From Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining (2001). ACM Press.

Generalized Clustering, Supervised Learning,
and Data Assignment

Annaka Kalton
Pat Langley
ISLE / 2164 Staunton Court
Palo Alto, CA 94306

[akalton,langley]@isle.org

ABSTRACT

Clustering algorithms have become increasingly important
in handling and analyzing data. Considerable work has been
done in devising effective but increasingly specific clustering
algorithms. In contrast, we have developed a generalized
framework that accommodates diverse clustering algorithms
in a systematic way. This framework views clustering as a
general process of iterative optimization that includes mod-
ules for supervised learning and instance assignment. The
framework has also suggested several novel clustering meth-
ods. In this paper, we investigate experimentally the effi-
cacy of these algorithms and test some hypotheses about
the relation between such unsupervised techniques and the
supervised methods embedded in them.

Categories and Subject Descriptors

1.2.6 [Computing Methodologies]: Artificial Intelligence
Learning

General Terms

Algorithms, design, experimentation

Keywords

Clustering, supervised learning, iterative optimization

1. INTRODUCTION AND MOTIVATION

Although most research on machine learning focuses on in-
duction from supervised training data, there are many situ-
ations in which class labels are not available and which thus
require unsupervised methods. One widespread approach
to unsupervised induction involves clustering the training
cases into groups that reflect distinct regions of the decision
space. There exists a large literature on clustering meth-
ods (e.g., Everitt [3]), a long history of their development,
and increasing interest in their application, yet there is still

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

KDD-2001San Francisco, CA USA

Copyright 2000 ACMcccoooiiin.. $5.00.

Kiri Wagstaff
Dept. of Computer Science
Cornell University
Ithaca, NY 14850

wkiri@cs.cornell.edu

Jungsoon Yoo
Computer Science Dept.
Middle Tenn. State University
Murfreesboro, TN 37132

csyoojp@mtsu.edu

little understanding of the relation between supervised and
unsupervised approaches to induction.

In this paper, we begin to remedy that oversight by ex-
amining situations in which a supervised induction method
occurs as a subroutine in a clustering algorithm. This sug-
gests two important ideas. First, one should be able to gen-
erate new clustering methods from existing techniques by
replacing the initial supervised technique with a different
supervised technique. Second, one would expect the result-
ing clustering methods to behave well (e.g., form desirable
clusters) in the same domains for which their supervised
components behave well, provided the latter have labeled
training data available.

In the pages that follow, we explore both ideas in the con-
text of iterative optimization, a common scheme for cluster-
ing that includes K-means and expectation maximization as
special cases. After reviewing this framework in Section 2,
we describe an approach to embedding any supervised algo-
rithm and its learned classifier in an iterative optimizer, and
in Section 3 we examine four supervised methods for which
we have taken this step. In Section 4, we report on exper-
imental studies designed to test our hypotheses about the
relations between behavior of the resulting clustering meth-
ods and that of their supervised components. In closing, we
review related work on generative frameworks for machine
learning and consider some directions for future research.

labeled data
Data — Update Assign
instances class instances — g(l;gered
models to classes

_/

model parameters

Figure 1: The iterative optimization procedure.

2. GENERALIZED CLUSTERING

Many clustering systems rely on the notion of iterative
optimization. As Figure 1 depicts, such a system iterates
between two steps — class model creation and data reassign-
ment until reaching a predetermined iteration limit or until
no further changes occur in reassignments. There are many
variations within this general framework, but the basic idea
is best illustrated with some well-known example methods.

2.1 K-means and EM as Iterative Optimizers

Two clustering algorithms that are popular for their sim-
plicity and flexibility are K-means [2] and expectation max-
imization (EM) [1]. Both methods have been studied ex-
perimentally on many problems and have been used widely
in applied settings. Here we review the algorithms briefly,
note their key similarities, and show how their differences
suggest a more general clustering framework.

The K-means algorithm represents each class by a cen-
troid, which it computes by taking the mean for each at-
tribute over all the instances belonging to that class. In
geometric terms, this corresponds to finding the center of
mass for the cases associated with that class. Data reas-
signment involves assigning each instance to the class of the
closest centroid.

In contrast, EM models each class by a probability distri-
bution that it extracts from the training data in the class
model creation step. If the data are continuous, each class is
generally modeled by an n-dimensional Gaussian distribu-
tion that consists of a mean and variance for each attribute.
In the discrete case, P(a; = wvji|ck) is extracted for each
possible combination of class ¢y, attribute a;, and attribute
value v;;. In both cases, when finding these parameters,
the contribution of each instance z; is weighted by P(ck|z;).
Data reassignment is done by recalculating P(cg|z;) for each
instance x; and class ¢, using the new class models.

2.2 A General Framework

Although both of the above clustering algorithms incor-
porate iterative optimization, they employ different meth-
ods for developing class models. Thus, we can view them
as invoking a different supervised learning technique to dis-
tinguish among the classes. The two algorithms also differ
in how they assign instances to classes: K-means assigns
each instance to a single class, whereas EM uses partial as-
signment, in that each instance is distributed among the
classes. We will refer to the absolute method as the “strict”
paradigm and to the partial method as “weighted”.

These observations lead to a general framework for clus-
tering that involves selecting a supervised learning algorithm
and selecting one of these assignment paradigms. In the
context of K-means and EM, this framework immediately
suggests some variants. By using the weighted paradigm
with the K-means classifier, we obtain a weighted K-means
algorithm. Similarly, combining EM’s probabilistic classi-
fier with the strict paradigm produces a variant in which
each instance is assigned entirely to its most probable class.
This variant has been explored under the name of “strict-
assignment EM”, although the partial assignment method
is more commonly used.

Although the classifiers utilized in K-means and EM can
be easily modified to operate with either assignment method,
other supervised algorithms can require more sophisticated
adaptations, as we will see shortly.

3. SUPERVISED LEARNING METHODS

As we have argued, it should be possible to embed any su-
pervised learning method within our generalized clustering
framework. However, our evaluation has focused on four
simple induction algorithms that have limited representa-
tional power [6], because the clustering process itself aims
to generate the disjoint decision regions that more power-
ful supervised methods are designed to produce. Below we

CLUSTERING AND SUPERVISED LLEARNING

describe these algorithms in some detail, including the adap-
tations we made for use in the weighted paradigm. These
adaptations involve altering model production to take into
account the weights of instances and revising instance reas-
signment to generate class weights for every instance, which
are then used to produce the next generation of class models.

3.1 Prototype Modeler

Our first supervised algorithm, which plays a role in K-
means, creates a prototype [13] or centroid for each class by
extracting the mean of each attribute from training cases for
that class. Such a prototype modeler classifies an instance
by selecting the class with the centroid closest to it in n-
dimensional space. Because the distance metric is sensitive
to variations in scale, our version normalizes all data to val-
ues between zero and one before creating the prototypes.

In the weighted paradigm, the mean for each attribute be-
comes a weighted average of the training cases. The relative
proximity of each instance to a given centroid determines
the associated weight for that centroid’s class. Formally, we
can express this by

distance(x;, prototype(ck))

w(zi|er) =1 — Tel ,
Yo, distance(xi, prototype(cm))
where |C| is the number of classes. The new centroid is then
composed of the weighted mean for each attribute, with the
mean of attribute a; for cluster ¢; being calculated by

S w(ziler) -z
S w(ilex)

where x;; is the value of the jth attribute of instance z; and
where | X| is the total number of instances.

3.2 Naive Bayesian Modeler

We selected naive Bayes [2] as our second induction algo-
rithm. As described in the context of EM, this technique
models each class as a probability distribution described by
P(ck) and P(a; = vji|ck) for each class ci, attribute a;, and
attribute value v;;. For nominal attributes, naive Bayes rep-
resents P(a; = vji|ck) as a discrete conditional probability
distribution, which it estimates from counts in the training
data, and it estimates the class probability P(c) in a similar
manner. For continuous attributes, it typically uses a condi-
tional Gaussian distribution that it estimates by computing
the mean and variance for each attribute from training data
for each class. To calculate the relative probability that a
new instance belongs to a given class ¢, naive Bayes em-
ploys the expression

Pex|zi) o Pex) [] Plaj = wvjilex)

which assumes that the distribution of values for each at-
tribute are independent given the class.

When operating normally as a strict classifier, naive Bayes
returns the class with the highest probability for each in-
stance. In the weighted case, the conditional distributions
are calculated using a weighted sum rather than a strict
sum, while the expression

P(ck|xs)
YL Plen|w:)

determines the weight used in the data reassignment process.

w(ziler) =

CLUSTERING AND SUPERVISED LLEARNING

3.3 Perceptron List Modeler

Another simple induction method, the perceptron algo-
rithm [12], also combines evidence from attributes during
classification, but uses the expression

1 if Z‘W‘?‘:l Wy - Tim > threshold

output =
b { 0 otherwise

to assign a test case to the positive (1) or negative (0) class.
Each weight w,, specifies the relative importance of an at-
tribute m; taken together, these weights determine a hyper-
plane that attempts to separate the two classes. The learn-
ing algorithm invokes an error-driven scheme to adjust the
weights associated with each attribute.! Because a percep-
tron can only differentiate between two classes, we employed
an ordered list of perceptrons that operates much like a deci-
sion list. The algorithm first learns to discriminate between
the majority class and others, generating the first percep-
tron. Instances in the majority class are removed, and the
system trains to distinguish the new majority class from the
rest, producing another perceptron. This process continues
until one class remains, which is treated as a default.

Although the perceptron traditionally assumes all-or-none
assignment, it seems natural to interpret the scaled differ-
ence between the sum and the threshold as a likelihood. The
weighted variant multiplies the update for each attribute
weight by the weight for each instance, so that an instance
with a smaller weight has a smaller effect on learning. To
prevent small weights from causing endless oscillations, it
triggers an updating cycle through the data only if an in-
correctly classified instance has a weight of greater than 0.5,
although all instances are used for the actual update.

In reassignment, the weighted method calculates the dif-
ference between the instance value and the threshold, scaled
by the sigmoid

1
1+ e5-(threshold—sum) ’

w(zi|er) =

which produces bounds on the weight size. If an instance
were evaluated as being perfectly at the threshold, the func-
tion would return 0.5. The factor 5 in the exponent of e
distributes the resulting weights over a larger range, so the
algorithm will not give a weight close to 0.5 for all instances.
Otherwise the sigmoid is not tight enough to be useful for a
generally small range of values.

3.4 Decision Stump Modeler

For our final supervised learning algorithm, we selected
decision-stump induction (e.g., Holte [4]), which differs from
the others in selecting a single attribute to classify instances.
To this end, it uses the information-theoretic measure

[l

. frea(cs, S) frea(cr, S)
info(S) = — ——"lo —
fo($) E:j S 92(S)

where freq(ck,S) is the frequency of class ¢, in a training
set S with |C| classes. If the attribute is continuous, the
algorithm orders its observed values and considers splitting
between each successive pair, selecting the split with the
highest score. The method applies this process recursively to

!For the purposes of this study, we used a learning rate of
0.05 and 50 iterations through the training data, which did
well on all our classification tasks.

the values in each subset, continuing until further divisions
gain no more information, as measured by

|P|
gain = info(T) — Z % ~info(Tm) ,

where T is the training set, T}, is a given subset of T, and
|P| is the number of branches. If the attribute is nominal,
the algorithm creates a separate branch for each attribute
value. Each branch of the stump is then associated with the
majority class of those training cases that are sorted to that
branch.

To accommodate weighted assignment, we adjust the equa-
tions above to sum over the weights of instances, rather than
over strict frequencies, and keep simple statistical informa-
tion for each branch. The reassignment weight given to each
instance for class ¢ is calculated by

S w(wmler)
SIS w(mlen) |

where |B| is the number of instances associated with the
branch to which that instance is sorted.

w(ziler) =

4. EXPERIMENTAL STUDIES

We had two intuitions about our clustering framework
that suggested corresponding formal hypotheses.? First, we
expected that each algorithm would exhibit a “preference”
for one of the data assignment paradigms by demonstrating
better performance in that paradigm across different data
sets. Second, we anticipated that, across data sets, high
(low) predictive accuracy by a supervised method would be
associated with relatively high (low) accuracy for the corre-
sponding clustering algorithm. In this section, we describe
our designs for the experiments to test these hypotheses and
the results we obtained.

4.1 Experiments with Natural Data

To test these hypotheses, we ran the generalized clustering
system with each algorithm-paradigm combination on a bat-
tery of natural data sets. We also evaluated each supervised
algorithm independently by training it and measuring its
predictive accuracy on a separate test set. The independent
variables were the assignment paradigm (for the clustering
tests), the supervised learning algorithm, the data set, and
the number of instances used in training. The dependent
variables were the classification accuracies on unseen data.

We used a standard accuracy metric to evaluate both the
supervised classifiers and the clustering algorithms:

Duier 0(w:)
T

accuracy(T) =

where T is the test set, and where §(z;) = 1 if z; is classified
correctly and 0 otherwise.

When evaluating accuracy, we trained each classifier on
the labeled data set with the test set removed. Because the
clustering algorithms create their own classes, we added a
step in which each completed cluster is assigned the actual

2Naturally, we also expected that no single algorithm com-
bination would outperform all others on all data sets, but
this is consistent with general findings in machine learning,
and so hardly deserves the status of an hypothesis.

Table 1: Supervised accuracies on four data sets.

Prototype Bayes Perceptron Stump
Promoters 86.0 87.0 76.0 70.0
Tris 49.3 94.7 46.0 93.3
Hayes-Roth 32.3 61.5 79.2 43.1
Glass 84.8 79.0 39.0 97.6

class of its majority population. For example, if a given
cluster counsists of 30 instances that are actually class A and
10 that are actually class B, all instances in the cluster will
be declared members of class A, with an accuracy of 75% for
that cluster. This approach loses detail, but it let us evaluate
each clustering algorithm against the “correct” clusters.

We selected four data sets from the UCI repository Pro-
moters, Iris, Hayes-Roth, and Glass — that involved different
numbers of classes (two to seven), different numbers of at-
tributes (five to 57), and different attribute types (nominal,
continuous, or mixed). Another factor in their selection was
that each led to high classification accuracy for one of the
supervised methods but (typically) to lower accuracy for the
others, as shown with bold font in Table 1. This differen-
tiation on supervised training data seemed a prerequisite
for testing the predicted correlation between accuracies for
supervised learning and clustering.

Moreover, remember that our four supervised methods
each has restricted representational power that is generally
limited to one decision region per class. As a result, the
fact that one such method obtains high accuracy in each of
these domains suggests that each of their classes maps onto
to a single cluster. This lets us assume that the number of
classes in each data set corresponds to the number of clus-
ters, further increasing the chances of meaningful results.

For each data set, we collected a learning curve using ten-
fold cross-validation, recording results for each increment
of 25 data points. Typically, clustering accuracy ceased to
improve early in the curve, although the supervised accuracy
often continued to increase. The results we report here all
involve accuracy as measured at the last point on each curve.

Table 2: Unsupervised accuracies for two alternative
data assignment paradigms (strict/weighted).

Prototype Bayes Perceptron Stump
Promoters 62.0/77.0 52.0/41.0 49.0/57.0 19.0/26.0
Tris 27.3/51.3 83.3/88.0 26.7/32.0 55.3/53.3
Hayes-Roth 37.7/39.2 30.0/40.0 38.5/38.5 34.6/36.2
Glass 84.8/51.0 44.8/61.9 26.2/34.3 77.1/74.3

Recall that our first hypothesis predicted each supervised
method would construct more accurate clusters when com-
bined with its preferred data assignment paradigm. The
results in Table 2, which shows the classification accura-
cies for each method-paradigm combination on the four do-
mains, disconfirms this hypothesis. In general, each super-
vised algorithm sometimes did better with one assignment
scheme and sometimes with the other, depending on the do-
main. Both naive Bayes and the prototype learner showed

CLUSTERING AND SUPERVISED LLEARNING

8

t§ =] Protot
rototype
S| [ravenmes 4
aive Bayes
@ Y O B O
oS Q- Perceptron list
o ® ® @)
g Decision stump (O
g
z g n
> O
° O
° |
< 7 | o [)
O
o oH
&1 @)
e T T T T 1
0 20 40 60 80 100

Supervised accuracy

Figure 2: Supervised and unsupervised accuracies,
using strict data assignment, for four algorithms on
four natural data sets (r = 0.745).

large shifts of this sort, though swings for the decision-stump
learner were less drastic. Only the perceptron list method
showed any support for our prediction, favoring weighted as-
signment on three data sets and a tied result on the fourth.

After addressing our first hypothesis, we proceeded to test
our second claim, that relatively higher (lower) accuracy in
supervised mode is associated with relatively higher (lower)
accuracy on unsupervised data, i.e., that they are correlated
positively. Our original plan was to measure the unsuper-
vised accuracy of each learning algorithm when combined
with its preferred data assignment paradigm. Having re-
jected the notion of such preference, we resorted instead
to measuring the relation between supervised accuracy and
that achieved by clustering with strict assignment, followed
by a separate measure between the accuracy of supervised
learning and weighted assignment.

To this end, we computed the correlation between the su-
pervised accuracies using the 16 algorithm-domain combi-
nations in Table 1 and the analogous strict accuracies from
Table 2. The resulting correlation coefficient, r = 0.745,
was significant at the 0.01 level and explained 55 percent
of the variance. Figure 2 shows that supervised accuracy is
a reasonable predictor of unsupervised accuracy, thus gen-
erally supporting our hypothesis. We also calculated the
correlation between supervised accuracies and the weighted
accuracies from Table 2. Here the correlation was r = 0.653,
which was also significant at the 0.01 level and explained 43
percent of the variance.

4.2 Experiments with Synthetic Data

Our encouraging results with natural data sets show that
our framework has relevance to real-world clustering prob-
lems; but they can give only limited understanding for the
reasons underlying the phenomena. For this reason, we de-
cided to carry out another study that employed synthetic
data designed to reveal the detailed causes of these effects.

One standard explanation for some induction methods
outperforming others relies on the notion of inductive bias,
which reflects the fact that some formalisms can represent

CLUSTERING AND SUPERVISED LLEARNING

certain decision regions more easily than others. Since our
four supervised learning methods have quite different induc-
tive biases, we designed four separate learning tasks, each
intended to be easily learned by one of these methods but
not by others.

Each learning task incorporated two continuous variables
and three classes, with a single contiguous decision region
for each class. Thus, the domain designed with decision
stumps in mind involved splits along one relevant attribute,
the prototype-friendly domain involved three distinct proto-
types, and so forth. The naive Bayesian classifier is difficult
to foil, but for every other supervised method, we had at
least one domain on which it should do relatively poorly.
For each domain, we devised a generator that produced 125
random instances from either a uniform or, for the Bayes-
friendly domain, a Gaussian distribution for every class, cre-
ating the same number of instances for each one.

The geometric metaphor clarifies one reason that a given
method should outperform others in both supervised and
unsupervised mode, but it also suggests a reason why the
correlation between behavior on these two tasks is imper-
fect. Conventional wisdom states that clustering is easy
when clusters are well separated but difficult when they are
not. Thus, our data generator also included a parameter S
that let us vary systematically the separation between the
boundaries of each class. The predictive variables for each
domain ranged from 0 to 1, so we varied the separation dis-
tance from S =0 to S = 0.24.

Although we expected our synthetic domains to repro-
duce the positive correlation we observed with natural data,
we also predicted that cluster separation should influence
this effect. In particular, we thought the correlation would
be lower when the gap was small, since iterative optimiza-
tion would have difficulty assigning instances to the “right”
unlabeled classes, whereas supervised learning would have
no such difficulty. However, the correlation should increase
monotonically with cluster distance, since the process of
finding well-separated clusters should then be dominated by
the inductive bias of the supervised learning modules.

Our experimental runs with synthetic data did not sup-
port these predictions.® Despite our attempts to design
data sets that would distinguish among the supervised learn-
ing methods, correlations between supervised and unsuper-
vised accuracies when cluster separation S = 0 were con-
siderably lower (r = 0.488 for strict and r = 0.377 for
weighted) than for our studies with natural domains, though
still marginally significant at the 0.1 level. Moreover, our
experiments showed no evidence that correlation increases
with cluster separation, giving r = 0.413 for strict and
r = 0.337 for weighted when S = 0.12, and giving r = 0.462
for strict and r = 0.219 for weighted when S = 0.24.

Figure 3, which plots the accuracies for strict unsuper-
vised learning against supervised accuracy when cluster sep-
aration S = 0, suggests one reason for this negative result.
Apparently, the correlations are being reduced by a “ceiling
effect” in which the supervised accuracies (generally much
higher than for our results on natural domains) show little
variation, whereas the unsupervised accuracies still range
widely. The supervised methods typically learn very accu-
rate classifiers across all four synthetic domains, even though

3This study also revealed no evidence for a preferred data as-
signment scheme, with the best combinations shifting across
both domain and separation level.

5

o
el
© Prototype | |
3 .
§ Naive Bayes 0
o 2 Perceptron list @ O
2 Decision stump () DD
g O n
I .
5°7

o © °
® [
o |
<
]

<

N

e T T T T 1

0 20 40 60 80 100

Supervised accuracy

Figure 3: Supervised and unsupervised accuracies,
using strict data assignment, for four algorithms
with S =0 on four synthetic data sets (r = 0.488).

we did our best to design them otherwise. Analogous plots
for higher values of the separation parameter S show even
stronger versions of this effect, indicating that supervised
induction benefits more from cluster separation than does
unsupervised clustering, which explains why the correlation
does not increase as predicted.

Our expectations rested on the intuition that inductive
bias and cluster separation are the dominant factors in de-
termining the behavior of an iterative optimizer. From these
negative results, and from the high correlations on natural
domains, we can infer that other factors we did not vary
in this experiment play an equal or more important role.
Likely candidates include the number of relevant attributes,
the number of irrelevant attributes, the amount of attribute
noise, and the number of classes, all of which are known to
affect the predictive accuracy of learned classifiers. These
domain characteristics should be varied systematically in
future studies that draw on synthetic data to explore the
relation between clustering and supervised learning.

5. RELATED WORK

As we noted earlier, there exists a large literature on clus-
tering that others (e.g., Everitt [3]) have reviewed at length.
Much of this work relies on iterative optimization to group
training cases, and there exist many variants beyond the
K-means and expectation-maximization algorithms familiar
to most readers. For instance, Michalski and Stepp’s [11]
CLUSTER/2 used logical rule induction to characterize its
clusters and assign cases to them. More recently, Zhang,
Hsu, and Dayal [15] have described the K-harmonic means
method, which operates like K-means but invokes a differ-
ent distance metric that usually speeds convergence. How-
ever, despite this diversity, researchers have not proposed
either theoretical frameworks for characterizing the space of
iterative optimization methods or software frameworks to
support their rapid construction and evaluation.

In the broader arena, there have been some efforts to link
methods for supervised and unsupervised learning. For ex-
ample, Langley and Sage [8] adapted a method for inducing

univariate decision trees to operate on unsupervised data
and thus generate taxonomy, and, more recently, Langley [6]
and Liu et al. [9] have described similar but more sophisti-
cated approaches. The relationship between supervised and
unsupervised algorithms for rule learning is more transpar-
ent; Martin [10] has reported one approach that adapts su-
pervised techniques to construct association rules from unla-
beled data. But again, such research has focused on specific
algorithms rather than on general or generative frameworks.
However, other areas of machine learning have seen a few
frameworks of this sort. Langley and Neches [7] developed
Prism, a flexible language for production-system architec-
tures that supported many combinations of performance and
learning algorithms, and later versions of PrRODIGY [14] in-
cluded a variety of mechanisms for learning search-control
knowledge. For classification problems, Kohavi et al.’s [5]
MLC++ supported a broad set of supervised induction al-
gorithms that one could invoke with considerable flexibility.
The generative abilities of MLC++ are apparent from its
use for feature selection and its support for novel combina-
tions of existing algorithms. This effort comes closest to our
own in spirit, both in its goals and its attempt to provide a
flexible software infrastructure for machine learning.

6. CONCLUDING REMARKS

In this paper, we presented a framework for iterative op-
timization approaches to clustering that lets one embed any
supervised learning algorithm as a model-construction com-
ponent. This approach produces some familiar clustering
techniques, like K-means and EM, but it also generates some
novel methods that have not appeared in the literature. The
framework also let us evaluate some hypotheses about the
relation between the resulting clustering methods and their
supervised modules, which we tested using both natural and
synthetic data.

Our first hypothesis, that each supervised method had a
preferred data assignment scheme with which it produced
more accurate clusters, was not borne out the experiments.
Clustering practitioners can continue to combine prototype
learning with strict assignment (giving K-means) and naive
Bayes with weighted assignment (giving EM), but we found
no evidence that these combinations are superior to the al-
ternatives. However, our experiments did support our sec-
ond hypothesis by revealing strong correlations between the
accuracy of supervised algorithms on natural data sets and
the accuracy of iterative optimizers in which they were em-
bedded. We augmented these results with experiments on
synthetic data, which gave us control over decision regions
and separation of clusters. These studies also produced pos-
itive correlations between supervised and unsupervised ac-
curacy, but failed to reveal an effect of cluster separation.

Clearly, there remains considerable room for additional
research. The framework supports a variety of new clus-
tering algorithms, each interesting in its own right but also
important for testing further our hypotheses about relations
between supervised and unsupervised learning. We should
also carry out experiments with synthetic data that vary
systematically other factors that can affect predictive accu-
racy, such as irrelevant features and attribute noise. Finally,
we should explore further the role of cluster separation and
the reason it had no apparent influence in our studies.

Although our specific results are intriguing, we attach
more importance to the framework itself, which supports

CLUSTERING AND SUPERVISED LLEARNING

a new direction for studies of clustering mechanisms. We
encourage other researchers to view existing techniques as
examples of some generative framework and to utilize that
framework both to explore the space of clustering meth-
ods and to reveal underlying relations between supervised
and unsupervised approaches to induction. Ultimately, this
strategy should produce a deeper understanding of the clus-
tering process and its role in the broader science of machine
learning.

7. REFERENCES

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, 39:1 38,
Series B, 1977.

[2] R. O. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. John Wiley and Sons, 1973.

[3] B. Everitt. Cluster Analysis. Halsted Press, New York,
2nd edition, 1980.

[4] R. C. Holte. Very simple classification rules perform
well on most commonly used data sets. Machine Learn-
ing, 3:63 91, 1993.

[5] R.Kohavi, G. John, R. Long, D. Manley, and K. Pfleger.
MLC++: A machine learning library in C++. In Tools
with Artificial Intelligence, pages 740 743, IEEE Com-
puter Society Press, 1994.

[6] P. Langley. Elements of Machine Learning. Morgan
Kaufmann, San Francisco, CA, 1996.

[7] P. Langley and R. T. Neches. PrISM user’s manual.
Technical report, Carnegie-Mellon University, Depart-
ment of Computer Science, Pittsburgh, PA 1981.

[8] P. Langley and S. Sage. Conceptual clustering as dis-
crimination learning. In Proceedings of the Fifth Bien-
nial Conference of the Canadian Society for Compu-
tational Studies of Intelligence, pages 95 98, London,
Ontario, Canada, 1984.

[9] B. Liu, Y. Xia, and P. Yu. Clustering through deci-
sion tree construction. In Proceedings of the ACM In-
ternational Conference on Information and Knowledge
Management, Washington, DC, 2000.

[10] J. D. Martin. Focusing attention for observational learn-
ing: The importance of context. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, Detroit, MI, 1989. Morgan Kaufmann.

[11] R. S. Michalski and R. E. Stepp. Learning from ob-
servation: Conceptual clustering. In R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach. Morgan
Kaufmann, San Francisco, CA, 1983.

[12] F. Rosenblatt. Principles of Neurodynamics: Percep-
trons and the Theory of Brain Mechanisms. Spartan,
Washington, DC, 1962.

[13] E. E. Smith and D. L. Medin. Categories and Concepts.
Harvard University Press, Cambridge, MA, 1981.

[14] M. M. Veloso and J. G. Carbonell. Derivational analogy
in PRODIGY: Automating case acquisition, storage, and
utilization. Machine Learning, 10:249 278, 1993.

[15] B. Zhang, M. Hsu, and U. Dayal. K-harmonic means
A spatial clustering algorithm with boosting. In Pro-
ceedings of the PKDD-2000 Workshop on Temporal,
Spatial, and Spatio-Temporal Data Mining, 2000.

