
GUIDING REVISION OF REGULATORY MODELSWITH EXPRESSION DATAJEFF SHRAGER a and PAT LANGLEYInstitute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306ANDREW POHORILLECenter for Computational Astrobiology and Fundamental BiologyNASA Ames Researh Center, M/S 239-4, Mo�ett Field, CA 94035BioLingua is a omputational system designed to support biologists' e�orts toonstrut models, make preditions, and interpret data. In this paper, we fous onthe spei� task of revising an initial model of gene regulation based on expressionlevels from gene miroarrays. We desribe BioLingua's formalism for representingproess models, its method for prediting qualitative orrelations from suh models,and its use of data to onstrain searh through the spae of revised models. Wealso report experimental results on revising a model of photosyntheti regulationin Cyanobateria to better �t expression data for both wild and mutant strains,along with model mutilation studies designed to test our method's robustness. Inlosing, we disuss related work on representing, disovering, and revising biologialmodels, after whih we propose some diretions for future researh.1 Introdution and MotivationThere is general agreement that sientists need omputational tools to assistin analyzing the rapidly inreasing amount of biologial data. Unfortunately,most existing software makes only limited ontat with the methods that pra-tiing biologists use in formulating and evaluating their models. In partiular,most omputational tools in biology have foused on knowledge-lean methodsfor data analysis, suh as lustering, whereas biologists typially reason in aknowledge-rih manner using models of biologial proesses.

From Proeedings of the Pai� Symposium on Bioomputing (2002). Lihue, Hawaii.

In this paper, we desribe BioLingua, a suite of omputational toolsdesigned to assist working biologists in building and reasoning about theirproess models. Our goal in developing the system has been to math theways in whih biologists think about explanatory models, rather than to applyexisting algorithms to available data in ways seldom pursued by biologiststhemselves. Working biologists, like other sientists, use data and modelsinteratively, utilizing their models to interpret new experimental results andin turn revising these models in response to observations.aAlso aÆliated with Department of Plant Biology, Carnegie Institution of Washington.Email: jshrager�andrew2.stanford.edu



In the setions that follow, we desribe our initial version of BioLingua,whih supports data intepretation and model revision in the arena of regulatorymodels. We start by de�ning the task of revising an intitial model givenexpression data and then report on BioLingua's approah to representingmodels, using them to make preditions, and arrying out heuristi searhthrough the spae of andidate models. After this, we disuss related work onrepresenting knowledge about biologial proesses and disovering models thatenode them. In losing, we note some limitations of our system and suggestdiretions for future researh on omputational disovery aides for biologists.2 The Task of Revising Regulatory ModelsOne important faet of biologial theory onerns the regulation of gene ex-pression. Although sientists understand the basi mehanisms through whihDNA produes proteins and thus biohemial behavior, they have yet to de-termine most of the regulatory networks that ontrol the degree to whih eahgene is expressed. However, for partiular organisms under ertain onditions,biologists have developed partial models of gene regulation. The measurementand analysis of gene expression levels, either through Northern blots or DNAmiroarrays, has played a entral role in the eluidation of regulatory models,as both measures quantify gene ativity in terms of RNA onentration.bThere are two typial ways in whih expression data are used to extendknowledge about regulatory mehanisms. The most ommon omputationalapproah involves the use of lustering to infer whih genes our in oregulatedlasses. This knowledge-lean approah lets one redue the high dimensionalityof miroarray data to a manageable level, but the result is typially desrip-tive rather than explanatory in nature. A seond paradigm, more ommonlyused by pratiing biologists, uses data about expression levels to test spei�pathway hypotheses. This knowledge-rih approah lets one evaluate proposedexplanations, but it generally does not move beyond these hypotheses to sug-gest improved regulatory models.We have designed BioLingua to ombine the best aspets of these twoapproahes to regulatory model disovery. We an state the task in semi-formalterms as:� Given: a partial model of gene regulation for some organism;� Given: data about the expression levels of relevant genes;� Given: knowledge of biologial proesses that regulate gene expression;� Find : an improved regulatory model that explains the data better.bThe distane between these measures and atual biohemial ativity is onsiderable,but they still provide valuable information to biologists.487



Computational tools that support this task will let biologists use miroarraydata both to test their regulatory models and to revise them in response torelevant observations.3 An Approah to Regulatory Model RevisionNow that we have stated the task of revising an initial regulatory model basedon miroarray data, we an desribe the approah that BioLingua takes tothis disovery problem.3.1 Representing Models of Gene RegulationBefore we an develop algorithms to improve regulatory models, we must seletsome representation for those models. Most work in mahine learning anddata mining, inluding that in biologial domains, draws on representationalformalisms like deision trees, logial rules, or Bayesian networks that weredesigned by arti�ial intelligene researhers themselves. These formalismsare often adequate for representing omplex regularities and making auratepreditions, but they make little or no ontat with notations ommonly usedby pratiing sientists.In ontrast, we are ommitted to representing biologial models in termsthat are familiar to biologists themselves. In biology talks and publiations,these models are often depited graphially. Figure 1 presents one suh model,whih we obtained from a plankton biologist, that aims to explain why Cyano-bateria bleahes when exposed to high light onditions and how this protetsthe organism. Eah node in the model orresponds to some observable or theo-retial variable; eah link stands for some biologial proess through whih onevariable inuenes another. Solid lines in the �gure denote internal proesses,while dashes indiate proesses onneted to the environment.The model states that hanges in light level modulate the ativity of DFR,a protein hypothesized to serve as a sensor. This in turn ativates NBLR, whihthen redues the number of phyobilisome (PBS) rods that absorb light, whihis measurable photometrially as the organism's greenness. The redution inPBS serves to protet the organism beause the redued PBS array absorbs lesslight, whih an be damaging at high levels. The organism's health under highlight onditions an be measured in terms of the ulture density. The modelalso posits that DFR impats health through a seond pathway, by inueningan unknown response regulator RR, whih in turn down regulates expression ofthe gene produts psbA1, psbA2, and pB. The �rst two positively inuenethe level of photosyntheti ativity (Photo), whih, if left unaltered, would alsodamage the organism. 488
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RR psbA2 PhotoFigure 1: An initial model for regulation of photosynthesis in Cyanobateria.Note that this model, although inorporating quantitative variables, isqualitative in that it spei�es diretions of inuene but not their degree. Forinstane, one ausal link indiates that inreases in NBLR will inrease NBLA,but it does not state whether that relation obeys a linear or some other law,nor does it speify any parameters. We have foused on qualitative modelsnot beause quantitative ones are undesirable, but beause biologists usuallyoperate on the former, and we want our omputational tools to support theirtypial reasoning styles.Another harateristi of the model is that it is both partial and abstrat.The biologist who proposed this model made no laim about its omplete-ness, and learly viewed it as a working hypothesis to whih additional genesand proesses should be added as indiated by new data. Some proesses areabstrat in the sense that they denote entire hains of subproesses. For in-stane, the link from DFR to NBLR stands for a signaling pathway, the detailsof whih hold little relevane at this level of analysis. The model also inludesabstrat variables like RR, whih denotes an unspei�ed gene, or possibly aset of genes, that ats as an intermediary ontroller. BioLingua's formalismlets it express suh partial, abstrat, and qualitative models of the type thatbiologists propose and reason about.3.2 Miroarray Data on Gene RegulationLike many other researhers, we are exited about the potential of DNA mi-roarrays for eluidating biohemial proesses. Briey, these devies measurethe expression level for hundreds to thousands of an organism's genes, as re-eted by the onentration of mRNA for eah gene relative to that in a ontrolondition. One an ollet suh measurements under di�erent environmentalonditions (e.g., lean vs. polluted water), for di�erent organisms (e.g., healthyvs. anerous tissue), or for di�erent points in time.489



We have aess to suh miroarray data for several strains of Cyanobate-ria under high light onditions that ause the organism to bleah and redueits photosyntheti ativity over a period of hours. These data inlude mea-surements of the expression levels for about 300 genes believed to play a rolein photosynthesis, although we have foused on those genes mentioned in themodel. We have array data olleted at 0, 30, 60, 120, and 360 minutes af-ter high light was introdued, with four repliated measurements at eah timepoint. The dimensionality of these data, and thus the number of parametersrequired in a numeri model, is muh higher than the number of observations,providing another reason to favor qualitative models over quantitative ones.3.3 Making Preditions and Evaluating ModelsBioLingua needs some proedure to map a biologial model like that in Fig-ure 1 onto the miroarray data we have available. Sine its models are quali-tative, they annot diretly predit the ontinuous expression levels, but theyan predit whih variables should be orrelated and the diretion of those or-relations. For eah pair of variables (nodes) in a model, the system enumeratesthe paths that onnet those variables. BioLingua transforms eah suh pathinto a predited orrelation by multiplying the signs on its links and, when thepreditions for all paths between two nodes agree, prediting that orrelation.However, when the orrelations predited by two or more paths disagree,BioLingua must resolve the ambiguity in some manner. In a quantitativemodel, eah path would have its own degree of inuene, and one ould sumtheir e�ets to determine the outome. Laking suh quantitative information,the system an still annotate the model to indiate that the positive (or nega-tive) paths are dominant, and thus predit a positive (or negative) orrelation.This extended formalism lets any qualitative model predit a positive or neg-ative orrelation for eah pair of observed variables, provided one is willing topay the ost of adding assumptions about dominane. For example, the modelin Figure 1 has three paths between the expression levels for DFR and Health.The produt of signs on eah path is positive, meaning that they eah predita positive orrelation between the two variables. However, if the link fromNBLA to PBS were positive, this path would make a di�erent predition andthe model would need a dominane annotation to resolve the ambiguity.This proedure lets BioLingua generate qualitative orrelations betweenpairs of variables in a given model. Naturally, the system an ompare theseNote that some paths pass through unobservable variables like RR; although we annotmeasure suh terms' values, that does not keep BioLingua from utilizing them in preditivepaths between observable variables like DFR and psbA1.490



preditions to the observed orrelations, whih it omputes from orrespondingexpression levels in the arrays aross di�erent time steps. BioLingua treatsany orrelation that fails a signi�ane test, in this ase p < 0:05, as zero. Thesystem inorporates these mathes against the data in its evaluation metri formodels. However, it also inludes a measure of model omplexity whih favorssimpler models and a term whih favors models that make more preditions(i.e., a Popperian bias toward hypotheses that are easier to rejet), whih wefound neessary to guard against degenerate models. The spei� funtionused to evaluate andidates isE = B(variables)+B(links)+B(annotations)+B(errors)�B(preditions) ;where B(X) denotes the total number of X (e.g., links or errors) times thenumber of bits needed to enode X . In this sheme, eah variable and eahlink requires 4 bits, eah disambiguation annotation requires 0.1 bit, and eahpredition error and eah predition requires 3 bits. The resulting measure,whih is similar to minimum desription length, gives the overall quality foreah model.3.4 Revising Regulatory Models to Explain Miroarray DataAs with most researh on omputational knowledge disovery, one an viewthe revision of biologial models in terms of heuristi searh through a spaeof andidate models. This framework requires one to make a number of designdeisions, inluding the state from whih to initiate the searh, the operatorsused to generate new states, the knowledge used to onstrain these operators'appliation, the evaluation metri used to selet among ompeting states, theoverall sheme for searh ontrol, and the riterion used to halt the searh.Biologists often have some abstrat qualitative model in mind at eahstage of their researh. BioLingua takes suh a model as the starting pointfor its searh proess. Some natural operators for revising suh a model inludeadding a signed link, removing a link, and reversing the sign on a link. In theurrent implementation, BioLingua's evaluation funtion for seleting amongmodels is simply the measure of model quality E desribed earlier. The ontrolsheme that utilizes this funtion is greedy searh through the model spae,with failure to improve on the evaluation metri as the halting riterion.For example, to generate an improved regulatory model for the photosyn-theti proess in Cyanobateria under high light, BioLingua starts from themodel in Figure 1. This model's 11 variables and 12 ausal links lead to some350 one-step revisions that produe distint models, resulting from link rever-491



sals, link additions, and link deletions. The system generates eah of theseandidates, alulates their E sores given the expression data, and selets thebest one as the urrent model. It then repeats this proess, ontinuing untilfurther hanges fail to yield improvements in the evaluation metri.4 Experimental Results on Photosyntheti RegulationUltimately, BioLingua's suess as a disovery system will depend on whetherit an use expression data to improve biologial models. Here we report initialexperiments designed to test the program's abilities on this dimension.4.1 Improving Models of Wild and Mutant CyanobateriaWe have already desribed an initial model, shown in Figure 1, of bleahingin Cyanobateria that we obtained from biologists, along with expression dataon the genes that regulate this proess over time. The data lead to 18 positiveorrelations and 10 negative orrelations among the observed expression levels.When given this initial model and these qualitative data, BioLingua'srevision module arries out its greedy searh through the model spae, takingeight steps and examining 2382 andidates along the way. Additional revisionslead to no improvement in the evaluation funtion, ausing the system to halt.Figure 2 shows the �nal revised model that results from this searh proess,whih mathes the observed expression levels better than the starting modeland has a better evaluation sore (E = �46 rather than E = 12:2).This model di�ers from the initial one in some important ways. Theseinlude deletion of the links from DFR to NBLR, from psbA1 to Photo, fromRR to psbA2, and from RR to pB. The revised model also ontains threenew links, indiating a positive inuene from pB to NBLR and negativeinuenes from psbA1 to psbA2 and from psbA2 to pB. The revision proesshas also hanged signs on the links from RR to psbA1, from PBS to Health,and from Photo to Health.In addition to proposing regulatory models for wild strains of an organism,biologists also desire to model mutant strains. We have aess to array data fora nonbleahing mutant of Cyanobateria under the same high light onditionsas for the wild strain. Beause suh a mutant presumably di�ers genetiallyfrom the wild organism in at most a few ways, it seems natural to utilizeBioLingua's revision module to formulate a model of the mutant's regulatoryproesses. In this ase, the system onsiders 2270 andidates while taking ninesteps through the model spae. Figure 3 presents the resulting model, whihhas a better sore (E = �24:6) than the initial one (E = 12:2).492
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Figure 2: A revised model for regulation of photosynthesis in wild Cyanobateria.There are a number of di�erenes between the revised model for the mutantstrain and the initial model. These inlude deletion of the links from DFR toRR, from RR to psbA2, from RR to pB, and from psbA1 to Photo. Themutant model also spei�es three new links, indiating positive inuenes frompsbA1 to pB and from pB to psbA2, along with a negative inuene fromNBLA to RR. The revision mehanism has also hanged signs on the linksfrom psbA2 to Photo and from Photo to Health.These revised models have some biologial plausibility, but they also haveproblemati aspets. Generally speaking, it seems plausible that DFR inu-enes photosyntheti ativity through NBLR (in the wild strain) or a psbA1asade (in the mutant strain), and additional experiments ould test theseproposals. On the other hand, in both ases the revision proess produedmodels with asades whereas the initial model had separate inuenes, speif-ially from RR. Although suh hains are not impossible, there is no reason toprefer suh strutures. Additional knowledge, either in the form of biologialonstraints or an improved evaluation metri, ould resolve this ambiguity.4.2 Robustness of the ApproahAlthough the previous runs demonstrate BioLingua's relevane to problemsin model revision that arise among pratiing biologists, they do not provideevidene of its robustness. To evaluate BioLingua's revision module alongthis dimension, we designed an experiment to determine whether the qualityof the �nal revised model degrades graefully with dereasing orretness ofthe initial model. Thus, we took the revised model from Figure 2 as our targetT and generated di�erent initial models by taking random steps through themodel spae. In this manner, we generated ten distint models that di�eredfrom T by one step, another ten that di�ered by two steps, and so forth, haltingat �ve steps from the target. We then ran the revision algorithm on eah initialmodel with the expression data that produed the model in Figure 2.493
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Figure 3: A revised model for regulation of photosynthesis in mutant Cyanobateria.We measured two dependent variables as a funtion of distane from thetarget model. The �rst involved the revised model's auray at preditingqualitative orrelations, spei�ally the number of orretly predited orrela-tions or non-orrelations over the total number of possible orrelations. Theseond was simply the distane (number of steps in the searh spae) betweenthe revised model and the target model T . We hypothesized that both mea-sures would get worse, on average, with distane between the initial and targetmodels, but that this degradation would be graeful.The results were generally onsistent with our expetations. The preditiveauray of the target model on the expression data was 94 perent, whereasthe revised models from runs starting one, two, three, four, and �ve stepsfrom the target had average auraies of 84, 79, 78, 65, and 63 perent,respetively. Similarly, the average distane of these revised models from thetarget, in terms of steps through the model spae, was 3.5, 3.5, 5.9, 4.4, and5.0, respetively. Thus, the method's behavior degraded as the revision taskbeame more diÆult, but this ourred in a graeful manner.5 Related Researh on Computational DisoveryOur approah to omputational biologial disovery builds on three previouslines of researh. The �rst framework has foused on the expliit representationof knowledge about biologial pathways. For instane, Karp et al.'s EoCy1enodes most established pathways for E. Coli and lets users display this knowl-edge graphially. Kanehisa2 reports another e�ort that has produed KEGG,whih odi�es similar knowledge about a range of organisms. The knowledgestored in these systems is impressive, inluding information about metabolipathways, regulatory pathways, and moleular assemblies, but their ability toreason over this knowledge remains limited. Tomita et al.3 desribe anotherframework, E-Cell, whih stores similar knowledge and inludes mehanisms494



for prediting behavior, but even E-Cell laks the ability to revise its modelsin response to observations, whih is BioLingua's entral feature.A seond framework has foused expliitly on the disovery of biologialknowledge from data. We have already ontrasted our approah with the moreommon tehnique of lustering miroarray data in a knowledge-lean manner,but there exists some other work on onstruting proess explanations fromsuh data. For example, Koza et al.4 use heuristi searh methods to estimate,from time-series data about onentrations, the struture and parameters ofa metaboli model. Zupan et al.5 desribe GenePath, a system that omessomewhat loser to our approah in that it ombines biologial knowledge anddata about the e�ets of mutations to propose qualitative geneti networks.Hartemink et al.,6 although not foused on disovery, propose a similar nota-tion for enoding regulatory models and another evaluation metri that oulddiret searh through the model spae.A third researh framework has foused not on onstruting models fromsrath but rather on revising existing theories to improve their �t to data.For example, Ourston and Mooney7 present a method that uses data to revisemodels stated as sets of propositional Horn lauses, whereas Towell8 reportsa related approah transforms suh models into multilayer neural networks,then uses bakpropagation to improve their �t to observations. Our tehniqueomes loser to Karp'sHypGene,9 whih uses qualitative phenomena to revisea model ast in biologial terms, but whih di�ers onsiderably in its formalismand reasoning mehanisms. This framework has emphasized supervised ratherthan unsupervised data, but it shares the notion of revising an initial model.Eah of these frameworks has lear merits. Our researh is novel in thatit ombines these three themes into a single system for the omputationaldisovery of biologial knowledge.6 Conluding RemarksBioLingua is a omputational tool kit designed to assist biologists in statingproess models, using those models to make preditions, interpreting obser-vations in light of those preditions, and improving their models in response.Our initial work has foused on revising a given regulatory model to better�t observed expression levels, an approah that di�ers onsiderably from theknowledge-lean methods typially applied to suh data.We illustrated BioLingua's appliation to this task in the ontext of apartiular model of photosyntheti regulation in Cyanobateria and expressiondata olleted for that organism. We presented the system's formal represen-tation for biologial proess models, a method that uses suh models to predit495



qualitative orrelations between expression levels, and an algorithm that ar-ries out heuristi searh through the spae of regulatory models, guided bydata and a bias toward simpler models. In addition, we demonstrated the sys-tem's revision of an initial model of photosyntheti regulation, given expressiondata for wild and mutant Cyanobateria. We also studied BioLingua's abilityto reover a model's struture after mutilating it to varying degrees, and thesystem exhibited reasonable robustness on this task.Although our results to date are enouraging, we must extend BioLinguain a number of diretions before it an beome a useful tool for biologists.For example, the urrent system an add, remove, and reverse ausal links tothe initial model, but it annot introdue new variables that orrespond toobserved expression levels for known genes, whih seems desirable. Ahievingthis funtionality means adding a new revision operator and thus enlargingthe spae of andidate models, whih in turn will require an improved searhmehanism. This expanded searh proess would bene�t from interation withbiologists, who ould help to guide the deision proess in ases where di�erentmodels have similar sores.Future versions of the system should support link types that orrespondto additional biologial onepts. For example, BioLingua should distinguishbetween metaboli proesses, whih are e�etively instantaneous, and regula-tory proesses, whih typially take plae over time. This distintion will alsomean extending our formalism and predition mehanism to support time-delayed e�ets. One response to this hallenge omes from qualitative physis,whih desribes dynami systems in terms of qualitative di�erential equations.This approah is onsistent with our bias toward qualitative models.A more fundamental issue onernsBioLingua's urrent modeling formal-ism. Although biologists state some models in terms of measurable statistialvariables, suh as gene expression levels, they often desribe an organism's be-havior in terms of mehanial proesses that operate on individual moleules.Karp's work9 on modeling the Tryptophan operon provides one approah torepresenting suh mehanisms. Future versions of BioLingua should supportthe ability to make statistial preditions from suh mehanial models, andthus make better ontat with biologists' oneptual repertoire.In the longer term, we envision BioLingua developing into an interativedisovery aide that lets a biologist speify initial models, fous the system'sattention on partiular data and parts of those models it should attempt toimprove, selet among andidate models with similar sores, and generally on-trol high-level aspets of the disovery proess. Combined with other plannedextensions, this faility should make BioLingua a more valuable tool for pra-tiing biologists. 496
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