culture (e.g., Bruner, 1985;
Kuhn, Amsel, & O’Loughlin, 1988; Vygotsky, 1962). Insights into this
process may provide hypotheses about the paths through which grad-
uate students and junior scientists become members of their scientific
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community mastering the ways of thinking, operating, and communi-
cating that constitute the institution of science.®

5. Conclusion

In effect, this chapter has attempted to define a new field of study—the
computational modeling of scientific behavior. Despite its relatively
recent development, this research area has already made significant
progress on issues that philosophers of science have traditionally ig-
nored. In particular, the field has emphasized the nature of discovery
rather than evaluation, and it has dealt with the processes that underlie
science as well as the representation of knowledge. The result has been a
rapidly growing set of computational models that deal with many facets
of the scientific enterprise.

Although the existing models are best viewed as embodying tenta-
tive hypotheses about the nature of science, it is also clear that the
past decade has seen real progress. Current systems still ignore many
important aspects of discovery and theory formation, but idealizations
are a central part of science; we should no more expect our computer
simulations to account for every aspect of discovery than we expect
our physical or chemical theories to explain every aspect of the physical
world. What we can expect is incremental progress toward fuller models
and deeper understanding, and that is precisely what has occurred in
the developing computational “science of science.”

The past few years have seen notable developments, not only in the
representations and processes used to model scientific discovery and
theory formation but also in their integration into a coherent framework.
We will not make specific predictions about the outlook for extending
the computational paradigm into the more difficult areas of embedded
and embodied science. However, the paths toward these goals seem lined
with fertile research questions waiting to be addressed. Progress along
these paths will certainly tax our existing theories and methodology,
but it should also bear rich rewards.

8. Luhrmann’s (1989) insightful psychoethnography of British witchcraft provides a
carefully researched example of a sort of socialization that she calls “interpretive
drift.” The analogy between becoming a scientist and becoming a witch runs
more deeply than one might think. Both deal with belief and action, and both
have significant rites of passage. Most of the structures and activities that we
have identified as typical of science apply equally well to witchcraft, and even to
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