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t. Resear
h on the 
omputational dis
overy of numeri
 equa-tions has fo
used on 
onstru
ting laws from s
rat
h, whereas work ontheory revision has emphasized qualitative knowledge. In this paper, wedes
ribe an approa
h to improving s
ienti�
 models that are 
ast as setsof equations. We review one su
h model for aspe
ts of the Earth e
osys-tem, then re
ount its appli
ation to revising parameter values, intrinsi
properties, and fun
tional forms, in ea
h 
ase a
hieving redu
tion in er-ror on Earth s
ien
e data while retaining the 
ommuni
ability of theoriginal model. After this, we 
onsider earlier work on 
omputationals
ienti�
 dis
overy and theory revision, then 
lose with suggestions forfuture resear
h on this topi
.1 Resear
h Goals and MotivationResear
h on 
omputational approa
hes to s
ienti�
 knowledge dis
overy has along history in arti�
ial intelligen
e, dating ba
k over two de
ades (e.g., Lan-gley, 1979; Lenat, 1977). This body of work has led steadily to more powerfulmethods and, in re
ent years, to new dis
overies deemed worth publi
ation inthe s
ienti�
 literature, as reviewed by Langley (1998). However, despite thisprogress, mainstream work on the topi
 retains some important limitations.

From Pro
eedings of the Fourth International Conferen
e onDis
overy S
ien
e (2001). Washington, D.C.: Springer.

One drawba
k is that few approa
hes to the intelligent analysis of s
ienti�
data 
an use available knowledge about the domain to 
onstrain sear
h for lawsor explanations. Moreover, although early work on 
omputational dis
overy 
astdis
overed knowledge in notations familiar to s
ientists, more re
ent e�orts havenot. Rather, in
uen
ed by the su

ess of ma
hine learning and data mining, manyresear
hers have adopted formalisms developed by these �elds, su
h as de
isiontrees and Bayesian networks. A return to methods that operate on establisheds
ienti�
 notations seems ne
essary for s
ientists to understand their results.



Quantitative Model Revision 337Like earlier resear
h on 
omputational s
ienti�
 dis
overy, our general ap-proa
h involves de�ning a spa
e of possible models stated in an establisheds
ienti�
 formalism, spe
i�
ally sets of numeri
 equations, and developing te
h-niques to sear
h that spa
e. However, it di�ers from previous work in this area bystarting from an existing s
ienti�
 model and using heuristi
 sear
h to revise themodel in ways that improve its �t to observations. Although there exists someresear
h on theory re�nement (e.g., Ourston & Mooney 1990; Towell, 1991),it has emphasized qualitative knowledge rather than quantitative models thatrelate 
ontinuous variables, whi
h play a 
entral role in many s
ien
es.In the pages that follow, we des
ribe an approa
h to revising quantitativemodels of 
omplex systems. We believe that our approa
h is a general one ap-propriate for many s
ienti�
 domains, but we have fo
used our e�orts on onearea { 
ertain aspe
ts of the Earth e
osystem { for whi
h we have a viable model,existing data, and domain expertise. We brie
y review the domain and modelbefore moving on to des
ribe our approa
h to knowledge dis
overy and modelrevision. After this, we present some initial results that suggest our approa
h 
animprove substantially the model's �t to available data. We 
lose with a dis
ussionof related dis
overy work and dire
tions for future resear
h.2 A Quantitative Model of the Earth E
osystemData from the latest generation of satellites, 
ombined with readings from groundsour
es, hold great promise for testing and improving existing s
ienti�
 models ofthe Earth's biosphere. One su
h model, CASA, developed by Potter and Klooster(1997, 1998) at NASA Ames Resear
h Center, a

ounts for the global produ
-tion and absorption of biogeni
 tra
e gases in the Earth atmosphere, as well aspredi
ting 
hanges in the geographi
 patterns of major vegetation types (e.g.,grasslands, forest, tundra, and desert) on the land.CASA predi
ts, with reasonable a

ura
y, annual global 
uxes in tra
e gasprodu
tion as a fun
tion of surfa
e temperature, moisture levels, and soil prop-erties, together with global satellite observations of the land surfa
e. The modelin
orporates di�eren
e equations that represent the terrestrial 
arbon 
y
le, aswell as pro
esses that mineralize nitrogen and 
ontrol vegetation type. Theseequations des
ribe relations among quantitative variables and lead to 
hanges inthe modeled outputs over time. Some pro
esses are 
ontingent on the values ofdis
rete variables, su
h as soil type and vegetation, whi
h take on di�erent val-ues at di�erent lo
ations. CASA operates on gridded input at di�erent levels ofresolution, but typi
al usage involves grid 
ells that are eight kilometers square,whi
h mat
hes the resolution for satellite observations of the land surfa
e.To run the CASA model, the di�eren
e equations are repeatedly applied toea
h grid 
ell independently to produ
e new variable values on a daily or monthlybasis, leading to predi
tions about how ea
h variable 
hanges, at ea
h lo
ation,over time. Although CASA has been quite su

essful at modeling Earth's e
osys-tem, there remain ways in whi
h its predi
tions di�er from observations, suggest-ing that we invoke 
omputational dis
overy methods to improve its ability to �tthe data. The result would be a revised model, 
ast in the same notation as the



338 K. Saito et al.Table 1. Variables used in the NPP
 portion of the CASA e
osystem model.NPP
 is the net plant produ
tion of 
arbon at a site during the year.E is the photosyntheti
 eÆ
ien
y at a site after fa
toring various sour
es of stress.T1 is a temperature stress fa
tor (0 < T1 < 1) for 
old weather.T2 is a temperature stress fa
tor (0 < T2 < 1), nearly Gaussian in form but fallingo� more qui
kly at higher temperatures.W is a water stress fa
tor (0:5 < W < 1) for dry regions.Topt is the average temperature for the month at whi
h MON-FAS-NDVI takes onits maximum value at a site.Temp
 is the average temperature at a site for a given month.EET is the estimated evapotranspiration (water loss due to evaporation and transpi-ration) at a site.PET is the potential evapotranspiration (water loss due to evaporation and transpi-ration given an unlimited water supply) at a site.PET-TW-M is a 
omponent of potential evapotranspiration that takes into a

ountthe latitude, time of year, and days in the month.A is a polynomial fun
tion of the annual heat index at a site.AHI is the annual heat index for a given site.MON-FAS-NDVI is the relative vegetation greenness for a given month as measuredfrom spa
e.IPAR is the energy from the sun that is inter
epted by vegetation after fa
toring intime of year and days in the month.FPAR-FAS is the fra
tion of energy inter
epted from the sun that is absorbed pho-tosyntheti
ally after fa
toring in vegetation type.MONTHLY-SOLAR is the average solar irradian
e for a given month at a site.SOL-CONVER is 0.0864 times the number of days in ea
h month.UMD-VEG is the type of ground 
over (vegetation) at a site.original one, that in
orporates 
hanges whi
h are interesting to Earth s
ientistsand whi
h improve our understanding of the environment.Be
ause the overall CASA model is quite 
omplex, involving many variablesand equations, we de
ided to fo
us on one portion that lies on the model's`fringes' and that does not involve any di�eren
e equations. Table 1 des
ribes thevariables that o

ur in this submodel, in whi
h the dependent variable, NPP
,represents the net produ
tion of 
arbon. As Table 2 indi
ates, the model predi
tsthis quantity as the produ
t of two unobservable variables, the photosyntheti
eÆ
ien
y, E, at a site and the solar energy inter
epted, IPAR, at that site.Photosyntheti
 eÆ
ien
y is in turn 
al
ulated as the produ
t of the maximumeÆ
ien
y (0.56) and three stress fa
tors that redu
e this eÆ
ien
y. One stressterm, T2, takes into a

ount the di�eren
e between the optimum temperature,Topt, and a
tual temperature, Temp
, for a site. A se
ond fa
tor, T1, involves



Quantitative Model Revision 339Table 2. Equations used in the NPP
 portion of the CASA e
osystem model.NPP
 =Pmonth max (E � IPAR, 0)E = 0.56 � T1 � T2 � WT1 = 0.8 + 0.02 � Topt � 0:0005 � Topt2T2 = 1:18=[(1 + e0:2�(Topt�Temp
�10)) � (1 + e0:3�(Temp
�Topt�10))℄W = 0:5 + 0:5 � EET/PETPET = 1:6 � (10 � Temp
 = AHI)A � PET-TW-M if Temp
 > 0PET = 0 if Temp
 � 0A = 0:000000675 � AHI3 � 0:0000771� AHI2 + 0:01792 � AHI + 0:49239IPAR = 0:5 � FPAR-FAS � MONTHLY-SOLAR � SOL-CONVERFPAR-FAS = min((SR-FAS � 1:08)=SRDIFF(UMD-VEG), 0.95)SR-FAS = � (MON-FAS-NDVI + 1000) / (MON-FAS-NDVI � 1000)the nearness of Topt to a global optimum for all sites, re
e
ting the intuitionthat plants whi
h are better adapted to harsh temperatures are less eÆ
ientoverall. The third term, W, represents stress that results from la
k of moisture asre
e
ted by EET, the estimated water loss due to evaporation and transpiration,and PET, the water loss due to these pro
esses given an unlimited water supply.In turn, PET is de�ned in terms of the annual heat index, AHI, for a site, andPET-TW-M, another 
omponent of potential evapotranspiration.The energy inter
epted from the sun, IPAR, is 
omputed as the produ
tof FPAR-FAS, the fra
tion of energy absorbed photosyntheti
ally for a givenvegetation type, MONTHLY-SOLAR, the average radiation for a given month,and SOL-CONVER, the number of days in that month. FPAR-FAS is a fun
tionof MON-FAS-NDVI, whi
h indi
ates relative greenness at a site as observed fromspa
e, and SRDIFF, an intrinsi
 property that takes on di�erent numeri
 valuesfor di�erent vegetation types as spe
i�ed by the dis
rete variable UMD-VEG.Of the variables we have mentioned, NPP
, Temp
, MONTHLY-SOLAR,SOL-CONVER, MON-FAS-NDVI, and UMD-VEG are observable. Three addi-tional terms { EET, PET-TW-M, and AHI { are de�ned elsewhere in the model,but we assume their de�nitions are 
orre
t and thus we 
an treat them as observ-ables. The remaining variables are unobservable and must be 
omputed from theothers using their de�nitions. This portion of the model also 
ontains a numberof numeri
 parameters, as shown in the equations in Table 2.3 An Approa
h to Quantitative Model RevisionAs noted earlier, our approa
h to s
ienti�
 dis
overy involves re�ning modelslike CASA that involve relations among quantitative variables. We adopt thetraditional view of dis
overy as heuristi
 sear
h through a spa
e of models, withthe sear
h pro
ess dire
ted by 
andidates' ability to �t the data. However, weassume this pro
ess starts not from s
rat
h, but rather with an existing model,



340 K. Saito et al.and the sear
h operators involve making 
hanges to this model, rather than
onstru
ting entirely new stru
tures.Our long-term goal is not to automate the revision pro
ess, but instead toprovide an intera
tive tool that s
ientists 
an dire
t and use to aid their modeldevelopment. As a result, the approa
h we des
ribe in this se
tion addressesthe task of making lo
al 
hanges to a model rather than 
arrying out globaloptimization, as assumed by Chown and Dietteri
h (2000). Thus, our softwaretakes as input not only observations about measurable variables and an existingmodel stated as equations, but also information about whi
h portion of themodel should be altered. The output is a revised model that �ts the observeddata better than the initial one.Below we review two dis
overy algorithms that we utilize to improve thespe
i�ed part of a model, then des
ribe three distin
t types of revision theysupport. We 
onsider these in order of in
reasing 
omplexity, starting with simple
hanges to parameter values, moving on to revisions in the values of intrinsi
properties, and ending with 
hanges in an equation's fun
tional form.3.1 The RF5 and RF6 Dis
overy AlgorithmsOur approa
h relies on RF5 and RF6, two algorithms for dis
overing numeri
equations des
ribed Saito and Nakano (1997, 2000). Given data for some 
ontin-uous variable y that is dependent on 
ontinuous predi
tive variables x1; : : : ; xn,the RF5 system sear
hes for multivariate polynomial equations of the formy = w0 + JXj=1wj KYk=1 xwjkk = w0 + JXj=1wj exp KXk=1wjk ln(xk)! ; (1)Su
h fun
tional relations subsume many of the numeri
 laws found by previous
omputational dis
overy systems like Ba
on (Langley, 1979) and Fahrenheit( _Zytkow, Zhu, & Hussam, 1990).RF5's �rst step involves transforming a 
andidate fun
tional form with Jsummed terms into a three-layer neural network based on the rightmost formof expression (1), in whi
h the K hidden nodes in this network 
orrespond toprodu
t units (Durbin & Rumelhart, 1989). The system then 
arries out sear
hthrough the weight spa
e using the BPQ algorithm, a se
ond-order learning te
h-nique that 
al
ulates both the des
ent dire
tion and the step size automati
ally.This pro
ess halts when it �nds a set of weights that minimize the squarederror on the dependent variable y. RF5 runs the BPQ method on networks withdi�erent numbers of hidden units, then sele
ts the one that gives the best s
oreon an MDL metri
. Finally, the program transforms the resulting network intoa polynomial equation, with weights on hidden units be
oming exponents andother weights be
oming 
oeÆ
ients.The RF6 algorithm extends RF5 by adding the ability to �nd 
onditions ona numeri
 equation that involve nominal variables, whi
h it en
odes using oneinput variable for ea
h nominal value. To this end, the system �rst generates onesu
h 
ondition for ea
h training 
ase, then utilizes k-means 
lustering to generate



Quantitative Model Revision 341a smaller set of more general 
onditions, with the number of 
lusters determinedthrough 
ross validation. Finally, RF6 invokes de
ision-tree indu
tion to 
on-stru
t a 
lassi�er that dis
riminates among these 
lusters, whi
h it transformsinto rules that form the nominal 
onditions on the polynomial equation thatRF5 has generated.3.2 Three Types of Model Re�nementThere exist three natural types of re�nement within the 
lass of models, likeCASA, that are stated as sets of equations that refer to unobservable variables.These in
lude revising the parameter values in equations, altering the values foran intrinsi
 property, and 
hanging the fun
tional form of an existing equation.Improving the parameters for an equation is the most straightforward pro-
ess. The NPP
 portion of CASA 
ontains some parameterized equations thatour Earth s
ien
e team members believe are reliable, like that for 
omputing thevariable A from AHI, the annual heat index. However, it also in
ludes equationswith parameters about whi
h there is less 
ertainty, like the expression that pre-di
ts the temperature stress fa
tor T2 from Temp
 and Topt. Our approa
h torevising su
h parameters relies on 
reating a spe
ialized neural network that en-
odes the equation's fun
tional form using ideas from RF5, but also in
luding aterm for the un
hanged portion of the model. We then run the BPQ algorithm to�nd revised parameter values, initializing weights based on those in the model.We 
an utilize a similar s
heme to improve the values for an intrinsi
 propertylike SRDIFF that the model asso
iates with the dis
rete values for some nominalvariable like UMD-VEG (vegetation type). We en
ode ea
h nominal term as aset of dummy variables, one for ea
h dis
rete value, making the dummy variableequal to one if the dis
rete value o

urs and zero otherwise. We introdu
e onehidden unit for the intrinsi
 property, with links from ea
h of the dummy vari-ables and with weights that 
orrespond to the intrinsi
 values asso
iated withea
h dis
rete value. To revise these weights, we 
reate a neural network that in-
orporates the intrinsi
 values but also in
ludes a term for the un
hanging partsof the model. We 
an then run BPQ to revise the weights that 
orrespond tointrinsi
 values, again initializing them to those in the initial model.Altering the form of an existing equation requires somewhat more e�ort, butmaps more dire
tly onto previous work in equation dis
overy. In this 
ase, thedetails depend on the spe
i�
 fun
tional form that we provide, but be
ause wehave available the RF5 and RF6 algorithms, the approa
h supports any of theforms that they 
an dis
over or spe
ializations of them. Again, having identi�eda parti
ular equation that we want to improve, we 
reate a neural networkthat en
odes the desired form, then invoke the BPQ algorithm to determineits parametri
 values, in this 
ase initializing the network weights randomly.This approa
h to model re�nement supports 
hanges to only one equation orintrinsi
 property at a time, but this is 
onsistent with the intera
tive pro
essdes
ribed earlier. We envision the s
ientist identifying a portion of the modelthat he thinks 
ould be better, running one of the three revision methods toimprove its �t to the data, and repeating this pro
ess until he is satis�ed.



342 K. Saito et al.4 Initial Results on E
osystem DataIn order to evaluate our approa
h to s
ienti�
 model revision, we utilized datarelevant to the NPP
 model available to the Earth s
ien
e members of our team.These data 
onsisted of observations from 303 distin
t sites with known vegeta-tion type and for whi
h measurements of Temp
, MON-FAS-NDVI, MONTHLY-SOLAR, SOL-CONVER, and UMD-VEG were available for ea
h month duringthe year. In addition, other portions of CASA were able to 
ompute values for thevariables AHI, EET, and PET-TW-M. The resulting 303 training 
ases seemedsuÆ
ient for initial tests of our revision methods, so we used them to drive avariety of 
hanges to the hand
rafted model of 
arbon produ
tion.4.1 Results on Parameter RevisionOur Earth s
ien
e team members identi�ed the equation for T2, one of thetemperature stress variables, as a likely 
andidate for revision. As noted earlier,the hand
rafted expression for this term wasT2 = 1:8=[(1 + e0:2(Topt�Temp
�10))(1 + e�0:3(Temp
�Topt�10))℄ ;whi
h produ
es a Gaussian-like 
urve that is slightly assymetri
al. This re-
e
ts the intuition that photosyntheti
 eÆ
ien
y will de
rease when temperature(Temp
) is either below or above the optimal (Topt).To improve upon this equation, we de�ned x = Topt�Temp
 as an interme-diate variable and re
ast the expression for T2 as the produ
t of two sigmoidalfun
tions of the form �(a) = 1=(1+exp(�a)) and a parameter. We transformedthese into a neural network and used BPQ to minimize the error fun
tionF1 =Psample (NPP
�Pmonthw0 � �(v10 + v11 � x) � �(v20 � v21 � x) �Rest)2 ;over the parameters fw0; v10; v11; v20; v21g, where Rest = 0.56 � T1 �W � IPAR.The resulting equation generated in this manner wasT2 = 1:80=[(1 + e0:05(Topt�Temp
�10:8)(1 + e�0:03(Temp
�Topt�90:33)℄ ;whi
h has reasonably similar values to the original ones for some parameters butquite di�erent values for others.The root mean squared error (RMSE) for the original model on the availabledata was 467:910. In 
ontrast, the error for the revised model was 457:757 onthe training data and 461:466 using leave-one-out 
ross validation. Thus, RF6'smodi�
ation of parameters in the T2 equation produ
ed slightly more than oneper
ent redu
tion in overall model error, whi
h is somewhat disappointing.However, inspe
tion of the resulting 
urves reveals a more interesting pi
ture.Plotting the temperature stress fa
tor T2 using the revised equations as a fun
-tion of the di�eren
e Topt � Temp
 still gives a Gaussian-like 
urve, but withinthe e�e
tive range (from �30 to 30 Celsius) its values de
rease monotoni
ally.This seems 
ounterintuitive but interesting from an Earth s
ien
e perspe
tive,



Quantitative Model Revision 343as it suggests this stress fa
tor has little in
uen
e on NPP
. Moreover, the origi-nal equation for T2 was not well grounded in �rst prin
iples of plant physiology,making empiri
al improvements of this sort bene�
ial to the modeling enterprise.As another 
andidate for parameter revision, we sele
ted the PET equation,PET = 1:6 � (10 �max(Temp
; 0) = AHI)A � PET-TW-M ;whi
h 
al
ulates potential water loss due to evaporation and transpiration givenan unlimited water supply. By transforming this expression intoPET = exp(ln(1:6) + A � ln(10)) � (max(Temp
; 0) = AHI)A � PET-TW-Mand repla
ing the parameter values ln(1:6) and ln(10) with the variables v0 andv1, we 
onstru
ted a neural network and used BPQ for error minimization. Whentransforming the trained network ba
k into the original form, the equation thatresulted wasPET = 1:56 � (9:16 �max(Temp
; 0) = AHI)A � PET-TW-M ;whi
h has values that are very similar to those in the original model's equation.Moreover, sin
e the RMSE for the obtained model was 464:358 on the train-ing data and 467:643 using leave-one-out 
ross validation, the revision pro
essdid not improve the model's a

ura
y substantially. However, sin
e the PETequation is based on Thornthwaite's (1948) method, whi
h has been used 
on-tinuously for over 50 years, we should not be overly surprised at this negativeresult. Indeed, we are en
ouraged by the fa
t that our approa
h did not reviseparameters that have stood the test of time in Earth s
ien
e.4.2 Results on Intrinsi
 Value RevisionAnother portion of the NPP
 model that held potential for revision 
on
ernsthe intrinsi
 property SRDIFF asso
iated with the vegetation type UMD-VEG.For ea
h site, the latter variable takes on one of 11 nominal values, su
h asgrasslands, forest, tundra, and desert, ea
h with an asso
iated numeri
 value forSRDIFF that plays a role in the FPAR-FAS equation. This gives 11 parametersto revise, whi
h seems manageable given the number of observations available.As outlined earlier, to revise these intrinsi
 values, we introdu
ed one dummyvariable, UMD-VEGk, for ea
h vegetation type su
h that UMD-VEGk = 1 ifUMD-VEG = k and 0 otherwise. We then de�ned SRDIFF(UMD-VEG) asexp(�Pkvk � UMD-VEGk) and, sin
e SRDIFF's value is independent of themonth, we used BPQ to minimize, over the weights fvkg, the error fun
tionF2 =Psite (NPP
� exp(Pkvk � UMD-VEGk) �Rest)2 ;where Rest =PmonthE �0:5�(SR-FAS�1:08)�MONTHLY-SOLAR�SOL-CONVER.Table 3 shows the initial values for this intrinsi
 property, as set by the CASAdevelopers, along with the revised values produ
ed by the above approa
h when



344 K. Saito et al.Table 3. Original and revised values for the SRDIFF intrinsi
 property, along withthe frequen
y for ea
h vegetation type.vegetation type A B C D E F G H I J Koriginal 3.06 4.35 4.35 4.05 5.09 3.06 4.05 4.05 4.05 5.09 4.05revised 2.57 4.77 2.20 3.99 3.70 3.46 2.34 0.34 2.72 3.46 1.60
lustered 2.42 3.75 2.42 3.75 3.75 3.75 2.42 0.34 2.42 3.75 2.42frequen
y 3.3 8.9 0.3 3.6 21.1 19.1 15.2 3.3 19.1 2.3 3.6we �xed other parts of the NPP
 model. The most striking result is that therevised intrinsi
 values are nearly always lower than the initial values. The RMSEfor the original model was 467:910, whereas the error using the revised valueswas 432:410 on the training set and 448:376 using 
ross validation. The latter
onstitutes an error redu
tion of over four per
ent, whi
h seems substantial.However, sin
e the original 11 intrinsi
 values were grouped into only fourdistin
t values, we applied RF6's 
lustering pro
edure over the trained neuralnetwork to group the revised values in the same manner. We examined the e�e
ton error rate as we varied the number of 
lusters from one to �ve; as expe
ted,the training RMSE de
reased monotoni
ally, but the 
ross-validation RMSE wasminimized for three 
lusters of values. The estimated error for this revised modelis slightly better than for the one with 11 distin
t values.Again, the 
lustered values are nearly always lower than the initial ones, aresult that is 
ertainly interesting from an Earth s
ien
e viewpoint. We suspe
tthat measurements of NPP
 and related variables from a wider range of siteswould produ
e intrinsi
 values 
loser to those in the original model. However,su
h a test must await additional observations and, for now, empiri
al �t to theavailable data should outweigh the theoreti
al basis for the initial settings.In another approa
h to revising intrinsi
 values, we retained the originalgrouping of vegetation types into sets, with ea
h type in a given set having thesame value. We utilized a weight-sharing te
hnique to en
ode this ba
kgroundknowledge in a neural network. For example, let vA and vF be weights 
orre-sponding to the SRDIFF values for vegetation types A and F, respe
tively; toensure these values remained the same, we treated them as a single weight, sayvAF . Here we 
an see that BPQ 
al
ulates the derivative of the error fun
tionover vAF as a sum of the individual derivatives over vA and vF ,�F2�vAF = �F2�vA + �F2�vF :In the trained neural network, the derivative over vAF be
omes zero, but thereis no guarantee that ea
h derivative over vA or vF will do so. Therefore, we 
antreat the sum of the absolute values for derivatives over shared weights, like vAand vF , as a 
riterion for the `unlikeness' among the elements of su
h a grouping.Table 4 shows the revised values for the intrinsi
 property SRDIFF that resultfrom this approa
h, along with values for the unlikeness 
riterion de�ned above.



Quantitative Model Revision 345Table 4. Original and revised values, using the original groupings, for the SRDIFFintrinsi
 property, along with the frequen
y and unlikeness for ea
h vegetation group.vegetation type A_F B_C E_J D_G_H_I_Koriginal 3.06 4.35 5.09 4.05revised 2.23 3.27 2.54 1.81frequen
y 22.4 9.2 23.4 44.9unlikeness 26.1 0.3 2.3 13.6As before, the obtained intrinsi
 values are always lower than the initial ones,and our 
riterion suggests that the group 
ontaining the vegetation types A andF has the least 
oheren
e. The RMSE for the revised model was 442:782 on thetraining data and 449:097 using leave-one-out 
ross validation, again indi
atingabout four per
ent redu
tion in the model's overall error.4.3 Results on Revising Equation Stru
tureWe also wanted to demonstrate our approa
h's ability to improve the fun
tionalform of the NPP
 model. For this purpose, we sele
ted the equation for photo-syntheti
 eÆ
ien
y, E = 0:56 � T1 � T2 �W ;whi
h states that this term is a produ
t of the water stress term, W, and the twotemperature stress terms, T1 and T2. Be
ause ea
h stress fa
tor takes on valuesless than one, multipli
ation has the e�e
t of redu
ing photosyntheti
 eÆ
ien
yE below the maximum 0.56 possible (Potter & Klooster, 1998).Sin
e E is 
al
ulated as a simple produ
t of the three variables, one naturalextension was to 
onsider an equation that in
luded exponents on these terms.To this end, we borrowed te
hniques from the RF5 system to 
reate a neuralnetwork for su
h an expression, then used BPQ to minimize the error fun
tionF3 =Psite (NPP
�Pmonthu0 � T1u1 � T2u2 �Wu3 � IPAR)2 ;over the parameters fu0; u1; u2; u3g, whi
h assumes the equations that predi
tIPAR remain un
hanged. We initialized u0 to 0.56 and the other parametersto 1.0, as in the original model, and 
onstrained the latter to be positive. Therevised equation found in this manner,E = 0:521 � T10:00 � T20:03 �W 0:00 ;has a small exponent for T2 and zero exponents for T1 and W, suggesting theformer in
uen
es photosyntheti
 eÆ
ien
y in minor ways and the latter not atall. On the available data, the root mean squared error for the original modelwas 467:910. In 
ontrast, the revised model has an RMSE of 443:307 on thetraining set and an RMSE of 446:270 using 
ross validation. Thus, the revised
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es a substantially better �t to the observations than does theoriginal model, in this 
ase redu
ing error by almost �ve per
ent.With regards to Earth s
ien
e, these results are plausible and the most in-teresting of all, as they suggest that the T1 and W stress terms are unne
essaryfor predi
ting NPP
. One explanation is that the in
uen
e of these fa
tors is al-ready being 
aptured by the NDVI measure available from spa
e, for whi
h thesignal-to-noise ratio has been steadily improving sin
e CASA was �rst developed.These results en
ouraged us to explore more radi
al revisions to the fun
-tional form for photosyntheti
 eÆ
ien
y. Thus, we told our system to 
onsider aform that omitted the three stress fa
tors but that in
luded the four variables {Topt, Temp
, EET, and PET { that appear in their de�nitions:E = v0 � exp(�0:5 � (v1 �Topt + v2 �Temp
 + v3 � EET+ v4 � PET+ v5)2) :This Gaussian-like a
tivation fun
tion satis�es the 
onstraint that E is positiveand less than one. Running BPQ to minimize the error fun
tion over fv0; : : : v5gprodu
ed the equationE = 0:57 � exp(�0:5 � (�0:04 �Topt + 0:03 �Temp
� 0:03 � EET+ 0:01 � PET)2);where we eliminated the parameter v5 be
ause its value was �0:003. The RMSEfor the revised model was 439:101 on the training data and 444:470 using leave-one-out 
ross validation, indi
ating more than �ve per
ent redu
tion in error.These results are very similar to those from our �rst approa
h, whi
h pro-du
ed a 
ross validation RMSE of 446:270. In this 
ase, the revised model issimpler in that it de�nes E dire
tly in terms of Topt, Temp
, EET, and PET,rather than relying on the theoreti
al terms T1, T2, and W, two of whi
h pro-vide no predi
tive power. On the other hand, the original form for E had a 
leartheoreti
al interpretation, whereas the new version does not. In su
h situations,the �nal de
ision should be left to domain s
ientists, who are best suited tobalan
e a model's simpli
ity against its interepretability.5 Related Resear
h on Computational Dis
overyOur resear
h on 
omputational s
ienti�
 dis
overy draws on two previous lines ofwork. One approa
h, whi
h has an extended history within arti�
ial intelligen
e,addresses the dis
overy of expli
it quantitative laws. Early systems for numeri
law dis
overy like Ba
on (Langley, 1979; Langley et al., 1987) 
arried out aheuristi
 sear
h through a spa
e of new terms and simple equations. Numeroussu

essors like Fahrenheit ( _Zytkow et al., 1990) and RF5 (Saito & Nakano,1997) in
orporate more sophisti
ated and more extensive sear
h through a largerspa
e of numeri
 equations.The most relevant equation dis
overy systems take into a

ount domainknowledge to 
onstrain the sear
h for numeri
 laws. For example, Kokar's (1986)Coper utilized knowledge about the dimensions of variables to fo
us attentionand, more re
ently, Washio and Motoda's (1998) SDS extends this idea to sup-port di�erent types of variables and sets of simultaneous equations. Todorovski



Quantitative Model Revision 347and D�zeroski's (1997) LaGramge takes a quite di�erent approa
h, using do-main knowledge in the form of 
ontext-free grammars to 
onstrain its sear
hthrough a spa
e of di�erential equation models that des
ribe temporal behavior.Although resear
h on 
omputational dis
overy of numeri
 laws has empha-sized 
ommuni
able s
ienti�
 notations, it has fo
used on 
onstru
ting su
h lawsrather than revising existing ones. In 
ontrast, another line of resear
h has ad-dressed the re�nement of existing models to improve their �t to observations.For example, Ourston and Mooney (1990) developed a method that used train-ing data to revise models stated as sets of propositional Horn 
lauses. Towell(1991) reports another approa
h that transforms su
h models into multilayerneural networks, then uses ba
kpropagation to improve their �t to observations,mu
h as we have done for numeri
 equations. Work in this paradigm has em-phasized 
lassi�
ation rather than regression tasks, but one 
an view our workas adapting the basi
 approa
h to equation dis
overy.We should also mention related work on the automated improvement ofe
osystem models. Most AI work on Earth s
ien
e domains fo
uses on learn-ing 
lassi�ers that predi
t vegetation from satellite measures like NDVI, as 
on-trasted with our 
on
ern for numeri
 predi
tion. Chown and Dietteri
h (2000)des
ribe an approa
h that improves an existing e
osystem model's �t to 
ontin-uous data, but their method only alters parameter values and does not reviseequation stru
ture. On another front, S
hwaba
her and Langley (2001) use arule-indu
tion algorithm to dis
over pie
ewise linear models that predi
t NDVIfrom 
limate variables, but their method takes no advantage of existing models.6 Dire
tions for Future Resear
hAlthough we have been en
ouraged by our results to date, there remain a numberof dire
tions in whi
h we must extend our approa
h before it 
an be
ome a usefultool for s
ientists. As noted earlier, we envision an intera
tive dis
overy aidethat lets the user fo
us the system's attention on those portions of the modelit should attempt to improve. To this end, we need a graphi
al interfa
e thatsupports marking of parameters, intrinsi
 properties, and equations that 
an berevised, as well as tools for displaying errors as a fun
tion of spa
e, time, andpredi
tive variables.In addition, the 
urrent system is limited to revising the parameters or formof one equation in the model at a time, as well as requiring some hand
raftingto en
ode the equations as a neural network. Future versions should supportrevisions of multiple equations at the same time, preferably invoking the samevariants of ba
kpropagation as we have used to date, and also provide a li-brary that maps fun
tional forms to neural network en
odings, so the system
an transform the former into the latter automati
ally. We should also exploreusing other approa
hes to equation dis
overy, su
h as Todorovski and D�zeroski'sLaGramge, in pla
e of the RF6 algorithm.Naturally, we also hope to evaluate our approa
h on its ability to improveother portions of the CASA model, as additional data be
omes available. An-other test of generality would be appli
ation of the same methods to other s
i-
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 domains in whi
h there already exist formal models that 
an be revised.In the longer term, we should evaluate our intera
tive system not only in itsability to in
rease the predi
tive a

ura
y of an existing model, but in terms ofthe satisfa
tion to s
ientists who use the system to that end.Another 
hallenge that we have en
ountered in our resear
h has been the needto translate the existing CASA model into a de
larative form that our dis
overysystem 
an manipulate. In response, another long-term goal involves developinga modeling language in whi
h s
ientists 
an 
ast their initial models and 
arryout simulations, but that 
an also serve as the de
larative representation forour dis
overy methods. The ability to automati
ally revise models pla
es novel
onstraints on su
h a language, but we are 
on�dent that the result will prove auseful aid to the dis
overy pro
ess.7 Con
luding RemarksIn this paper, we addressed the 
omputational task of improving an existing s
i-enti�
 model that is 
omposed of numeri
 equations. We illustrated this problemwith an example model from the Earth s
ien
es that predi
ts 
arbon produ
tionas a fun
tion of temperature, sunlight, and other variables. We identi�ed threea
tivities that 
an improve a model { revising an equation's parameters, alter-ing the values of an intrinsi
 property, and 
hanging the fun
tional form of anequation, then presented results for ea
h type on an e
osystem modeling taskthat redu
ed the model's predi
tion error, sometimes substantially.Our resear
h on model revision builds on previous work in numeri
 law dis-
overy and qualitative theory re�nement, but it 
ombines these two themes innovel ways to enable new 
apabilities. Clearly, we remain some distan
e fromour goal of an intera
tive dis
overy tool that s
ientists 
an use to improve theirmodels, but we have also taken some important steps along the path, and weare en
ouraged by our initial results on an important s
ienti�
 problem.Referen
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