
Disovering Communiable Sienti� Knowledgefrom Spatio-Temporal DataMark Shwabaher mark.shwabaher�ar.nasa.govNASA Ames Researh Center, Computational Sienes Division, MS 269-1, Mo�ett Field, CA 94035 USAPat Langley langley�isle.orgInstitute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306 USAAbstratThis paper desribes how we used regres-sion rules to improve upon a result previ-ously published in the Earth siene litera-ture. In suh a sienti� appliation of ma-hine learning, it is ruially important forthe learned models to be understandable andommuniable. We reount how we seleteda learning algorithm to maximize ommuni-ability, and then desribe two visualizationtehniques that we developed to aid in under-standing the model by exploiting the spatialnature of the data. We also report how eval-uating the learned models aross time let usdisover an error in the data.1. Introdution and MotivationMany reent appliations of mahine learning have fo-used on ommerial data, often driven by orporatedesires to better predit onsumer behavior. Yet si-enti� appliations of mahine learning remain equallyimportant, and they an provide tehnologial hal-lenges not present in ommerial domains. In par-tiular, sientists must be able to ommuniate theirresults to others in the same �eld, whih leads themto agree on some ommon formalism for representingknowledge in that �eld. This need plaes onstraintson the representations and learning algorithms that wean utilize in aiding sientists' understanding of data.Moreover, some sienti� domains have haraterististhat introdue both hallenges and opportunities forresearhers in mahine learning. For example, datafrom the Earth sienes typially involve variation overboth spae and time, in addition to more standard pre-ditive variables. The spatial harater of these data

suggests the use of visualization in both understand-ing the disovered knowledge and identifying where itfalls short. The observations' temporal nature holdsopportunities for deteting developmental trends, butit also raises the speter of alibration errors, whihan our gradually or when new instruments are in-trodued.In this paper, we explore these general issues by pre-senting the lessons we learned while applying ma-hine learning to a spei� Earth siene problem:the predition of Normalized Di�erene Vegetation In-dex (NDVI) from preditive variables like preipitationand temperature. We begin by reviewing the sienti�problem, inluding the variables and data, and propos-ing regression learning as a natural formulation. Af-ter this, we disuss our seletion of regression rulesto represent learned knowledge as onsistent with ex-isting NDVI models, along with our seletion of Quin-lan's Cubist (Rulequest, 2001) to generate them. Nextwe ompare the results we obtained in this mannerwith models from the Earth siene literature, show-ing that Cubist produes signi�antly more auratemodels with little inrease in omplexity.Although this improved preditive auray is goodnews from an Earth siene perspetive, it omes aslittle surprise to those with a bakground in mahinelearning. However, in our e�orts to ommuniate thedisovered knowledge to our Earth siene ollabora-tors, we have also developed two novel approahes tovisualizing this knowledge spatially, whih we reportin some detail. Moreover, evaluation aross di�erentyears has revealed an error in the data, whih we havesine orreted. We disuss some broader issues thatthese experienes raise and propose some general ap-proahes for dealing with them in other spatial andtemporal domains. In losing, we also review relatedwork on sienti� data analysis in this setting and pro-pose diretions for future researh.



2. Monitoring and Analysis of EarthEosystem DataThe latest generation of Earth-observing satellites isproduing unpreedented amounts and types of dataabout the Earth's biosphere. Combined with readingsfrom ground soures, these data hold promise for test-ing existing sienti� models of the Earth's biosphereand for improving them. Suh enhaned models wouldlet us make more aurate preditions about the e�etof human ativities on our planet's surfae and atmo-sphere.One suh satellite is the NOAA (National Oeani andAtmospheri Administration) Advaned Very HighResolution Radiometer (AVHRR). This satellite hastwo hannels whih measure di�erent parts of the ele-tromagneti spetrum. The �rst hannel is in a partof the spetrum where hlorophyll absorbs most of theinoming radiation. The seond hannel is in a partof the spetrum where spongy mesophyll leaf stru-ture reets most of the light. The di�erene betweenthe two hannels is used to form the Normalized Dif-ferene Vegetation Index (NDVI), whih is orrelatedwith various global vegetation parameters. Earth si-entists have found that NDVI is useful for variouskinds of modeling, inluding estimating net eosystemarbon ux. A limitation of using NDVI in suh mod-els is that they an only be used for the limited set ofyears during whih NDVI values are available from theAVHRR satellite. Climate-based predition of NDVIis therefore important for studies of past and futurebiosphere states.Potter and Brooks (1998) used multiple linear regres-sion analysis to model maximum annual NDVI1 as afuntion of four limate variables and their logarithms:� Annual Moisture Index (AMI)� Chilling Degree Days (CDD)� Growing Degree Days (GDD)� Total Annual Preipitation (PPTTOT)These limate indexes were alulated from variousground-based soures, inluding the World SurfaeStation Climatology at the National Center for At-mospheri Researh. Potter and Brooks interpolated1They obtained similar results when modeling minimumannual NDVI. We hose to use maximum annual NDVI asa starting point for our researh, and all of the results inthis paper refer to this variable.

the data, as neessary, to put all of the NDVI and li-mate data into one degree grids. That is, they formeda 360� 180 grid for eah variable, where eah grid ellrepresents one degree of latitude and one degree of lon-gitude, so that eah grid overs the entire Earth. Theyused data from 1984 to alibrate their model. Potterand Brooks deided, based on their knowledge of Earthsiene, to �t NDVI to these limate variables by usinga pieewise linear model with two piees. They splitthe data into two sets of points: the warmer loations(those with GDD � 3000), and the ooler loations(those with GDD < 3000). They then used multiplelinear regression to �t a di�erent linear model to eahset. They obtained orrelation oeÆients (r values) of0.87 on the �rst set and 0.85 on the seond set, whihformed the basis of a publiation in the Earth sieneliterature (Potter & Brooks, 1998).3. Problem Formulation and LearningAlgorithm SeletionWhen we began our ollaboration with Potter and histeam, we deided that one of the �rst things we woulddo would be to try to use mahine learning to improveupon their NDVI results. The researh team had al-ready formulated this problem as a regression task,and in order to preserve ommuniability, we hoseto keep this formulation, rather than disretizing thedata so that we ould use a more onventional mahinelearning algorithm. We therefore needed to selet aregression learning algorithm | that is, one in whihthe outputs are ontinuous values, rather than disretelasses.In seleting a learning algorithm, we were interestednot only in improving the orrelation oeÆient, butalso in ensuring that the learned models would be bothunderstandable by the sientists and ommuniable toother sientists in the �eld. Sine Potter and Brooks'previously published results involved a pieewise linearmodel that used an inequality onstraint on a variableto separate the piees, we felt it would be bene�ialto selet a learning algorithm that produes modelsof the same form. Fortunately, Potter and Brooks'model falls within the lass of models known as regres-sion rules in the mahine learning ommunity (Weiss& Indurkhya, 1993). A regression rule model onsistsof a set of linear models and a set of inequality \uts"on the variables to selet among the individual linearmodels, yielding a pieewise linear model. To induesuh rules, we seleted Cubist, a ommerial produtfrom Rulequest Researh (2001), whih has evolvedout of earlier work with C4.5 (Quinlan, 1993) and M5(Quinlan, 1992).



Table 1. The e�et of Cubist's minimum rule over param-eter on the number of rules in the model and the model'sorrelation oeÆient.min. rule over No. rules r1% 41 0.915% 12 0.9010% 7 0.8915% 4 0.8820% 3 0.8625% 2 0.85100% 1 0.844. First ResultsWe ran Cubist using the same data sets that Potterand Brooks had used to build their model, but insteadof making the uts in the pieewise linear model basedon knowledge of Earth siene, we let Cubist deidewhere to make the uts based on the data. The resultsexeeded our expetations. Cubist produed a orrela-tion oeÆient of 0.91 (using ten-fold ross-validation),whih was a substantial improvement over the 0.86orrelation oeÆient obtained in Potter and Brooks'earlier work. Potter and his team were pleased withthe 0.91 orrelation oeÆient, but when we showedthem the 41 rules produed by Cubist, they had diÆ-ulty interpreting them. Some of the rules learly didnot make sense, and were probably a result of Cubistover�tting the data. More importantly, the large num-ber of rules | some 41 as ompared with two in theearlier work | was simply overwhelming.
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number of rulesFigure 1. The number of rules in the Cubist model andthe orrelation oeÆient for several di�erent values of theminimum rule over parameter.The �rst step we took in response to this understand-ability problem was to hange the parameters to Cu-bist so that it would produe fewer rules. One of these

Table 2. The two rules produed by Cubist when the min-imum rule over parameter is set to 25%.Rule 1:ifppttot <= 25.457thenfasmax = -3.22465 + 7.07 ppttot + 0.0521 dd- 84 ami + 0.4 ln(ppttot) + 0.0001 gddRule 2:ifppttot > 25.457thenfasmax = 386.327 + 316 ami + 0.0294 gdd- 0.99 ppttot + 0.2 ln(ppttot)parameters spei�es the minimum perentage of thetraining data that must be overed by eah rule. Thedefault value of 1% produed 41 rules. We experi-mented with di�erent values of this parameter between1% and 100%; the results appear in Table 1 and Fig-ure 1. Using a model with only one rule | that is,using onventional multiple linear regression analysis| results in a orrelation oeÆient of 0.84, whereasadding rules gradually improves auray. Interest-ingly, when using two rules, Cubist split the data ona di�erent variable than the one the Earth sientistsseleted. Potter and Brooks split the data on GDD(essentially temperature), while Cubist instead hosepreipitation, whih produed a very similar orrela-tion oeÆient (0.85 versus 0.86). The two-rule modelprodued by Cubist is shown in Table 2.In mahine learning there is frequently a tradeo� be-tween auray and understandability. In this ase, weare able to move along the tradeo� urve by adjustingCubists' minimum rule over parameter. Figure 1 il-lustrates this tradeo� by plotting the number of rulesand the orrelation oeÆient produed by Cubist foreah value of the minimum rule over parameter in Ta-ble 1. We believe that generally a model with fewerrules is easier to understand, so the �gure essentiallyplots auray against understandability. A useful fea-ture for future mahine learning algorithms would bethe ability to diretly speify the maximum numberof rules in the model as a parameter to the learningalgorithm.2 We used trial and error to selet valuesfor the minimum rule over parameter that produedthe number of rules we wanted for understandabilityreasons.2After reviewing a draft of this paper, Ross Quinlandeided to implement this feature in a future version ofCubist.



Figure 2. Map showing whih Cubist rules are ative arossthe globe.5. Visualization of Spatial ModelsReduing the number of rules in the model by mod-ifying Cubists' parameters made the model more un-derstandable, but to further understand the rules, wedeided to plot whih ones were ative where. In Fig-ure 2, the blak areas represent portions of the globethat were exluded from the model beause they areovered with water or ie, or beause there was insuf-�ient ground-based data available.3 The white areasare regions in whih more than one rule in the modelapplied. (In these ases, Cubist uses the average ofall appliable rules.) The gray areas represent regionsin whih only one rule applies; the six shades of grayorrespond to the six rules. (We normally use di�erentolors for the di�erent rules, but resorted to di�erentshades of gray for these proeedings.)Potter and his team found this map very interesting,beause one an see many of the Earth's major to-pographial and limati features. The map providesvaluable lues as to the sienti� signi�ane of eahrule. This type of visualization ould be used when-ever the learning task involves spatial data and thelearned model is easily broken up into disrete pieesthat are appliable in di�erent plaes, suh as rules inCubist or leaves in a deision tree.A seond visualization tool that we developed showsthe error of the Cubist preditions aross the globe.In Figure 3, blak represents either zero error orinsuÆient data, white represents the largest error,and shades of gray represent intermediate error levels.From this map, it is possible to see that the Cubistmodel has large errors in Alaska and Siberia, whih isonsistent with our ollaborators' belief that the qual-ity of the data in the polar regions is poor. Suh a mapan be used to better understand the types of plaes in3After exluding these areas, we were left with 13,498points that were overed by the model.

Figure 3. Map showing the errors of the Cubist preditionof NDVI aross the globe.whih the model works well and those in whih it workspoorly. This understanding in turn may suggest waysto improve the model, suh as inluding additional at-tributes in the training data or using a di�erent learn-ing algorithm. Suh a visualization an be used forany learning task that uses spatial data and regressionlearning.6. Disovery of Quantitative Errors inthe DataHaving suessfully trained Cubist using data for oneyear, we set out to see how well an NDVI model trainedon one year's data would predit NDVI for anotheryear. We thought this exerise would serve two pur-poses. If we generally found transfers aross years,that would be good news for Earth sientists, beauseit would let them use the model to obtain reasonablyaurate NDVI values for years in whih satellite-basedmeasurements of NDVI are not available. On the otherhand, if the model learned from one year's data trans-ferred well to some years but not others, that wouldindiate some hange in the world's eosystem arossthose years. Suh a �nding ould lead to lues abouttemporal phenomena in Earth siene suh as El Ni~nosor global warming.What we found, to our surprise, is that the modeltrained on 1983 data worked very well when tested onthe 1984 data, and that the model trained on 1985 dataworked very well on data from 1986, 1987, and 1988,but that the model trained on 1984 data performedpoorly when tested on 1985 data. Table 3 shows theross-validated orrelation oeÆients for eah year, aswell as the orrelation oeÆients obtained when test-ing eah year's model on the next year's data. Clearly,something hanged between 1984 and 1985. At �rst wethought this hange might have been aused by the ElNi~no that ourred during that period.



Table 3. Correlation oeÆients obtained when ross-validating using one year's data and when training on oneyear's data and testing on the next year's data, using theoriginal data set.Data Set rross-validate 1983 0.97ross-validate 1984 0.97ross-validate 1985 0.92ross-validate 1986 0.92ross-validate 1987 0.91ross-validate 1988 0.91train 1983, test 1984 0.97train 1984, test 1985 0.80train 1985, test 1986 0.91train 1986, test 1987 0.91train 1987, test 1988 0.90Further light was ast on the nature of the hange byexamining the satter plots that Cubist produes. InFigure 4, the graph on the left plots predited NDVIagainst atual NDVI for the 1985 ross-validation run.The points are lustered around the x = y line, indi-ating a good �t. The graph on the right plots pre-dited against atual NDVI when using 1985 data totest the model learned from 1984 data. In this graph,the points are again learly lustered around a line,but one that has been shifted away from the x = yequation. This shift is so sudden and dramati thatPotter's team believed that it ould not have beenaused by a natural phenomenon, but rather that itmust be due to problems with the data.Further investigation revealed that there was in fatan error in the data. In the data set given to to us,a realibration that should have been applied to the1983 and 1984 data had not been done. We obtaineda orreted data set and repeated eah of the Cubistruns from Table 3, obtaining the results in Table 4.4With the orreted data set, the model from any oneyear transfers very well to the other years, so thesemodels should be useful to Earth sientists in order toprovide NDVI values for years in whih no satellite-based measurements of NDVI are available.Our experiene in �nding this error in the data sug-gests a general method of searhing for alibration er-rors in time-series data, even when no model of thedata is available. This method involves learning amodel from the data for eah time step and then test-ing this model on data from suessive time steps. If4All of the results presented in the previous setions arebased on the orreted data set.

Table 4. Correlation oeÆients obtained when ross-validating using one year's data and when training on oneyear's data and testing on the next year's data, using theorreted data set.Data Set rross-validate 1983 0.91ross-validate 1984 0.91ross-validate 1985 0.92ross-validate 1986 0.92ross-validate 1987 0.91ross-validate 1988 0.91train 1983, test 1984 0.91train 1984, test 1985 0.91train 1985, test 1986 0.91train 1986, test 1987 0.91train 1987, test 1988 0.90there exist situations in whih the model �ts the dataunusually poorly, then those are good plaes to lookfor alibration errors in the data. Of ourse, whensuh situations are found, the human experts must ex-amine the relevant data to determine, based on theirdomain knowledge, whether the sudden hange in themodel results from an error in the data, from a knowndisontinuity in the natural system being modeled, orfrom a genuinely new sienti� disovery. This ideaan be extended beyond time-series problems to anydata set that an be naturally divided into distintsets, inluding spatial data.7. Related WorkRobust algorithms for exible regression have beenavailable for some time. Breiman, Friedman, Olshen,and Stone's (1984) CART �rst introdued the no-tion of induing regression trees to predit numeriattributes, whereas Weiss and Indurkhya (1993) ex-tended the idea to rule indution. Eah approah hasproved suessful in many domains, and both CARTand Cubist have ahieved ommerial suess. How-ever, neither approah has yet seen muh appliationto Earth siene data, despite the onsiderable work onlassi�ation learning for tasks like assigning groundover types to pixels (e.g., Brodley & Friedl, 1999)and lustering adjaent pixels into groups (e.g., Ester,Kriegel, Sander, & Xu, 1996).The work on ommuniability and understandabilitydesribed in this paper builds on previous work in om-prehensibility. Our requirement for ommuniability issimilar to Mihalski's (1983) \omprehensibility postu-late" whih states that the results of omputer indu-



Figure 4. Predited NDVI against atual NDVI for (left) ross-validated 1985 data and (right) training on 1984 data andtesting on 1985 data.tion should be in a form that is syntatially and se-mantially similar to that used by humans experts. Aolletion of papers on omprehensibility an be foundin Kodrato� and N�edelle (1995).Researhers have also arried out extensive work ontehniques for visualizing data and learned knowledge.Tufte (1983) did early inuential work on the formertopi, whereas Keim and Kriegel (1996) review manyof the existing approahes. Within the data-miningommunity, researhers have developed a variety ofmethods for the graphial display of learned knowledge(e.g., Brunk, Kelly, & Kohavi, 1996). However, al-though muh of this work employs a spatial metaphor,little has foused on learned spatial knowledge itself.Appliations of mahine learning to Earth sienedata, as in methods for ground over predition (e.g.,Brodley & Friedl, 1999), regularly display lasses onmaps. Smyth, Ghil, and Ide (1999) plot preditionsof a learned mixture model on the globe, but our ap-proah to visualizing areas in whih regression rulesmath, as well as anomalous regions, appears novel.The European projet SPIN! (2001) is seeking to de-velop a spatial data mining system by ombining datamining tools like C4.5 (Quinlan, 1993) with toolsfor visualizing spatial data like Desartes (Andrienko& Andrienko, 1999). The planned system will letits users visualize geographially-referened data onmaps, and to mine the data using the data-mining

tools, from a uni�ed user interfae. The researhersplan to test the SPIN! system on appliations involv-ing seismi and volano data. The visualization om-ponent of the projet seems foused on letting usersvisualize the data, rather than visualizing the knowl-edge learned through data mining.There has also been onsiderable researh on usingmahine-learned knowledge to detet and either ignoreor orret errors in training data. Muh of this workhas foused on removing ases with faulty lass labels(e.g., John, 1995; Brodley & Friedl, 1999), but somehas addressed deteting errors in the values of predi-tive variables. Naturally, there are established meth-ods for deteting and orreting alibration problemsin remote-sensing systems (e.g., Chen, 1997), but theserely on prede�ned models. Thus, our use of regressionrules to detet systemati errors appears novel to boththe mahine learning and alibration ommunities.8. Future WorkOur ollaboration with Earth sientists is in its earlystages, and we still have many researh avenues to ex-plore. Our next step in modeling NDVI will inorpo-rate time expliitly by adding the year to the ontinu-ous variables used in regression equations, rather thanbuilding a separate model for eah year. We hope thatby examining the resulting multi-year models, we anlearn something about limate hange over time.



In this paper, we have assumed that models with fewerrules are more understandable. In future work, we planto test this assumption by having our Earth sieneollaborators examine various sets of rules that Cubistprodues for di�erent parameter values and telling uswhih sets they think are easier to understand. Natu-rally, we will also ask them to judge the rules' plausibil-ity and interestingness from the perspetive of Earthsiene.At the Potter team's suggestion, our runs with Cubisthave inluded additional variables beyond those usedin their 1998 artile. Preliminary results indiate thatsome of these variables give small improvements in thepredited auray for NDVI. We plan to further in-vestigate the utility of these variables and investigateways to measure whih variables are most importantin a set of regression rules.The NDVI preditive model is only one piee of alarger framework, known as CASA (Potter & Klooster,1998), that Potter's team has developed to model theEarth's eosystem. CASA takes the form of a proessmodel, stated in terms of di�erential equations, forthe prodution and absorption of biogeni trae gasesin the Earth's atmosphere. For the reasons of under-standability and ommuniability desribed earlier, wewould like our learned models to take the same form,whih means we annot rely on Cubist alone in ourfuture e�orts.There has been some researh on disovering laws thattake the form of di�erential equations (Todorovski &Dzeroski, 1997), but this work has not used an exist-ing set of equations as the starting point. We plan todevelop an algorithm that will begin with the urrentCASA model and searh through the spae of possi-ble equations to �nd an improved model. We hopethat this e�ort will improve the auray of the CASAequations while retaining its ommuniability and itssienti� plausibility. We also hope that the hangesour system makes to the model will suggest new in-sights about Earth siene.9. Lessons LearnedIn their editorial on applied researh in mahine learn-ing, Provost and Kohavi (1998) laimed that a goodappliation paper will \fous researh on importantunsolved problems that urrently restrit the pratialappliability of mahine learning methods." In thispaper, we have identi�ed, and provided initial solu-tions for, three suh problems that arise in sienti�appliations:

Communiability. In sienti� domains, it is impor-tant for the form of the learned models to maththe form that is ustomarily used in the relevantliterature, so that the learned models an be om-muniated to other sientists.Understandability. In domains that involve spatialdata, understanding of the models an be in-reased by visualizing the spatial distribution ofthe model's errors and visualizing the loationsin whih the model's omponents (e.g., rules) areative.Quantitative errors. In appliations that involvetime-series numerial data, mahine learningmethods an be used to identify quantitative er-rors by testing a learned model for one time periodagainst data from other time periods.Although we have developed these ideas in the on-text of a spei� sienti� appliation { the predi-tion of NDVI from limate variables { we believe theyhave general appliability to any domain that involvessienti� understanding of spatio-temporal data. Aswe ontinue utilizing mahine learning to improve theCASA model, we expet that the hallenging natureof the task will reveal other methods and priniplesthat ontribute to both Earth siene and the sieneof mahine learning.AknowledgementsThis work would not have been possible without theollaboration of our Earth siene experts, Chris Pot-ter, Steve Klooster, Lisy Torregrosa, and VanessaBrooks, all of the Earth Siene Division of NASAAmes Researh Center. We would also like to thankJe� Shrager for his help in formulating the problem,and for numerous disussions in whih he has partii-pated. Finally, we would like to thank Kazumi Saitoand Ross Quinlan for reviewing drafts of this paper.This researh was funded by the NASA Intelligent Sys-tems Program.ReferenesAndrienko, G. L., & Andrienko, N. V. (1999). Intera-tive maps for visual data exploration. InternationalJournal Geographi Information Siene, 13, 355{374.Breiman, L., Friedman, J. H., Olshen, R. A., & Stone,C. J. (1984). Classi�ation and regression trees .Belmont, CA: Wadsworth.
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