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ABSTRACTClustering algorithms have become increasingly importantin handling and analyzing data. Considerable work has beendone in devising e�ective but increasingly speci�c clusteringalgorithms. In contrast, we have developed a generalizedframework that accommodates diverse clustering algorithmsin a systematic way. This framework views clustering as ageneral process of iterative optimization that includes mod-ules for supervised learning and instance assignment. Theframework has also suggested several novel clustering meth-ods. In this paper, we investigate experimentally the e�-cacy of these algorithms and test some hypotheses aboutthe relation between such unsupervised techniques and thesupervised methods embedded in them.
Categories and Subject DescriptorsI.2.6 [Computing Methodologies]: Arti�cial Intelligence{Learning
General TermsAlgorithms, design, experimentation
KeywordsClustering, supervised learning, iterative optimization
1. INTRODUCTION AND MOTIVATIONAlthough most research on machine learning focuses on in-duction from supervised training data, there are many situ-ations in which class labels are not available and which thusrequire unsupervised methods. One widespread approachto unsupervised induction involves clustering the trainingcases into groups that reect distinct regions of the decisionspace. There exists a large literature on clustering meth-ods (e.g., Everitt [3]), a long history of their development,and increasing interest in their application, yet there is still
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little understanding of the relation between supervised andunsupervised approaches to induction.In this paper, we begin to remedy that oversight by ex-amining situations in which a supervised induction methodoccurs as a subroutine in a clustering algorithm. This sug-gests two important ideas. First, one should be able to gen-erate new clustering methods from existing techniques byreplacing the initial supervised technique with a di�erentsupervised technique. Second, one would expect the result-ing clustering methods to behave well (e.g., form desirableclusters) in the same domains for which their supervisedcomponents behave well, provided the latter have labeledtraining data available.In the pages that follow, we explore both ideas in the con-text of iterative optimization, a common scheme for cluster-ing that includes K-means and expectation maximization asspecial cases. After reviewing this framework in Section 2,we describe an approach to embedding any supervised algo-rithm and its learned classi�er in an iterative optimizer, andin Section 3 we examine four supervised methods for whichwe have taken this step. In Section 4, we report on exper-imental studies designed to test our hypotheses about therelations between behavior of the resulting clustering meth-ods and that of their supervised components. In closing, wereview related work on generative frameworks for machinelearning and consider some directions for future research.
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2. GENERALIZED CLUSTERINGMany clustering systems rely on the notion of iterativeoptimization. As Figure 1 depicts, such a system iteratesbetween two steps { class model creation and data reassign-ment { until reaching a predetermined iteration limit or untilno further changes occur in reassignments. There are manyvariations within this general framework, but the basic ideais best illustrated with some well-known example methods.



2 Clustering and Supervised Learning
2.1 K-means and EM as Iterative OptimizersTwo clustering algorithms that are popular for their sim-plicity and exibility are K-means [2] and expectation max-imization (EM) [1]. Both methods have been studied ex-perimentally on many problems and have been used widelyin applied settings. Here we review the algorithms briey,note their key similarities, and show how their di�erencessuggest a more general clustering framework.The K-means algorithm represents each class by a cen-troid, which it computes by taking the mean for each at-tribute over all the instances belonging to that class. Ingeometric terms, this corresponds to �nding the center ofmass for the cases associated with that class. Data reas-signment involves assigning each instance to the class of theclosest centroid.In contrast, EM models each class by a probability distri-bution that it extracts from the training data in the classmodel creation step. If the data are continuous, each class isgenerally modeled by an n-dimensional Gaussian distribu-tion that consists of a mean and variance for each attribute.In the discrete case, P (aj = vjljck) is extracted for eachpossible combination of class ck, attribute aj , and attributevalue vjl. In both cases, when �nding these parameters,the contribution of each instance xi is weighted by P (ckjxi).Data reassignment is done by recalculating P (ckjxi) for eachinstance xi and class ck using the new class models.
2.2 A General FrameworkAlthough both of the above clustering algorithms incor-porate iterative optimization, they employ di�erent meth-ods for developing class models. Thus, we can view themas invoking a di�erent supervised learning technique to dis-tinguish among the classes. The two algorithms also di�erin how they assign instances to classes: K-means assignseach instance to a single class, whereas EM uses partial as-signment, in that each instance is distributed among theclasses. We will refer to the absolute method as the \strict"paradigm and to the partial method as \weighted".These observations lead to a general framework for clus-tering that involves selecting a supervised learning algorithmand selecting one of these assignment paradigms. In thecontext of K-means and EM, this framework immediatelysuggests some variants. By using the weighted paradigmwith the K-means classi�er, we obtain a weighted K-meansalgorithm. Similarly, combining EM's probabilistic classi-�er with the strict paradigm produces a variant in whicheach instance is assigned entirely to its most probable class.This variant has been explored under the name of \strict-assignment EM", although the partial assignment methodis more commonly used.Although the classi�ers utilized in K-means and EM canbe easily modi�ed to operate with either assignment method,other supervised algorithms can require more sophisticatedadaptations, as we will see shortly.
3. SUPERVISED LEARNING METHODSAs we have argued, it should be possible to embed any su-pervised learning method within our generalized clusteringframework. However, our evaluation has focused on foursimple induction algorithms that have limited representa-tional power [6], because the clustering process itself aimsto generate the disjoint decision regions that more power-ful supervised methods are designed to produce. Below we

describe these algorithms in some detail, including the adap-tations we made for use in the weighted paradigm. Theseadaptations involve altering model production to take intoaccount the weights of instances and revising instance reas-signment to generate class weights for every instance, whichare then used to produce the next generation of class models.
3.1 Prototype ModelerOur �rst supervised algorithm, which plays a role in K-means, creates a prototype [13] or centroid for each class byextracting the mean of each attribute from training cases forthat class. Such a prototype modeler classi�es an instanceby selecting the class with the centroid closest to it in n-dimensional space. Because the distance metric is sensitiveto variations in scale, our version normalizes all data to val-ues between zero and one before creating the prototypes.In the weighted paradigm, the mean for each attribute be-comes a weighted average of the training cases. The relativeproximity of each instance to a given centroid determinesthe associated weight for that centroid's class. Formally, wecan express this byw(xijck) = 1� distance(xi; prototype(ck))PjCjm=1 distance(xi; prototype(cm)) ;where jCj is the number of classes. The new centroid is thencomposed of the weighted mean for each attribute, with themean of attribute aj for cluster ck being calculated byPjXji=1 w(xijck) � xijPjXji=1 w(xijck) ;where xij is the value of the jth attribute of instance xi andwhere jXj is the total number of instances.
3.2 Naive Bayesian ModelerWe selected naive Bayes [2] as our second induction algo-rithm. As described in the context of EM, this techniquemodels each class as a probability distribution described byP (ck) and P (aj = vjljck) for each class ck, attribute aj , andattribute value vjl. For nominal attributes, naive Bayes rep-resents P (aj = vjljck) as a discrete conditional probabilitydistribution, which it estimates from counts in the trainingdata, and it estimates the class probability P (ck) in a similarmanner. For continuous attributes, it typically uses a condi-tional Gaussian distribution that it estimates by computingthe mean and variance for each attribute from training datafor each class. To calculate the relative probability that anew instance belongs to a given class ck, naive Bayes em-ploys the expressionP (ckjxi) / P (ck)Yj P (aj = vjljck) ;which assumes that the distribution of values for each at-tribute are independent given the class.When operating normally as a strict classi�er, naive Bayesreturns the class with the highest probability for each in-stance. In the weighted case, the conditional distributionsare calculated using a weighted sum rather than a strictsum, while the expressionw(xijck) = P (ckjxi)PjCjm=1 P (cmjxi)determines the weight used in the data reassignment process.
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3.3 Perceptron List ModelerAnother simple induction method, the perceptron algo-rithm [12], also combines evidence from attributes duringclassi�cation, but uses the expressionoutput = � 1 if PjAjm=1 wm � xim > threshold0 otherwiseto assign a test case to the positive (1) or negative (0) class.Each weight wm speci�es the relative importance of an at-tribute m; taken together, these weights determine a hyper-plane that attempts to separate the two classes. The learn-ing algorithm invokes an error-driven scheme to adjust theweights associated with each attribute.1 Because a percep-tron can only di�erentiate between two classes, we employedan ordered list of perceptrons that operates much like a deci-sion list. The algorithm �rst learns to discriminate betweenthe majority class and others, generating the �rst percep-tron. Instances in the majority class are removed, and thesystem trains to distinguish the new majority class from therest, producing another perceptron. This process continuesuntil one class remains, which is treated as a default.Although the perceptron traditionally assumes all-or-noneassignment, it seems natural to interpret the scaled di�er-ence between the sum and the threshold as a likelihood. Theweighted variant multiplies the update for each attributeweight by the weight for each instance, so that an instancewith a smaller weight has a smaller e�ect on learning. Toprevent small weights from causing endless oscillations, ittriggers an updating cycle through the data only if an in-correctly classi�ed instance has a weight of greater than 0.5,although all instances are used for the actual update.In reassignment, the weighted method calculates the dif-ference between the instance value and the threshold, scaledby the sigmoidw(xijck) = 11 + e5�(threshold�sum) ;which produces bounds on the weight size. If an instancewere evaluated as being perfectly at the threshold, the func-tion would return 0.5. The factor 5 in the exponent of edistributes the resulting weights over a larger range, so thealgorithm will not give a weight close to 0.5 for all instances.Otherwise the sigmoid is not tight enough to be useful for agenerally small range of values.
3.4 Decision Stump ModelerFor our �nal supervised learning algorithm, we selecteddecision-stump induction (e.g., Holte [4]), which di�ers fromthe others in selecting a single attribute to classify instances.To this end, it uses the information-theoretic measureinfo(S) = � jCjXk=1 freq(ck; S)jSj � log2�freq(ck; S)jSj � ;where freq(ck; S) is the frequency of class ck in a trainingset S with jCj classes. If the attribute is continuous, thealgorithm orders its observed values and considers splittingbetween each successive pair, selecting the split with thehighest score. The method applies this process recursively to1For the purposes of this study, we used a learning rate of0.05 and 50 iterations through the training data, which didwell on all our classi�cation tasks.

the values in each subset, continuing until further divisionsgain no more information, as measured bygain = info(T )� jP jXm=1 jTmjjT j � info(Tm) ;where T is the training set, Tm is a given subset of T , andjP j is the number of branches. If the attribute is nominal,the algorithm creates a separate branch for each attributevalue. Each branch of the stump is then associated with themajority class of those training cases that are sorted to thatbranch.To accommodate weighted assignment, we adjust the equa-tions above to sum over the weights of instances, rather thanover strict frequencies, and keep simple statistical informa-tion for each branch. The reassignment weight given to eachinstance for class ck is calculated byw(xijck) = PjBjm=1 w(xmjck)PjCjn=1PjBjm=1 w(xmjcn) ;where jBj is the number of instances associated with thebranch to which that instance is sorted.
4. EXPERIMENTAL STUDIESWe had two intuitions about our clustering frameworkthat suggested corresponding formal hypotheses.2 First, weexpected that each algorithm would exhibit a \preference"for one of the data assignment paradigms by demonstratingbetter performance in that paradigm across di�erent datasets. Second, we anticipated that, across data sets, high(low) predictive accuracy by a supervised method would beassociated with relatively high (low) accuracy for the corre-sponding clustering algorithm. In this section, we describeour designs for the experiments to test these hypotheses andthe results we obtained.
4.1 Experiments with Natural DataTo test these hypotheses, we ran the generalized clusteringsystem with each algorithm-paradigm combination on a bat-tery of natural data sets. We also evaluated each supervisedalgorithm independently by training it and measuring itspredictive accuracy on a separate test set. The independentvariables were the assignment paradigm (for the clusteringtests), the supervised learning algorithm, the data set, andthe number of instances used in training. The dependentvariables were the classi�cation accuracies on unseen data.We used a standard accuracy metric to evaluate both thesupervised classi�ers and the clustering algorithms:accuracy(T ) = Pxi2T �(xi)jT j ;where T is the test set, and where �(xi) = 1 if xi is classi�edcorrectly and 0 otherwise.When evaluating accuracy, we trained each classi�er onthe labeled data set with the test set removed. Because theclustering algorithms create their own classes, we added astep in which each completed cluster is assigned the actual2Naturally, we also expected that no single algorithm com-bination would outperform all others on all data sets, butthis is consistent with general �ndings in machine learning,and so hardly deserves the status of an hypothesis.



4 Clustering and Supervised LearningTable 1: Supervised accuracies on four data sets.Prototype Bayes Perceptron StumpPromoters 86.0 87.0 76.0 70.0Iris 49.3 94.7 46.0 93.3Hayes-Roth 32.3 61.5 79.2 43.1Glass 84.8 79.0 39.0 97.6class of its majority population. For example, if a givencluster consists of 30 instances that are actually class A and10 that are actually class B, all instances in the cluster willbe declared members of class A, with an accuracy of 75% forthat cluster. This approach loses detail, but it let us evaluateeach clustering algorithm against the \correct" clusters.We selected four data sets from the UCI repository { Pro-moters, Iris, Hayes-Roth, and Glass { that involved di�erentnumbers of classes (two to seven), di�erent numbers of at-tributes (�ve to 57), and di�erent attribute types (nominal,continuous, or mixed). Another factor in their selection wasthat each led to high classi�cation accuracy for one of thesupervised methods but (typically) to lower accuracy for theothers, as shown with bold font in Table 1. This di�eren-tiation on supervised training data seemed a prerequisitefor testing the predicted correlation between accuracies forsupervised learning and clustering.Moreover, remember that our four supervised methodseach has restricted representational power that is generallylimited to one decision region per class. As a result, thefact that one such method obtains high accuracy in each ofthese domains suggests that each of their classes maps ontoto a single cluster. This lets us assume that the number ofclasses in each data set corresponds to the number of clus-ters, further increasing the chances of meaningful results.For each data set, we collected a learning curve using ten-fold cross-validation, recording results for each incrementof 25 data points. Typically, clustering accuracy ceased toimprove early in the curve, although the supervised accuracyoften continued to increase. The results we report here allinvolve accuracy as measured at the last point on each curve.Table 2: Unsupervised accuracies for two alternativedata assignment paradigms (strict/weighted).Prototype Bayes Perceptron StumpPromoters 62.0/77.0 52.0/41.0 49.0/57.0 19.0/26.0Iris 27.3/51.3 83.3/88.0 26.7/32.0 55.3/53.3Hayes-Roth 37.7/39.2 30.0/40.0 38.5/38.5 34.6/36.2Glass 84.8/51.0 44.8/61.9 26.2/34.3 77.1/74.3Recall that our �rst hypothesis predicted each supervisedmethod would construct more accurate clusters when com-bined with its preferred data assignment paradigm. Theresults in Table 2, which shows the classi�cation accura-cies for each method-paradigm combination on the four do-mains, discon�rms this hypothesis. In general, each super-vised algorithm sometimes did better with one assignmentscheme and sometimes with the other, depending on the do-main. Both naive Bayes and the prototype learner showed
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Figure 2: Supervised and unsupervised accuracies,using strict data assignment, for four algorithms onfour natural data sets (r = 0:745).large shifts of this sort, though swings for the decision-stumplearner were less drastic. Only the perceptron list methodshowed any support for our prediction, favoring weighted as-signment on three data sets and a tied result on the fourth.After addressing our �rst hypothesis, we proceeded to testour second claim, that relatively higher (lower) accuracy insupervised mode is associated with relatively higher (lower)accuracy on unsupervised data, i.e., that they are correlatedpositively. Our original plan was to measure the unsuper-vised accuracy of each learning algorithm when combinedwith its preferred data assignment paradigm. Having re-jected the notion of such preference, we resorted insteadto measuring the relation between supervised accuracy andthat achieved by clustering with strict assignment, followedby a separate measure between the accuracy of supervisedlearning and weighted assignment.To this end, we computed the correlation between the su-pervised accuracies using the 16 algorithm-domain combi-nations in Table 1 and the analogous strict accuracies fromTable 2. The resulting correlation coe�cient, r = 0:745,was signi�cant at the 0.01 level and explained 55 percentof the variance. Figure 2 shows that supervised accuracy isa reasonable predictor of unsupervised accuracy, thus gen-erally supporting our hypothesis. We also calculated thecorrelation between supervised accuracies and the weightedaccuracies from Table 2. Here the correlation was r = 0:653,which was also signi�cant at the 0.01 level and explained 43percent of the variance.
4.2 Experiments with Synthetic DataOur encouraging results with natural data sets show thatour framework has relevance to real-world clustering prob-lems, but they can give only limited understanding for thereasons underlying the phenomena. For this reason, we de-cided to carry out another study that employed syntheticdata designed to reveal the detailed causes of these e�ects.One standard explanation for some induction methodsoutperforming others relies on the notion of inductive bias,which reects the fact that some formalisms can represent



Clustering and Supervised Learning 5certain decision regions more easily than others. Since ourfour supervised learning methods have quite di�erent induc-tive biases, we designed four separate learning tasks, eachintended to be easily learned by one of these methods butnot by others.Each learning task incorporated two continuous variablesand three classes, with a single contiguous decision regionfor each class. Thus, the domain designed with decisionstumps in mind involved splits along one relevant attribute,the prototype-friendly domain involved three distinct proto-types, and so forth. The naive Bayesian classi�er is di�cultto foil, but for every other supervised method, we had atleast one domain on which it should do relatively poorly.For each domain, we devised a generator that produced 125random instances from either a uniform or, for the Bayes-friendly domain, a Gaussian distribution for every class, cre-ating the same number of instances for each one.The geometric metaphor clari�es one reason that a givenmethod should outperform others in both supervised andunsupervised mode, but it also suggests a reason why thecorrelation between behavior on these two tasks is imper-fect. Conventional wisdom states that clustering is easywhen clusters are well separated but di�cult when they arenot. Thus, our data generator also included a parameter Sthat let us vary systematically the separation between theboundaries of each class. The predictive variables for eachdomain ranged from 0 to 1, so we varied the separation dis-tance from S = 0 to S = 0:24.Although we expected our synthetic domains to repro-duce the positive correlation we observed with natural data,we also predicted that cluster separation should inuencethis e�ect. In particular, we thought the correlation wouldbe lower when the gap was small, since iterative optimiza-tion would have di�culty assigning instances to the \right"unlabeled classes, whereas supervised learning would haveno such di�culty. However, the correlation should increasemonotonically with cluster distance, since the process of�nding well-separated clusters should then be dominated bythe inductive bias of the supervised learning modules.Our experimental runs with synthetic data did not sup-port these predictions.3 Despite our attempts to designdata sets that would distinguish among the supervised learn-ing methods, correlations between supervised and unsuper-vised accuracies when cluster separation S = 0 were con-siderably lower (r = 0:488 for strict and r = 0:377 forweighted) than for our studies with natural domains, thoughstill marginally signi�cant at the 0.1 level. Moreover, ourexperiments showed no evidence that correlation increaseswith cluster separation, giving r = 0:413 for strict andr = 0:337 for weighted when S = 0:12, and giving r = 0:462for strict and r = 0:219 for weighted when S = 0:24.Figure 3, which plots the accuracies for strict unsuper-vised learning against supervised accuracy when cluster sep-aration S = 0, suggests one reason for this negative result.Apparently, the correlations are being reduced by a \ceilinge�ect" in which the supervised accuracies (generally muchhigher than for our results on natural domains) show littlevariation, whereas the unsupervised accuracies still rangewidely. The supervised methods typically learn very accu-rate classi�ers across all four synthetic domains, even though3This study also revealed no evidence for a preferred data as-signment scheme, with the best combinations shifting acrossboth domain and separation level.
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Figure 3: Supervised and unsupervised accuracies,using strict data assignment, for four algorithmswith S = 0 on four synthetic data sets (r = 0:488).we did our best to design them otherwise. Analogous plotsfor higher values of the separation parameter S show evenstronger versions of this e�ect, indicating that supervisedinduction bene�ts more from cluster separation than doesunsupervised clustering, which explains why the correlationdoes not increase as predicted.Our expectations rested on the intuition that inductivebias and cluster separation are the dominant factors in de-termining the behavior of an iterative optimizer. From thesenegative results, and from the high correlations on naturaldomains, we can infer that other factors we did not varyin this experiment play an equal or more important role.Likely candidates include the number of relevant attributes,the number of irrelevant attributes, the amount of attributenoise, and the number of classes, all of which are known toa�ect the predictive accuracy of learned classi�ers. Thesedomain characteristics should be varied systematically infuture studies that draw on synthetic data to explore therelation between clustering and supervised learning.
5. RELATED WORKAs we noted earlier, there exists a large literature on clus-tering that others (e.g., Everitt [3]) have reviewed at length.Much of this work relies on iterative optimization to grouptraining cases, and there exist many variants beyond theK-means and expectation-maximization algorithms familiarto most readers. For instance, Michalski and Stepp's [11]Cluster/2 used logical rule induction to characterize itsclusters and assign cases to them. More recently, Zhang,Hsu, and Dayal [15] have described the K-harmonic meansmethod, which operates like K-means but invokes a di�er-ent distance metric that usually speeds convergence. How-ever, despite this diversity, researchers have not proposedeither theoretical frameworks for characterizing the space ofiterative optimization methods or software frameworks tosupport their rapid construction and evaluation.In the broader arena, there have been some e�orts to linkmethods for supervised and unsupervised learning. For ex-ample, Langley and Sage [8] adapted a method for inducing



6 Clustering and Supervised Learningunivariate decision trees to operate on unsupervised dataand thus generate taxonomy, and, more recently, Langley [6]and Liu et al. [9] have described similar but more sophisti-cated approaches. The relationship between supervised andunsupervised algorithms for rule learning is more transpar-ent; Martin [10] has reported one approach that adapts su-pervised techniques to construct association rules from unla-beled data. But again, such research has focused on speci�calgorithms rather than on general or generative frameworks.However, other areas of machine learning have seen a fewframeworks of this sort. Langley and Neches [7] developedPrism, a exible language for production-system architec-tures that supported many combinations of performance andlearning algorithms, and later versions of Prodigy [14] in-cluded a variety of mechanisms for learning search-controlknowledge. For classi�cation problems, Kohavi et al.'s [5]MLC++ supported a broad set of supervised induction al-gorithms that one could invoke with considerable exibility.The generative abilities of MLC++ are apparent from itsuse for feature selection and its support for novel combina-tions of existing algorithms. This e�ort comes closest to ourown in spirit, both in its goals and its attempt to provide aexible software infrastructure for machine learning.
6. CONCLUDING REMARKSIn this paper, we presented a framework for iterative op-timization approaches to clustering that lets one embed anysupervised learning algorithm as a model-construction com-ponent. This approach produces some familiar clusteringtechniques, like K-means and EM, but it also generates somenovel methods that have not appeared in the literature. Theframework also let us evaluate some hypotheses about therelation between the resulting clustering methods and theirsupervised modules, which we tested using both natural andsynthetic data.Our �rst hypothesis, that each supervised method had apreferred data assignment scheme with which it producedmore accurate clusters, was not borne out the experiments.Clustering practitioners can continue to combine prototypelearning with strict assignment (giving K-means) and naiveBayes with weighted assignment (giving EM), but we foundno evidence that these combinations are superior to the al-ternatives. However, our experiments did support our sec-ond hypothesis by revealing strong correlations between theaccuracy of supervised algorithms on natural data sets andthe accuracy of iterative optimizers in which they were em-bedded. We augmented these results with experiments onsynthetic data, which gave us control over decision regionsand separation of clusters. These studies also produced pos-itive correlations between supervised and unsupervised ac-curacy, but failed to reveal an e�ect of cluster separation.Clearly, there remains considerable room for additionalresearch. The framework supports a variety of new clus-tering algorithms, each interesting in its own right but alsoimportant for testing further our hypotheses about relationsbetween supervised and unsupervised learning. We shouldalso carry out experiments with synthetic data that varysystematically other factors that can a�ect predictive accu-racy, such as irrelevant features and attribute noise. Finally,we should explore further the role of cluster separation andthe reason it had no apparent inuence in our studies.Although our speci�c results are intriguing, we attachmore importance to the framework itself, which supports

a new direction for studies of clustering mechanisms. Weencourage other researchers to view existing techniques asexamples of some generative framework and to utilize thatframework both to explore the space of clustering meth-ods and to reveal underlying relations between supervisedand unsupervised approaches to induction. Ultimately, thisstrategy should produce a deeper understanding of the clus-tering process and its role in the broader science of machinelearning.
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