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One drawbak is that few approahes to the intelligent analysis of sienti�data an use available knowledge about the domain to onstrain searh for lawsor explanations. Moreover, although early work on omputational disovery astdisovered knowledge in notations familiar to sientists, more reent e�orts havenot. Rather, inuened by the suess of mahine learning and data mining, manyresearhers have adopted formalisms developed by these �elds, suh as deisiontrees and Bayesian networks. A return to methods that operate on establishedsienti� notations seems neessary for sientists to understand their results.



Quantitative Model Revision 337Like earlier researh on omputational sienti� disovery, our general ap-proah involves de�ning a spae of possible models stated in an establishedsienti� formalism, spei�ally sets of numeri equations, and developing teh-niques to searh that spae. However, it di�ers from previous work in this area bystarting from an existing sienti� model and using heuristi searh to revise themodel in ways that improve its �t to observations. Although there exists someresearh on theory re�nement (e.g., Ourston & Mooney 1990; Towell, 1991),it has emphasized qualitative knowledge rather than quantitative models thatrelate ontinuous variables, whih play a entral role in many sienes.In the pages that follow, we desribe an approah to revising quantitativemodels of omplex systems. We believe that our approah is a general one ap-propriate for many sienti� domains, but we have foused our e�orts on onearea { ertain aspets of the Earth eosystem { for whih we have a viable model,existing data, and domain expertise. We briey review the domain and modelbefore moving on to desribe our approah to knowledge disovery and modelrevision. After this, we present some initial results that suggest our approah animprove substantially the model's �t to available data. We lose with a disussionof related disovery work and diretions for future researh.2 A Quantitative Model of the Earth EosystemData from the latest generation of satellites, ombined with readings from groundsoures, hold great promise for testing and improving existing sienti� models ofthe Earth's biosphere. One suh model, CASA, developed by Potter and Klooster(1997, 1998) at NASA Ames Researh Center, aounts for the global produ-tion and absorption of biogeni trae gases in the Earth atmosphere, as well asprediting hanges in the geographi patterns of major vegetation types (e.g.,grasslands, forest, tundra, and desert) on the land.CASA predits, with reasonable auray, annual global uxes in trae gasprodution as a funtion of surfae temperature, moisture levels, and soil prop-erties, together with global satellite observations of the land surfae. The modelinorporates di�erene equations that represent the terrestrial arbon yle, aswell as proesses that mineralize nitrogen and ontrol vegetation type. Theseequations desribe relations among quantitative variables and lead to hanges inthe modeled outputs over time. Some proesses are ontingent on the values ofdisrete variables, suh as soil type and vegetation, whih take on di�erent val-ues at di�erent loations. CASA operates on gridded input at di�erent levels ofresolution, but typial usage involves grid ells that are eight kilometers square,whih mathes the resolution for satellite observations of the land surfae.To run the CASA model, the di�erene equations are repeatedly applied toeah grid ell independently to produe new variable values on a daily or monthlybasis, leading to preditions about how eah variable hanges, at eah loation,over time. Although CASA has been quite suessful at modeling Earth's eosys-tem, there remain ways in whih its preditions di�er from observations, suggest-ing that we invoke omputational disovery methods to improve its ability to �tthe data. The result would be a revised model, ast in the same notation as the



338 K. Saito et al.Table 1. Variables used in the NPP portion of the CASA eosystem model.NPP is the net plant prodution of arbon at a site during the year.E is the photosyntheti eÆieny at a site after fatoring various soures of stress.T1 is a temperature stress fator (0 < T1 < 1) for old weather.T2 is a temperature stress fator (0 < T2 < 1), nearly Gaussian in form but fallingo� more quikly at higher temperatures.W is a water stress fator (0:5 < W < 1) for dry regions.Topt is the average temperature for the month at whih MON-FAS-NDVI takes onits maximum value at a site.Temp is the average temperature at a site for a given month.EET is the estimated evapotranspiration (water loss due to evaporation and transpi-ration) at a site.PET is the potential evapotranspiration (water loss due to evaporation and transpi-ration given an unlimited water supply) at a site.PET-TW-M is a omponent of potential evapotranspiration that takes into aountthe latitude, time of year, and days in the month.A is a polynomial funtion of the annual heat index at a site.AHI is the annual heat index for a given site.MON-FAS-NDVI is the relative vegetation greenness for a given month as measuredfrom spae.IPAR is the energy from the sun that is interepted by vegetation after fatoring intime of year and days in the month.FPAR-FAS is the fration of energy interepted from the sun that is absorbed pho-tosynthetially after fatoring in vegetation type.MONTHLY-SOLAR is the average solar irradiane for a given month at a site.SOL-CONVER is 0.0864 times the number of days in eah month.UMD-VEG is the type of ground over (vegetation) at a site.original one, that inorporates hanges whih are interesting to Earth sientistsand whih improve our understanding of the environment.Beause the overall CASA model is quite omplex, involving many variablesand equations, we deided to fous on one portion that lies on the model's`fringes' and that does not involve any di�erene equations. Table 1 desribes thevariables that our in this submodel, in whih the dependent variable, NPP,represents the net prodution of arbon. As Table 2 indiates, the model preditsthis quantity as the produt of two unobservable variables, the photosynthetieÆieny, E, at a site and the solar energy interepted, IPAR, at that site.Photosyntheti eÆieny is in turn alulated as the produt of the maximumeÆieny (0.56) and three stress fators that redue this eÆieny. One stressterm, T2, takes into aount the di�erene between the optimum temperature,Topt, and atual temperature, Temp, for a site. A seond fator, T1, involves



Quantitative Model Revision 339Table 2. Equations used in the NPP portion of the CASA eosystem model.NPP =Pmonth max (E � IPAR, 0)E = 0.56 � T1 � T2 � WT1 = 0.8 + 0.02 � Topt � 0:0005 � Topt2T2 = 1:18=[(1 + e0:2�(Topt�Temp�10)) � (1 + e0:3�(Temp�Topt�10))℄W = 0:5 + 0:5 � EET/PETPET = 1:6 � (10 � Temp = AHI)A � PET-TW-M if Temp > 0PET = 0 if Temp � 0A = 0:000000675 � AHI3 � 0:0000771� AHI2 + 0:01792 � AHI + 0:49239IPAR = 0:5 � FPAR-FAS � MONTHLY-SOLAR � SOL-CONVERFPAR-FAS = min((SR-FAS � 1:08)=SRDIFF(UMD-VEG), 0.95)SR-FAS = � (MON-FAS-NDVI + 1000) / (MON-FAS-NDVI � 1000)the nearness of Topt to a global optimum for all sites, reeting the intuitionthat plants whih are better adapted to harsh temperatures are less eÆientoverall. The third term, W, represents stress that results from lak of moisture asreeted by EET, the estimated water loss due to evaporation and transpiration,and PET, the water loss due to these proesses given an unlimited water supply.In turn, PET is de�ned in terms of the annual heat index, AHI, for a site, andPET-TW-M, another omponent of potential evapotranspiration.The energy interepted from the sun, IPAR, is omputed as the produtof FPAR-FAS, the fration of energy absorbed photosynthetially for a givenvegetation type, MONTHLY-SOLAR, the average radiation for a given month,and SOL-CONVER, the number of days in that month. FPAR-FAS is a funtionof MON-FAS-NDVI, whih indiates relative greenness at a site as observed fromspae, and SRDIFF, an intrinsi property that takes on di�erent numeri valuesfor di�erent vegetation types as spei�ed by the disrete variable UMD-VEG.Of the variables we have mentioned, NPP, Temp, MONTHLY-SOLAR,SOL-CONVER, MON-FAS-NDVI, and UMD-VEG are observable. Three addi-tional terms { EET, PET-TW-M, and AHI { are de�ned elsewhere in the model,but we assume their de�nitions are orret and thus we an treat them as observ-ables. The remaining variables are unobservable and must be omputed from theothers using their de�nitions. This portion of the model also ontains a numberof numeri parameters, as shown in the equations in Table 2.3 An Approah to Quantitative Model RevisionAs noted earlier, our approah to sienti� disovery involves re�ning modelslike CASA that involve relations among quantitative variables. We adopt thetraditional view of disovery as heuristi searh through a spae of models, withthe searh proess direted by andidates' ability to �t the data. However, weassume this proess starts not from srath, but rather with an existing model,



340 K. Saito et al.and the searh operators involve making hanges to this model, rather thanonstruting entirely new strutures.Our long-term goal is not to automate the revision proess, but instead toprovide an interative tool that sientists an diret and use to aid their modeldevelopment. As a result, the approah we desribe in this setion addressesthe task of making loal hanges to a model rather than arrying out globaloptimization, as assumed by Chown and Dietterih (2000). Thus, our softwaretakes as input not only observations about measurable variables and an existingmodel stated as equations, but also information about whih portion of themodel should be altered. The output is a revised model that �ts the observeddata better than the initial one.Below we review two disovery algorithms that we utilize to improve thespei�ed part of a model, then desribe three distint types of revision theysupport. We onsider these in order of inreasing omplexity, starting with simplehanges to parameter values, moving on to revisions in the values of intrinsiproperties, and ending with hanges in an equation's funtional form.3.1 The RF5 and RF6 Disovery AlgorithmsOur approah relies on RF5 and RF6, two algorithms for disovering numeriequations desribed Saito and Nakano (1997, 2000). Given data for some ontin-uous variable y that is dependent on ontinuous preditive variables x1; : : : ; xn,the RF5 system searhes for multivariate polynomial equations of the formy = w0 + JXj=1wj KYk=1 xwjkk = w0 + JXj=1wj exp KXk=1wjk ln(xk)! ; (1)Suh funtional relations subsume many of the numeri laws found by previousomputational disovery systems like Baon (Langley, 1979) and Fahrenheit( _Zytkow, Zhu, & Hussam, 1990).RF5's �rst step involves transforming a andidate funtional form with Jsummed terms into a three-layer neural network based on the rightmost formof expression (1), in whih the K hidden nodes in this network orrespond toprodut units (Durbin & Rumelhart, 1989). The system then arries out searhthrough the weight spae using the BPQ algorithm, a seond-order learning teh-nique that alulates both the desent diretion and the step size automatially.This proess halts when it �nds a set of weights that minimize the squarederror on the dependent variable y. RF5 runs the BPQ method on networks withdi�erent numbers of hidden units, then selets the one that gives the best soreon an MDL metri. Finally, the program transforms the resulting network intoa polynomial equation, with weights on hidden units beoming exponents andother weights beoming oeÆients.The RF6 algorithm extends RF5 by adding the ability to �nd onditions ona numeri equation that involve nominal variables, whih it enodes using oneinput variable for eah nominal value. To this end, the system �rst generates onesuh ondition for eah training ase, then utilizes k-means lustering to generate



Quantitative Model Revision 341a smaller set of more general onditions, with the number of lusters determinedthrough ross validation. Finally, RF6 invokes deision-tree indution to on-strut a lassi�er that disriminates among these lusters, whih it transformsinto rules that form the nominal onditions on the polynomial equation thatRF5 has generated.3.2 Three Types of Model Re�nementThere exist three natural types of re�nement within the lass of models, likeCASA, that are stated as sets of equations that refer to unobservable variables.These inlude revising the parameter values in equations, altering the values foran intrinsi property, and hanging the funtional form of an existing equation.Improving the parameters for an equation is the most straightforward pro-ess. The NPP portion of CASA ontains some parameterized equations thatour Earth siene team members believe are reliable, like that for omputing thevariable A from AHI, the annual heat index. However, it also inludes equationswith parameters about whih there is less ertainty, like the expression that pre-dits the temperature stress fator T2 from Temp and Topt. Our approah torevising suh parameters relies on reating a speialized neural network that en-odes the equation's funtional form using ideas from RF5, but also inluding aterm for the unhanged portion of the model. We then run the BPQ algorithm to�nd revised parameter values, initializing weights based on those in the model.We an utilize a similar sheme to improve the values for an intrinsi propertylike SRDIFF that the model assoiates with the disrete values for some nominalvariable like UMD-VEG (vegetation type). We enode eah nominal term as aset of dummy variables, one for eah disrete value, making the dummy variableequal to one if the disrete value ours and zero otherwise. We introdue onehidden unit for the intrinsi property, with links from eah of the dummy vari-ables and with weights that orrespond to the intrinsi values assoiated witheah disrete value. To revise these weights, we reate a neural network that in-orporates the intrinsi values but also inludes a term for the unhanging partsof the model. We an then run BPQ to revise the weights that orrespond tointrinsi values, again initializing them to those in the initial model.Altering the form of an existing equation requires somewhat more e�ort, butmaps more diretly onto previous work in equation disovery. In this ase, thedetails depend on the spei� funtional form that we provide, but beause wehave available the RF5 and RF6 algorithms, the approah supports any of theforms that they an disover or speializations of them. Again, having identi�eda partiular equation that we want to improve, we reate a neural networkthat enodes the desired form, then invoke the BPQ algorithm to determineits parametri values, in this ase initializing the network weights randomly.This approah to model re�nement supports hanges to only one equation orintrinsi property at a time, but this is onsistent with the interative proessdesribed earlier. We envision the sientist identifying a portion of the modelthat he thinks ould be better, running one of the three revision methods toimprove its �t to the data, and repeating this proess until he is satis�ed.



342 K. Saito et al.4 Initial Results on Eosystem DataIn order to evaluate our approah to sienti� model revision, we utilized datarelevant to the NPP model available to the Earth siene members of our team.These data onsisted of observations from 303 distint sites with known vegeta-tion type and for whih measurements of Temp, MON-FAS-NDVI, MONTHLY-SOLAR, SOL-CONVER, and UMD-VEG were available for eah month duringthe year. In addition, other portions of CASA were able to ompute values for thevariables AHI, EET, and PET-TW-M. The resulting 303 training ases seemedsuÆient for initial tests of our revision methods, so we used them to drive avariety of hanges to the handrafted model of arbon prodution.4.1 Results on Parameter RevisionOur Earth siene team members identi�ed the equation for T2, one of thetemperature stress variables, as a likely andidate for revision. As noted earlier,the handrafted expression for this term wasT2 = 1:8=[(1 + e0:2(Topt�Temp�10))(1 + e�0:3(Temp�Topt�10))℄ ;whih produes a Gaussian-like urve that is slightly assymetrial. This re-ets the intuition that photosyntheti eÆieny will derease when temperature(Temp) is either below or above the optimal (Topt).To improve upon this equation, we de�ned x = Topt�Temp as an interme-diate variable and reast the expression for T2 as the produt of two sigmoidalfuntions of the form �(a) = 1=(1+exp(�a)) and a parameter. We transformedthese into a neural network and used BPQ to minimize the error funtionF1 =Psample (NPP�Pmonthw0 � �(v10 + v11 � x) � �(v20 � v21 � x) �Rest)2 ;over the parameters fw0; v10; v11; v20; v21g, where Rest = 0.56 � T1 �W � IPAR.The resulting equation generated in this manner wasT2 = 1:80=[(1 + e0:05(Topt�Temp�10:8)(1 + e�0:03(Temp�Topt�90:33)℄ ;whih has reasonably similar values to the original ones for some parameters butquite di�erent values for others.The root mean squared error (RMSE) for the original model on the availabledata was 467:910. In ontrast, the error for the revised model was 457:757 onthe training data and 461:466 using leave-one-out ross validation. Thus, RF6'smodi�ation of parameters in the T2 equation produed slightly more than oneperent redution in overall model error, whih is somewhat disappointing.However, inspetion of the resulting urves reveals a more interesting piture.Plotting the temperature stress fator T2 using the revised equations as a fun-tion of the di�erene Topt � Temp still gives a Gaussian-like urve, but withinthe e�etive range (from �30 to 30 Celsius) its values derease monotonially.This seems ounterintuitive but interesting from an Earth siene perspetive,



Quantitative Model Revision 343as it suggests this stress fator has little inuene on NPP. Moreover, the origi-nal equation for T2 was not well grounded in �rst priniples of plant physiology,making empirial improvements of this sort bene�ial to the modeling enterprise.As another andidate for parameter revision, we seleted the PET equation,PET = 1:6 � (10 �max(Temp; 0) = AHI)A � PET-TW-M ;whih alulates potential water loss due to evaporation and transpiration givenan unlimited water supply. By transforming this expression intoPET = exp(ln(1:6) + A � ln(10)) � (max(Temp; 0) = AHI)A � PET-TW-Mand replaing the parameter values ln(1:6) and ln(10) with the variables v0 andv1, we onstruted a neural network and used BPQ for error minimization. Whentransforming the trained network bak into the original form, the equation thatresulted wasPET = 1:56 � (9:16 �max(Temp; 0) = AHI)A � PET-TW-M ;whih has values that are very similar to those in the original model's equation.Moreover, sine the RMSE for the obtained model was 464:358 on the train-ing data and 467:643 using leave-one-out ross validation, the revision proessdid not improve the model's auray substantially. However, sine the PETequation is based on Thornthwaite's (1948) method, whih has been used on-tinuously for over 50 years, we should not be overly surprised at this negativeresult. Indeed, we are enouraged by the fat that our approah did not reviseparameters that have stood the test of time in Earth siene.4.2 Results on Intrinsi Value RevisionAnother portion of the NPP model that held potential for revision onernsthe intrinsi property SRDIFF assoiated with the vegetation type UMD-VEG.For eah site, the latter variable takes on one of 11 nominal values, suh asgrasslands, forest, tundra, and desert, eah with an assoiated numeri value forSRDIFF that plays a role in the FPAR-FAS equation. This gives 11 parametersto revise, whih seems manageable given the number of observations available.As outlined earlier, to revise these intrinsi values, we introdued one dummyvariable, UMD-VEGk, for eah vegetation type suh that UMD-VEGk = 1 ifUMD-VEG = k and 0 otherwise. We then de�ned SRDIFF(UMD-VEG) asexp(�Pkvk � UMD-VEGk) and, sine SRDIFF's value is independent of themonth, we used BPQ to minimize, over the weights fvkg, the error funtionF2 =Psite (NPP� exp(Pkvk � UMD-VEGk) �Rest)2 ;where Rest =PmonthE �0:5�(SR-FAS�1:08)�MONTHLY-SOLAR�SOL-CONVER.Table 3 shows the initial values for this intrinsi property, as set by the CASAdevelopers, along with the revised values produed by the above approah when



344 K. Saito et al.Table 3. Original and revised values for the SRDIFF intrinsi property, along withthe frequeny for eah vegetation type.vegetation type A B C D E F G H I J Koriginal 3.06 4.35 4.35 4.05 5.09 3.06 4.05 4.05 4.05 5.09 4.05revised 2.57 4.77 2.20 3.99 3.70 3.46 2.34 0.34 2.72 3.46 1.60lustered 2.42 3.75 2.42 3.75 3.75 3.75 2.42 0.34 2.42 3.75 2.42frequeny 3.3 8.9 0.3 3.6 21.1 19.1 15.2 3.3 19.1 2.3 3.6we �xed other parts of the NPP model. The most striking result is that therevised intrinsi values are nearly always lower than the initial values. The RMSEfor the original model was 467:910, whereas the error using the revised valueswas 432:410 on the training set and 448:376 using ross validation. The latteronstitutes an error redution of over four perent, whih seems substantial.However, sine the original 11 intrinsi values were grouped into only fourdistint values, we applied RF6's lustering proedure over the trained neuralnetwork to group the revised values in the same manner. We examined the e�eton error rate as we varied the number of lusters from one to �ve; as expeted,the training RMSE dereased monotonially, but the ross-validation RMSE wasminimized for three lusters of values. The estimated error for this revised modelis slightly better than for the one with 11 distint values.Again, the lustered values are nearly always lower than the initial ones, aresult that is ertainly interesting from an Earth siene viewpoint. We suspetthat measurements of NPP and related variables from a wider range of siteswould produe intrinsi values loser to those in the original model. However,suh a test must await additional observations and, for now, empirial �t to theavailable data should outweigh the theoretial basis for the initial settings.In another approah to revising intrinsi values, we retained the originalgrouping of vegetation types into sets, with eah type in a given set having thesame value. We utilized a weight-sharing tehnique to enode this bakgroundknowledge in a neural network. For example, let vA and vF be weights orre-sponding to the SRDIFF values for vegetation types A and F, respetively; toensure these values remained the same, we treated them as a single weight, sayvAF . Here we an see that BPQ alulates the derivative of the error funtionover vAF as a sum of the individual derivatives over vA and vF ,�F2�vAF = �F2�vA + �F2�vF :In the trained neural network, the derivative over vAF beomes zero, but thereis no guarantee that eah derivative over vA or vF will do so. Therefore, we antreat the sum of the absolute values for derivatives over shared weights, like vAand vF , as a riterion for the `unlikeness' among the elements of suh a grouping.Table 4 shows the revised values for the intrinsi property SRDIFF that resultfrom this approah, along with values for the unlikeness riterion de�ned above.



Quantitative Model Revision 345Table 4. Original and revised values, using the original groupings, for the SRDIFFintrinsi property, along with the frequeny and unlikeness for eah vegetation group.vegetation type A_F B_C E_J D_G_H_I_Koriginal 3.06 4.35 5.09 4.05revised 2.23 3.27 2.54 1.81frequeny 22.4 9.2 23.4 44.9unlikeness 26.1 0.3 2.3 13.6As before, the obtained intrinsi values are always lower than the initial ones,and our riterion suggests that the group ontaining the vegetation types A andF has the least oherene. The RMSE for the revised model was 442:782 on thetraining data and 449:097 using leave-one-out ross validation, again indiatingabout four perent redution in the model's overall error.4.3 Results on Revising Equation StrutureWe also wanted to demonstrate our approah's ability to improve the funtionalform of the NPP model. For this purpose, we seleted the equation for photo-syntheti eÆieny, E = 0:56 � T1 � T2 �W ;whih states that this term is a produt of the water stress term, W, and the twotemperature stress terms, T1 and T2. Beause eah stress fator takes on valuesless than one, multipliation has the e�et of reduing photosyntheti eÆienyE below the maximum 0.56 possible (Potter & Klooster, 1998).Sine E is alulated as a simple produt of the three variables, one naturalextension was to onsider an equation that inluded exponents on these terms.To this end, we borrowed tehniques from the RF5 system to reate a neuralnetwork for suh an expression, then used BPQ to minimize the error funtionF3 =Psite (NPP�Pmonthu0 � T1u1 � T2u2 �Wu3 � IPAR)2 ;over the parameters fu0; u1; u2; u3g, whih assumes the equations that preditIPAR remain unhanged. We initialized u0 to 0.56 and the other parametersto 1.0, as in the original model, and onstrained the latter to be positive. Therevised equation found in this manner,E = 0:521 � T10:00 � T20:03 �W 0:00 ;has a small exponent for T2 and zero exponents for T1 and W, suggesting theformer inuenes photosyntheti eÆieny in minor ways and the latter not atall. On the available data, the root mean squared error for the original modelwas 467:910. In ontrast, the revised model has an RMSE of 443:307 on thetraining set and an RMSE of 446:270 using ross validation. Thus, the revised



346 K. Saito et al.equation produes a substantially better �t to the observations than does theoriginal model, in this ase reduing error by almost �ve perent.With regards to Earth siene, these results are plausible and the most in-teresting of all, as they suggest that the T1 and W stress terms are unneessaryfor prediting NPP. One explanation is that the inuene of these fators is al-ready being aptured by the NDVI measure available from spae, for whih thesignal-to-noise ratio has been steadily improving sine CASA was �rst developed.These results enouraged us to explore more radial revisions to the fun-tional form for photosyntheti eÆieny. Thus, we told our system to onsider aform that omitted the three stress fators but that inluded the four variables {Topt, Temp, EET, and PET { that appear in their de�nitions:E = v0 � exp(�0:5 � (v1 �Topt + v2 �Temp + v3 � EET+ v4 � PET+ v5)2) :This Gaussian-like ativation funtion satis�es the onstraint that E is positiveand less than one. Running BPQ to minimize the error funtion over fv0; : : : v5gprodued the equationE = 0:57 � exp(�0:5 � (�0:04 �Topt + 0:03 �Temp� 0:03 � EET+ 0:01 � PET)2);where we eliminated the parameter v5 beause its value was �0:003. The RMSEfor the revised model was 439:101 on the training data and 444:470 using leave-one-out ross validation, indiating more than �ve perent redution in error.These results are very similar to those from our �rst approah, whih pro-dued a ross validation RMSE of 446:270. In this ase, the revised model issimpler in that it de�nes E diretly in terms of Topt, Temp, EET, and PET,rather than relying on the theoretial terms T1, T2, and W, two of whih pro-vide no preditive power. On the other hand, the original form for E had a leartheoretial interpretation, whereas the new version does not. In suh situations,the �nal deision should be left to domain sientists, who are best suited tobalane a model's simpliity against its interepretability.5 Related Researh on Computational DisoveryOur researh on omputational sienti� disovery draws on two previous lines ofwork. One approah, whih has an extended history within arti�ial intelligene,addresses the disovery of expliit quantitative laws. Early systems for numerilaw disovery like Baon (Langley, 1979; Langley et al., 1987) arried out aheuristi searh through a spae of new terms and simple equations. Numeroussuessors like Fahrenheit ( _Zytkow et al., 1990) and RF5 (Saito & Nakano,1997) inorporate more sophistiated and more extensive searh through a largerspae of numeri equations.The most relevant equation disovery systems take into aount domainknowledge to onstrain the searh for numeri laws. For example, Kokar's (1986)Coper utilized knowledge about the dimensions of variables to fous attentionand, more reently, Washio and Motoda's (1998) SDS extends this idea to sup-port di�erent types of variables and sets of simultaneous equations. Todorovski



Quantitative Model Revision 347and D�zeroski's (1997) LaGramge takes a quite di�erent approah, using do-main knowledge in the form of ontext-free grammars to onstrain its searhthrough a spae of di�erential equation models that desribe temporal behavior.Although researh on omputational disovery of numeri laws has empha-sized ommuniable sienti� notations, it has foused on onstruting suh lawsrather than revising existing ones. In ontrast, another line of researh has ad-dressed the re�nement of existing models to improve their �t to observations.For example, Ourston and Mooney (1990) developed a method that used train-ing data to revise models stated as sets of propositional Horn lauses. Towell(1991) reports another approah that transforms suh models into multilayerneural networks, then uses bakpropagation to improve their �t to observations,muh as we have done for numeri equations. Work in this paradigm has em-phasized lassi�ation rather than regression tasks, but one an view our workas adapting the basi approah to equation disovery.We should also mention related work on the automated improvement ofeosystem models. Most AI work on Earth siene domains fouses on learn-ing lassi�ers that predit vegetation from satellite measures like NDVI, as on-trasted with our onern for numeri predition. Chown and Dietterih (2000)desribe an approah that improves an existing eosystem model's �t to ontin-uous data, but their method only alters parameter values and does not reviseequation struture. On another front, Shwabaher and Langley (2001) use arule-indution algorithm to disover pieewise linear models that predit NDVIfrom limate variables, but their method takes no advantage of existing models.6 Diretions for Future ResearhAlthough we have been enouraged by our results to date, there remain a numberof diretions in whih we must extend our approah before it an beome a usefultool for sientists. As noted earlier, we envision an interative disovery aidethat lets the user fous the system's attention on those portions of the modelit should attempt to improve. To this end, we need a graphial interfae thatsupports marking of parameters, intrinsi properties, and equations that an berevised, as well as tools for displaying errors as a funtion of spae, time, andpreditive variables.In addition, the urrent system is limited to revising the parameters or formof one equation in the model at a time, as well as requiring some handraftingto enode the equations as a neural network. Future versions should supportrevisions of multiple equations at the same time, preferably invoking the samevariants of bakpropagation as we have used to date, and also provide a li-brary that maps funtional forms to neural network enodings, so the systeman transform the former into the latter automatially. We should also exploreusing other approahes to equation disovery, suh as Todorovski and D�zeroski'sLaGramge, in plae of the RF6 algorithm.Naturally, we also hope to evaluate our approah on its ability to improveother portions of the CASA model, as additional data beomes available. An-other test of generality would be appliation of the same methods to other si-



348 K. Saito et al.enti� domains in whih there already exist formal models that an be revised.In the longer term, we should evaluate our interative system not only in itsability to inrease the preditive auray of an existing model, but in terms ofthe satisfation to sientists who use the system to that end.Another hallenge that we have enountered in our researh has been the needto translate the existing CASA model into a delarative form that our disoverysystem an manipulate. In response, another long-term goal involves developinga modeling language in whih sientists an ast their initial models and arryout simulations, but that an also serve as the delarative representation forour disovery methods. The ability to automatially revise models plaes novelonstraints on suh a language, but we are on�dent that the result will prove auseful aid to the disovery proess.7 Conluding RemarksIn this paper, we addressed the omputational task of improving an existing si-enti� model that is omposed of numeri equations. We illustrated this problemwith an example model from the Earth sienes that predits arbon produtionas a funtion of temperature, sunlight, and other variables. We identi�ed threeativities that an improve a model { revising an equation's parameters, alter-ing the values of an intrinsi property, and hanging the funtional form of anequation, then presented results for eah type on an eosystem modeling taskthat redued the model's predition error, sometimes substantially.Our researh on model revision builds on previous work in numeri law dis-overy and qualitative theory re�nement, but it ombines these two themes innovel ways to enable new apabilities. Clearly, we remain some distane fromour goal of an interative disovery tool that sientists an use to improve theirmodels, but we have also taken some important steps along the path, and weare enouraged by our initial results on an important sienti� problem.ReferenesChown, E., & Dietterih, T. G. (2000). A divide and onquer approah to learn-ing from prior knowledge. Proeedings of the Seventeenth International Confer-ene on Mahine Learning (pp. 143{150). San Franiso: Morgan Kaufmann.Durbin, R. & Rumelhart, D. E. (1989). Produt units: A omputationally pow-erful and biologially plausible extension. Neural Computation, 1 , 133{142.Kokar, M. M. (1986). Determining arguments of invariant funtional desrip-tions. Mahine Learning, 1 , 403{422.Langley, P. (1979). Redisovering physis with Baon.3. Proeedings of the SixthInternational Joint Conferene on Arti�ial Intelligene (pp. 505{507). Tokyo,Japan: Morgan Kaufmann.Langley, P. (1998). The omputer-aided disovery of sienti� knowledge. Pro-eedings of the First International Conferene on Disovery Siene. Fukuoka,Japan: Springer.
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