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tThis paper des
ribes how we used regres-sion rules to improve upon a result previ-ously published in the Earth s
ien
e litera-ture. In su
h a s
ienti�
 appli
ation of ma-
hine learning, it is 
ru
ially important forthe learned models to be understandable and
ommuni
able. We re
ount how we sele
teda learning algorithm to maximize 
ommuni-
ability, and then des
ribe two visualizationte
hniques that we developed to aid in under-standing the model by exploiting the spatialnature of the data. We also report how eval-uating the learned models a
ross time let usdis
over an error in the data.1. Introdu
tion and MotivationMany re
ent appli
ations of ma
hine learning have fo-
used on 
ommer
ial data, often driven by 
orporatedesires to better predi
t 
onsumer behavior. Yet s
i-enti�
 appli
ations of ma
hine learning remain equallyimportant, and they 
an provide te
hnologi
al 
hal-lenges not present in 
ommer
ial domains. In par-ti
ular, s
ientists must be able to 
ommuni
ate theirresults to others in the same �eld, whi
h leads themto agree on some 
ommon formalism for representingknowledge in that �eld. This need pla
es 
onstraintson the representations and learning algorithms that we
an utilize in aiding s
ientists' understanding of data.Moreover, some s
ienti�
 domains have 
hara
teristi
sthat introdu
e both 
hallenges and opportunities forresear
hers in ma
hine learning. For example, datafrom the Earth s
ien
es typi
ally involve variation overboth spa
e and time, in addition to more standard pre-di
tive variables. The spatial 
hara
ter of these data

suggests the use of visualization in both understand-ing the dis
overed knowledge and identifying where itfalls short. The observations' temporal nature holdsopportunities for dete
ting developmental trends, butit also raises the spe
ter of 
alibration errors, whi
h
an o

ur gradually or when new instruments are in-trodu
ed.In this paper, we explore these general issues by pre-senting the lessons we learned while applying ma-
hine learning to a spe
i�
 Earth s
ien
e problem:the predi
tion of Normalized Di�eren
e Vegetation In-dex (NDVI) from predi
tive variables like pre
ipitationand temperature. We begin by reviewing the s
ienti�
problem, in
luding the variables and data, and propos-ing regression learning as a natural formulation. Af-ter this, we dis
uss our sele
tion of regression rulesto represent learned knowledge as 
onsistent with ex-isting NDVI models, along with our sele
tion of Quin-lan's Cubist (Rulequest, 2001) to generate them. Nextwe 
ompare the results we obtained in this mannerwith models from the Earth s
ien
e literature, show-ing that Cubist produ
es signi�
antly more a

uratemodels with little in
rease in 
omplexity.Although this improved predi
tive a

ura
y is goodnews from an Earth s
ien
e perspe
tive, it 
omes aslittle surprise to those with a ba
kground in ma
hinelearning. However, in our e�orts to 
ommuni
ate thedis
overed knowledge to our Earth s
ien
e 
ollabora-tors, we have also developed two novel approa
hes tovisualizing this knowledge spatially, whi
h we reportin some detail. Moreover, evaluation a
ross di�erentyears has revealed an error in the data, whi
h we havesin
e 
orre
ted. We dis
uss some broader issues thatthese experien
es raise and propose some general ap-proa
hes for dealing with them in other spatial andtemporal domains. In 
losing, we also review relatedwork on s
ienti�
 data analysis in this setting and pro-pose dire
tions for future resear
h.



2. Monitoring and Analysis of EarthE
osystem DataThe latest generation of Earth-observing satellites isprodu
ing unpre
edented amounts and types of dataabout the Earth's biosphere. Combined with readingsfrom ground sour
es, these data hold promise for test-ing existing s
ienti�
 models of the Earth's biosphereand for improving them. Su
h enhan
ed models wouldlet us make more a

urate predi
tions about the e�e
tof human a
tivities on our planet's surfa
e and atmo-sphere.One su
h satellite is the NOAA (National O
eani
 andAtmospheri
 Administration) Advan
ed Very HighResolution Radiometer (AVHRR). This satellite hastwo 
hannels whi
h measure di�erent parts of the ele
-tromagneti
 spe
trum. The �rst 
hannel is in a partof the spe
trum where 
hlorophyll absorbs most of thein
oming radiation. The se
ond 
hannel is in a partof the spe
trum where spongy mesophyll leaf stru
-ture re
e
ts most of the light. The di�eren
e betweenthe two 
hannels is used to form the Normalized Dif-feren
e Vegetation Index (NDVI), whi
h is 
orrelatedwith various global vegetation parameters. Earth s
i-entists have found that NDVI is useful for variouskinds of modeling, in
luding estimating net e
osystem
arbon 
ux. A limitation of using NDVI in su
h mod-els is that they 
an only be used for the limited set ofyears during whi
h NDVI values are available from theAVHRR satellite. Climate-based predi
tion of NDVIis therefore important for studies of past and futurebiosphere states.Potter and Brooks (1998) used multiple linear regres-sion analysis to model maximum annual NDVI1 as afun
tion of four 
limate variables and their logarithms:� Annual Moisture Index (AMI)� Chilling Degree Days (CDD)� Growing Degree Days (GDD)� Total Annual Pre
ipitation (PPTTOT)These 
limate indexes were 
al
ulated from variousground-based sour
es, in
luding the World Surfa
eStation Climatology at the National Center for At-mospheri
 Resear
h. Potter and Brooks interpolated1They obtained similar results when modeling minimumannual NDVI. We 
hose to use maximum annual NDVI asa starting point for our resear
h, and all of the results inthis paper refer to this variable.

the data, as ne
essary, to put all of the NDVI and 
li-mate data into one degree grids. That is, they formeda 360� 180 grid for ea
h variable, where ea
h grid 
ellrepresents one degree of latitude and one degree of lon-gitude, so that ea
h grid 
overs the entire Earth. Theyused data from 1984 to 
alibrate their model. Potterand Brooks de
ided, based on their knowledge of Earths
ien
e, to �t NDVI to these 
limate variables by usinga pie
ewise linear model with two pie
es. They splitthe data into two sets of points: the warmer lo
ations(those with GDD � 3000), and the 
ooler lo
ations(those with GDD < 3000). They then used multiplelinear regression to �t a di�erent linear model to ea
hset. They obtained 
orrelation 
oeÆ
ients (r values) of0.87 on the �rst set and 0.85 on the se
ond set, whi
hformed the basis of a publi
ation in the Earth s
ien
eliterature (Potter & Brooks, 1998).3. Problem Formulation and LearningAlgorithm Sele
tionWhen we began our 
ollaboration with Potter and histeam, we de
ided that one of the �rst things we woulddo would be to try to use ma
hine learning to improveupon their NDVI results. The resear
h team had al-ready formulated this problem as a regression task,and in order to preserve 
ommuni
ability, we 
hoseto keep this formulation, rather than dis
retizing thedata so that we 
ould use a more 
onventional ma
hinelearning algorithm. We therefore needed to sele
t aregression learning algorithm | that is, one in whi
hthe outputs are 
ontinuous values, rather than dis
rete
lasses.In sele
ting a learning algorithm, we were interestednot only in improving the 
orrelation 
oeÆ
ient, butalso in ensuring that the learned models would be bothunderstandable by the s
ientists and 
ommuni
able toother s
ientists in the �eld. Sin
e Potter and Brooks'previously published results involved a pie
ewise linearmodel that used an inequality 
onstraint on a variableto separate the pie
es, we felt it would be bene�
ialto sele
t a learning algorithm that produ
es modelsof the same form. Fortunately, Potter and Brooks'model falls within the 
lass of models known as regres-sion rules in the ma
hine learning 
ommunity (Weiss& Indurkhya, 1993). A regression rule model 
onsistsof a set of linear models and a set of inequality \
uts"on the variables to sele
t among the individual linearmodels, yielding a pie
ewise linear model. To indu
esu
h rules, we sele
ted Cubist, a 
ommer
ial produ
tfrom Rulequest Resear
h (2001), whi
h has evolvedout of earlier work with C4.5 (Quinlan, 1993) and M5(Quinlan, 1992).



Table 1. The e�e
t of Cubist's minimum rule 
over param-eter on the number of rules in the model and the model's
orrelation 
oeÆ
ient.min. rule 
over No. rules r1% 41 0.915% 12 0.9010% 7 0.8915% 4 0.8820% 3 0.8625% 2 0.85100% 1 0.844. First ResultsWe ran Cubist using the same data sets that Potterand Brooks had used to build their model, but insteadof making the 
uts in the pie
ewise linear model basedon knowledge of Earth s
ien
e, we let Cubist de
idewhere to make the 
uts based on the data. The resultsex
eeded our expe
tations. Cubist produ
ed a 
orrela-tion 
oeÆ
ient of 0.91 (using ten-fold 
ross-validation),whi
h was a substantial improvement over the 0.86
orrelation 
oeÆ
ient obtained in Potter and Brooks'earlier work. Potter and his team were pleased withthe 0.91 
orrelation 
oeÆ
ient, but when we showedthem the 41 rules produ
ed by Cubist, they had diÆ-
ulty interpreting them. Some of the rules 
learly didnot make sense, and were probably a result of Cubistover�tting the data. More importantly, the large num-ber of rules | some 41 as 
ompared with two in theearlier work | was simply overwhelming.
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number of rulesFigure 1. The number of rules in the Cubist model andthe 
orrelation 
oeÆ
ient for several di�erent values of theminimum rule 
over parameter.The �rst step we took in response to this understand-ability problem was to 
hange the parameters to Cu-bist so that it would produ
e fewer rules. One of these

Table 2. The two rules produ
ed by Cubist when the min-imum rule 
over parameter is set to 25%.Rule 1:ifppttot <= 25.457thenfasmax = -3.22465 + 7.07 ppttot + 0.0521 
dd- 84 ami + 0.4 ln(ppttot) + 0.0001 gddRule 2:ifppttot > 25.457thenfasmax = 386.327 + 316 ami + 0.0294 gdd- 0.99 ppttot + 0.2 ln(ppttot)parameters spe
i�es the minimum per
entage of thetraining data that must be 
overed by ea
h rule. Thedefault value of 1% produ
ed 41 rules. We experi-mented with di�erent values of this parameter between1% and 100%; the results appear in Table 1 and Fig-ure 1. Using a model with only one rule | that is,using 
onventional multiple linear regression analysis| results in a 
orrelation 
oeÆ
ient of 0.84, whereasadding rules gradually improves a

ura
y. Interest-ingly, when using two rules, Cubist split the data ona di�erent variable than the one the Earth s
ientistssele
ted. Potter and Brooks split the data on GDD(essentially temperature), while Cubist instead 
hosepre
ipitation, whi
h produ
ed a very similar 
orrela-tion 
oeÆ
ient (0.85 versus 0.86). The two-rule modelprodu
ed by Cubist is shown in Table 2.In ma
hine learning there is frequently a tradeo� be-tween a

ura
y and understandability. In this 
ase, weare able to move along the tradeo� 
urve by adjustingCubists' minimum rule 
over parameter. Figure 1 il-lustrates this tradeo� by plotting the number of rulesand the 
orrelation 
oeÆ
ient produ
ed by Cubist forea
h value of the minimum rule 
over parameter in Ta-ble 1. We believe that generally a model with fewerrules is easier to understand, so the �gure essentiallyplots a

ura
y against understandability. A useful fea-ture for future ma
hine learning algorithms would bethe ability to dire
tly spe
ify the maximum numberof rules in the model as a parameter to the learningalgorithm.2 We used trial and error to sele
t valuesfor the minimum rule 
over parameter that produ
edthe number of rules we wanted for understandabilityreasons.2After reviewing a draft of this paper, Ross Quinlande
ided to implement this feature in a future version ofCubist.



Figure 2. Map showing whi
h Cubist rules are a
tive a
rossthe globe.5. Visualization of Spatial ModelsRedu
ing the number of rules in the model by mod-ifying Cubists' parameters made the model more un-derstandable, but to further understand the rules, wede
ided to plot whi
h ones were a
tive where. In Fig-ure 2, the bla
k areas represent portions of the globethat were ex
luded from the model be
ause they are
overed with water or i
e, or be
ause there was insuf-�
ient ground-based data available.3 The white areasare regions in whi
h more than one rule in the modelapplied. (In these 
ases, Cubist uses the average ofall appli
able rules.) The gray areas represent regionsin whi
h only one rule applies; the six shades of gray
orrespond to the six rules. (We normally use di�erent
olors for the di�erent rules, but resorted to di�erentshades of gray for these pro
eedings.)Potter and his team found this map very interesting,be
ause one 
an see many of the Earth's major to-pographi
al and 
limati
 features. The map providesvaluable 
lues as to the s
ienti�
 signi�
an
e of ea
hrule. This type of visualization 
ould be used when-ever the learning task involves spatial data and thelearned model is easily broken up into dis
rete pie
esthat are appli
able in di�erent pla
es, su
h as rules inCubist or leaves in a de
ision tree.A se
ond visualization tool that we developed showsthe error of the Cubist predi
tions a
ross the globe.In Figure 3, bla
k represents either zero error orinsuÆ
ient data, white represents the largest error,and shades of gray represent intermediate error levels.From this map, it is possible to see that the Cubistmodel has large errors in Alaska and Siberia, whi
h is
onsistent with our 
ollaborators' belief that the qual-ity of the data in the polar regions is poor. Su
h a map
an be used to better understand the types of pla
es in3After ex
luding these areas, we were left with 13,498points that were 
overed by the model.

Figure 3. Map showing the errors of the Cubist predi
tionof NDVI a
ross the globe.whi
h the model works well and those in whi
h it workspoorly. This understanding in turn may suggest waysto improve the model, su
h as in
luding additional at-tributes in the training data or using a di�erent learn-ing algorithm. Su
h a visualization 
an be used forany learning task that uses spatial data and regressionlearning.6. Dis
overy of Quantitative Errors inthe DataHaving su

essfully trained Cubist using data for oneyear, we set out to see how well an NDVI model trainedon one year's data would predi
t NDVI for anotheryear. We thought this exer
ise would serve two pur-poses. If we generally found transfers a
ross years,that would be good news for Earth s
ientists, be
auseit would let them use the model to obtain reasonablya

urate NDVI values for years in whi
h satellite-basedmeasurements of NDVI are not available. On the otherhand, if the model learned from one year's data trans-ferred well to some years but not others, that wouldindi
ate some 
hange in the world's e
osystem a
rossthose years. Su
h a �nding 
ould lead to 
lues abouttemporal phenomena in Earth s
ien
e su
h as El Ni~nosor global warming.What we found, to our surprise, is that the modeltrained on 1983 data worked very well when tested onthe 1984 data, and that the model trained on 1985 dataworked very well on data from 1986, 1987, and 1988,but that the model trained on 1984 data performedpoorly when tested on 1985 data. Table 3 shows the
ross-validated 
orrelation 
oeÆ
ients for ea
h year, aswell as the 
orrelation 
oeÆ
ients obtained when test-ing ea
h year's model on the next year's data. Clearly,something 
hanged between 1984 and 1985. At �rst wethought this 
hange might have been 
aused by the ElNi~no that o

urred during that period.



Table 3. Correlation 
oeÆ
ients obtained when 
ross-validating using one year's data and when training on oneyear's data and testing on the next year's data, using theoriginal data set.Data Set r
ross-validate 1983 0.97
ross-validate 1984 0.97
ross-validate 1985 0.92
ross-validate 1986 0.92
ross-validate 1987 0.91
ross-validate 1988 0.91train 1983, test 1984 0.97train 1984, test 1985 0.80train 1985, test 1986 0.91train 1986, test 1987 0.91train 1987, test 1988 0.90Further light was 
ast on the nature of the 
hange byexamining the s
atter plots that Cubist produ
es. InFigure 4, the graph on the left plots predi
ted NDVIagainst a
tual NDVI for the 1985 
ross-validation run.The points are 
lustered around the x = y line, indi-
ating a good �t. The graph on the right plots pre-di
ted against a
tual NDVI when using 1985 data totest the model learned from 1984 data. In this graph,the points are again 
learly 
lustered around a line,but one that has been shifted away from the x = yequation. This shift is so sudden and dramati
 thatPotter's team believed that it 
ould not have been
aused by a natural phenomenon, but rather that itmust be due to problems with the data.Further investigation revealed that there was in fa
tan error in the data. In the data set given to to us,a re
alibration that should have been applied to the1983 and 1984 data had not been done. We obtaineda 
orre
ted data set and repeated ea
h of the Cubistruns from Table 3, obtaining the results in Table 4.4With the 
orre
ted data set, the model from any oneyear transfers very well to the other years, so thesemodels should be useful to Earth s
ientists in order toprovide NDVI values for years in whi
h no satellite-based measurements of NDVI are available.Our experien
e in �nding this error in the data sug-gests a general method of sear
hing for 
alibration er-rors in time-series data, even when no model of thedata is available. This method involves learning amodel from the data for ea
h time step and then test-ing this model on data from su

essive time steps. If4All of the results presented in the previous se
tions arebased on the 
orre
ted data set.

Table 4. Correlation 
oeÆ
ients obtained when 
ross-validating using one year's data and when training on oneyear's data and testing on the next year's data, using the
orre
ted data set.Data Set r
ross-validate 1983 0.91
ross-validate 1984 0.91
ross-validate 1985 0.92
ross-validate 1986 0.92
ross-validate 1987 0.91
ross-validate 1988 0.91train 1983, test 1984 0.91train 1984, test 1985 0.91train 1985, test 1986 0.91train 1986, test 1987 0.91train 1987, test 1988 0.90there exist situations in whi
h the model �ts the dataunusually poorly, then those are good pla
es to lookfor 
alibration errors in the data. Of 
ourse, whensu
h situations are found, the human experts must ex-amine the relevant data to determine, based on theirdomain knowledge, whether the sudden 
hange in themodel results from an error in the data, from a knowndis
ontinuity in the natural system being modeled, orfrom a genuinely new s
ienti�
 dis
overy. This idea
an be extended beyond time-series problems to anydata set that 
an be naturally divided into distin
tsets, in
luding spatial data.7. Related WorkRobust algorithms for 
exible regression have beenavailable for some time. Breiman, Friedman, Olshen,and Stone's (1984) CART �rst introdu
ed the no-tion of indu
ing regression trees to predi
t numeri
attributes, whereas Weiss and Indurkhya (1993) ex-tended the idea to rule indu
tion. Ea
h approa
h hasproved su

essful in many domains, and both CARTand Cubist have a
hieved 
ommer
ial su

ess. How-ever, neither approa
h has yet seen mu
h appli
ationto Earth s
ien
e data, despite the 
onsiderable work on
lassi�
ation learning for tasks like assigning ground
over types to pixels (e.g., Brodley & Friedl, 1999)and 
lustering adja
ent pixels into groups (e.g., Ester,Kriegel, Sander, & Xu, 1996).The work on 
ommuni
ability and understandabilitydes
ribed in this paper builds on previous work in 
om-prehensibility. Our requirement for 
ommuni
ability issimilar to Mi
halski's (1983) \
omprehensibility postu-late" whi
h states that the results of 
omputer indu
-



Figure 4. Predi
ted NDVI against a
tual NDVI for (left) 
ross-validated 1985 data and (right) training on 1984 data andtesting on 1985 data.tion should be in a form that is synta
ti
ally and se-manti
ally similar to that used by humans experts. A
olle
tion of papers on 
omprehensibility 
an be foundin Kodrato� and N�edelle
 (1995).Resear
hers have also 
arried out extensive work onte
hniques for visualizing data and learned knowledge.Tufte (1983) did early in
uential work on the formertopi
, whereas Keim and Kriegel (1996) review manyof the existing approa
hes. Within the data-mining
ommunity, resear
hers have developed a variety ofmethods for the graphi
al display of learned knowledge(e.g., Brunk, Kelly, & Kohavi, 1996). However, al-though mu
h of this work employs a spatial metaphor,little has fo
used on learned spatial knowledge itself.Appli
ations of ma
hine learning to Earth s
ien
edata, as in methods for ground 
over predi
tion (e.g.,Brodley & Friedl, 1999), regularly display 
lasses onmaps. Smyth, Ghil, and Ide (1999) plot predi
tionsof a learned mixture model on the globe, but our ap-proa
h to visualizing areas in whi
h regression rulesmat
h, as well as anomalous regions, appears novel.The European proje
t SPIN! (2001) is seeking to de-velop a spatial data mining system by 
ombining datamining tools like C4.5 (Quinlan, 1993) with toolsfor visualizing spatial data like Des
artes (Andrienko& Andrienko, 1999). The planned system will letits users visualize geographi
ally-referen
ed data onmaps, and to mine the data using the data-mining

tools, from a uni�ed user interfa
e. The resear
hersplan to test the SPIN! system on appli
ations involv-ing seismi
 and vol
ano data. The visualization 
om-ponent of the proje
t seems fo
used on letting usersvisualize the data, rather than visualizing the knowl-edge learned through data mining.There has also been 
onsiderable resear
h on usingma
hine-learned knowledge to dete
t and either ignoreor 
orre
t errors in training data. Mu
h of this workhas fo
used on removing 
ases with faulty 
lass labels(e.g., John, 1995; Brodley & Friedl, 1999), but somehas addressed dete
ting errors in the values of predi
-tive variables. Naturally, there are established meth-ods for dete
ting and 
orre
ting 
alibration problemsin remote-sensing systems (e.g., Chen, 1997), but theserely on prede�ned models. Thus, our use of regressionrules to dete
t systemati
 errors appears novel to boththe ma
hine learning and 
alibration 
ommunities.8. Future WorkOur 
ollaboration with Earth s
ientists is in its earlystages, and we still have many resear
h avenues to ex-plore. Our next step in modeling NDVI will in
orpo-rate time expli
itly by adding the year to the 
ontinu-ous variables used in regression equations, rather thanbuilding a separate model for ea
h year. We hope thatby examining the resulting multi-year models, we 
anlearn something about 
limate 
hange over time.



In this paper, we have assumed that models with fewerrules are more understandable. In future work, we planto test this assumption by having our Earth s
ien
e
ollaborators examine various sets of rules that Cubistprodu
es for di�erent parameter values and telling uswhi
h sets they think are easier to understand. Natu-rally, we will also ask them to judge the rules' plausibil-ity and interestingness from the perspe
tive of Earths
ien
e.At the Potter team's suggestion, our runs with Cubisthave in
luded additional variables beyond those usedin their 1998 arti
le. Preliminary results indi
ate thatsome of these variables give small improvements in thepredi
ted a

ura
y for NDVI. We plan to further in-vestigate the utility of these variables and investigateways to measure whi
h variables are most importantin a set of regression rules.The NDVI predi
tive model is only one pie
e of alarger framework, known as CASA (Potter & Klooster,1998), that Potter's team has developed to model theEarth's e
osystem. CASA takes the form of a pro
essmodel, stated in terms of di�erential equations, forthe produ
tion and absorption of biogeni
 tra
e gasesin the Earth's atmosphere. For the reasons of under-standability and 
ommuni
ability des
ribed earlier, wewould like our learned models to take the same form,whi
h means we 
annot rely on Cubist alone in ourfuture e�orts.There has been some resear
h on dis
overing laws thattake the form of di�erential equations (Todorovski &Dzeroski, 1997), but this work has not used an exist-ing set of equations as the starting point. We plan todevelop an algorithm that will begin with the 
urrentCASA model and sear
h through the spa
e of possi-ble equations to �nd an improved model. We hopethat this e�ort will improve the a

ura
y of the CASAequations while retaining its 
ommuni
ability and itss
ienti�
 plausibility. We also hope that the 
hangesour system makes to the model will suggest new in-sights about Earth s
ien
e.9. Lessons LearnedIn their editorial on applied resear
h in ma
hine learn-ing, Provost and Kohavi (1998) 
laimed that a goodappli
ation paper will \fo
us resear
h on importantunsolved problems that 
urrently restri
t the pra
ti
alappli
ability of ma
hine learning methods." In thispaper, we have identi�ed, and provided initial solu-tions for, three su
h problems that arise in s
ienti�
appli
ations:

Communi
ability. In s
ienti�
 domains, it is impor-tant for the form of the learned models to mat
hthe form that is 
ustomarily used in the relevantliterature, so that the learned models 
an be 
om-muni
ated to other s
ientists.Understandability. In domains that involve spatialdata, understanding of the models 
an be in-
reased by visualizing the spatial distribution ofthe model's errors and visualizing the lo
ationsin whi
h the model's 
omponents (e.g., rules) area
tive.Quantitative errors. In appli
ations that involvetime-series numeri
al data, ma
hine learningmethods 
an be used to identify quantitative er-rors by testing a learned model for one time periodagainst data from other time periods.Although we have developed these ideas in the 
on-text of a spe
i�
 s
ienti�
 appli
ation { the predi
-tion of NDVI from 
limate variables { we believe theyhave general appli
ability to any domain that involvess
ienti�
 understanding of spatio-temporal data. Aswe 
ontinue utilizing ma
hine learning to improve theCASA model, we expe
t that the 
hallenging natureof the task will reveal other methods and prin
iplesthat 
ontribute to both Earth s
ien
e and the s
ien
eof ma
hine learning.A
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