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h Center, M/S 239-4, Mo�ett Field, CA 94035BioLingua is a 
omputational system designed to support biologists' e�orts to
onstru
t models, make predi
tions, and interpret data. In this paper, we fo
us onthe spe
i�
 task of revising an initial model of gene regulation based on expressionlevels from gene mi
roarrays. We des
ribe BioLingua's formalism for representingpro
ess models, its method for predi
ting qualitative 
orrelations from su
h models,and its use of data to 
onstrain sear
h through the spa
e of revised models. Wealso report experimental results on revising a model of photosyntheti
 regulationin Cyanoba
teria to better �t expression data for both wild and mutant strains,along with model mutilation studies designed to test our method's robustness. In
losing, we dis
uss related work on representing, dis
overing, and revising biologi
almodels, after whi
h we propose some dire
tions for future resear
h.1 Introdu
tion and MotivationThere is general agreement that s
ientists need 
omputational tools to assistin analyzing the rapidly in
reasing amount of biologi
al data. Unfortunately,most existing software makes only limited 
onta
t with the methods that pra
-ti
ing biologists use in formulating and evaluating their models. In parti
ular,most 
omputational tools in biology have fo
used on knowledge-lean methodsfor data analysis, su
h as 
lustering, whereas biologists typi
ally reason in aknowledge-ri
h manner using models of biologi
al pro
esses.
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In this paper, we des
ribe BioLingua, a suite of 
omputational toolsdesigned to assist working biologists in building and reasoning about theirpro
ess models. Our goal in developing the system has been to mat
h theways in whi
h biologists think about explanatory models, rather than to applyexisting algorithms to available data in ways seldom pursued by biologiststhemselves. Working biologists, like other s
ientists, use data and modelsintera
tively, utilizing their models to interpret new experimental results andin turn revising these models in response to observations.aAlso aÆliated with Department of Plant Biology, Carnegie Institution of Washington.Email: jshrager�andrew2.stanford.edu



In the se
tions that follow, we des
ribe our initial version of BioLingua,whi
h supports data intepretation and model revision in the arena of regulatorymodels. We start by de�ning the task of revising an intitial model givenexpression data and then report on BioLingua's approa
h to representingmodels, using them to make predi
tions, and 
arrying out heuristi
 sear
hthrough the spa
e of 
andidate models. After this, we dis
uss related work onrepresenting knowledge about biologi
al pro
esses and dis
overing models thaten
ode them. In 
losing, we note some limitations of our system and suggestdire
tions for future resear
h on 
omputational dis
overy aides for biologists.2 The Task of Revising Regulatory ModelsOne important fa
et of biologi
al theory 
on
erns the regulation of gene ex-pression. Although s
ientists understand the basi
 me
hanisms through whi
hDNA produ
es proteins and thus bio
hemi
al behavior, they have yet to de-termine most of the regulatory networks that 
ontrol the degree to whi
h ea
hgene is expressed. However, for parti
ular organisms under 
ertain 
onditions,biologists have developed partial models of gene regulation. The measurementand analysis of gene expression levels, either through Northern blots or 
DNAmi
roarrays, has played a 
entral role in the elu
idation of regulatory models,as both measures quantify gene a
tivity in terms of RNA 
on
entration.bThere are two typi
al ways in whi
h expression data are used to extendknowledge about regulatory me
hanisms. The most 
ommon 
omputationalapproa
h involves the use of 
lustering to infer whi
h genes o

ur in 
oregulated
lasses. This knowledge-lean approa
h lets one redu
e the high dimensionalityof mi
roarray data to a manageable level, but the result is typi
ally des
rip-tive rather than explanatory in nature. A se
ond paradigm, more 
ommonlyused by pra
ti
ing biologists, uses data about expression levels to test spe
i�
pathway hypotheses. This knowledge-ri
h approa
h lets one evaluate proposedexplanations, but it generally does not move beyond these hypotheses to sug-gest improved regulatory models.We have designed BioLingua to 
ombine the best aspe
ts of these twoapproa
hes to regulatory model dis
overy. We 
an state the task in semi-formalterms as:� Given: a partial model of gene regulation for some organism;� Given: data about the expression levels of relevant genes;� Given: knowledge of biologi
al pro
esses that regulate gene expression;� Find : an improved regulatory model that explains the data better.bThe distan
e between these measures and a
tual bio
hemi
al a
tivity is 
onsiderable,but they still provide valuable information to biologists.487



Computational tools that support this task will let biologists use mi
roarraydata both to test their regulatory models and to revise them in response torelevant observations.3 An Approa
h to Regulatory Model RevisionNow that we have stated the task of revising an initial regulatory model basedon mi
roarray data, we 
an des
ribe the approa
h that BioLingua takes tothis dis
overy problem.3.1 Representing Models of Gene RegulationBefore we 
an develop algorithms to improve regulatory models, we must sele
tsome representation for those models. Most work in ma
hine learning anddata mining, in
luding that in biologi
al domains, draws on representationalformalisms like de
ision trees, logi
al rules, or Bayesian networks that weredesigned by arti�
ial intelligen
e resear
hers themselves. These formalismsare often adequate for representing 
omplex regularities and making a

uratepredi
tions, but they make little or no 
onta
t with notations 
ommonly usedby pra
ti
ing s
ientists.In 
ontrast, we are 
ommitted to representing biologi
al models in termsthat are familiar to biologists themselves. In biology talks and publi
ations,these models are often depi
ted graphi
ally. Figure 1 presents one su
h model,whi
h we obtained from a plankton biologist, that aims to explain why Cyano-ba
teria blea
hes when exposed to high light 
onditions and how this prote
tsthe organism. Ea
h node in the model 
orresponds to some observable or theo-reti
al variable; ea
h link stands for some biologi
al pro
ess through whi
h onevariable in
uen
es another. Solid lines in the �gure denote internal pro
esses,while dashes indi
ate pro
esses 
onne
ted to the environment.The model states that 
hanges in light level modulate the a
tivity of DFR,a protein hypothesized to serve as a sensor. This in turn a
tivates NBLR, whi
hthen redu
es the number of phy
obilisome (PBS) rods that absorb light, whi
his measurable photometri
ally as the organism's greenness. The redu
tion inPBS serves to prote
t the organism be
ause the redu
ed PBS array absorbs lesslight, whi
h 
an be damaging at high levels. The organism's health under highlight 
onditions 
an be measured in terms of the 
ulture density. The modelalso posits that DFR impa
ts health through a se
ond pathway, by in
uen
ingan unknown response regulator RR, whi
h in turn down regulates expression ofthe gene produ
ts psbA1, psbA2, and 
p
B. The �rst two positively in
uen
ethe level of photosyntheti
 a
tivity (Photo), whi
h, if left unaltered, would alsodamage the organism. 488
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RR psbA2 PhotoFigure 1: An initial model for regulation of photosynthesis in Cyanoba
teria.Note that this model, although in
orporating quantitative variables, isqualitative in that it spe
i�es dire
tions of in
uen
e but not their degree. Forinstan
e, one 
ausal link indi
ates that in
reases in NBLR will in
rease NBLA,but it does not state whether that relation obeys a linear or some other law,nor does it spe
ify any parameters. We have fo
used on qualitative modelsnot be
ause quantitative ones are undesirable, but be
ause biologists usuallyoperate on the former, and we want our 
omputational tools to support theirtypi
al reasoning styles.Another 
hara
teristi
 of the model is that it is both partial and abstra
t.The biologist who proposed this model made no 
laim about its 
omplete-ness, and 
learly viewed it as a working hypothesis to whi
h additional genesand pro
esses should be added as indi
ated by new data. Some pro
esses areabstra
t in the sense that they denote entire 
hains of subpro
esses. For in-stan
e, the link from DFR to NBLR stands for a signaling pathway, the detailsof whi
h hold little relevan
e at this level of analysis. The model also in
ludesabstra
t variables like RR, whi
h denotes an unspe
i�ed gene, or possibly aset of genes, that a
ts as an intermediary 
ontroller. BioLingua's formalismlets it express su
h partial, abstra
t, and qualitative models of the type thatbiologists propose and reason about.3.2 Mi
roarray Data on Gene RegulationLike many other resear
hers, we are ex
ited about the potential of 
DNA mi-
roarrays for elu
idating bio
hemi
al pro
esses. Brie
y, these devi
es measurethe expression level for hundreds to thousands of an organism's genes, as re-
e
ted by the 
on
entration of mRNA for ea
h gene relative to that in a 
ontrol
ondition. One 
an 
olle
t su
h measurements under di�erent environmental
onditions (e.g., 
lean vs. polluted water), for di�erent organisms (e.g., healthyvs. 
an
erous tissue), or for di�erent points in time.489



We have a

ess to su
h mi
roarray data for several strains of Cyanoba
te-ria under high light 
onditions that 
ause the organism to blea
h and redu
eits photosyntheti
 a
tivity over a period of hours. These data in
lude mea-surements of the expression levels for about 300 genes believed to play a rolein photosynthesis, although we have fo
used on those genes mentioned in themodel. We have array data 
olle
ted at 0, 30, 60, 120, and 360 minutes af-ter high light was introdu
ed, with four repli
ated measurements at ea
h timepoint. The dimensionality of these data, and thus the number of parametersrequired in a numeri
 model, is mu
h higher than the number of observations,providing another reason to favor qualitative models over quantitative ones.3.3 Making Predi
tions and Evaluating ModelsBioLingua needs some pro
edure to map a biologi
al model like that in Fig-ure 1 onto the mi
roarray data we have available. Sin
e its models are quali-tative, they 
annot dire
tly predi
t the 
ontinuous expression levels, but they
an predi
t whi
h variables should be 
orrelated and the dire
tion of those 
or-relations. For ea
h pair of variables (nodes) in a model, the system enumeratesthe paths that 
onne
t those variables. BioLingua transforms ea
h su
h pathinto a predi
ted 
orrelation by multiplying the signs on its links and, when thepredi
tions for all paths between two nodes agree, predi
ting that 
orrelation.
However, when the 
orrelations predi
ted by two or more paths disagree,BioLingua must resolve the ambiguity in some manner. In a quantitativemodel, ea
h path would have its own degree of in
uen
e, and one 
ould sumtheir e�e
ts to determine the out
ome. La
king su
h quantitative information,the system 
an still annotate the model to indi
ate that the positive (or nega-tive) paths are dominant, and thus predi
t a positive (or negative) 
orrelation.This extended formalism lets any qualitative model predi
t a positive or neg-ative 
orrelation for ea
h pair of observed variables, provided one is willing topay the 
ost of adding assumptions about dominan
e. For example, the modelin Figure 1 has three paths between the expression levels for DFR and Health.The produ
t of signs on ea
h path is positive, meaning that they ea
h predi
ta positive 
orrelation between the two variables. However, if the link fromNBLA to PBS were positive, this path would make a di�erent predi
tion andthe model would need a dominan
e annotation to resolve the ambiguity.This pro
edure lets BioLingua generate qualitative 
orrelations betweenpairs of variables in a given model. Naturally, the system 
an 
ompare these
Note that some paths pass through unobservable variables like RR; although we 
annotmeasure su
h terms' values, that does not keep BioLingua from utilizing them in predi
tivepaths between observable variables like DFR and psbA1.490



predi
tions to the observed 
orrelations, whi
h it 
omputes from 
orrespondingexpression levels in the arrays a
ross di�erent time steps. BioLingua treatsany 
orrelation that fails a signi�
an
e test, in this 
ase p < 0:05, as zero. Thesystem in
orporates these mat
hes against the data in its evaluation metri
 formodels. However, it also in
ludes a measure of model 
omplexity whi
h favorssimpler models and a term whi
h favors models that make more predi
tions(i.e., a Popperian bias toward hypotheses that are easier to reje
t), whi
h wefound ne
essary to guard against degenerate models. The spe
i�
 fun
tionused to evaluate 
andidates isE = B(variables)+B(links)+B(annotations)+B(errors)�B(predi
tions) ;where B(X) denotes the total number of X (e.g., links or errors) times thenumber of bits needed to en
ode X . In this s
heme, ea
h variable and ea
hlink requires 4 bits, ea
h disambiguation annotation requires 0.1 bit, and ea
hpredi
tion error and ea
h predi
tion requires 3 bits. The resulting measure,whi
h is similar to minimum des
ription length, gives the overall quality forea
h model.3.4 Revising Regulatory Models to Explain Mi
roarray DataAs with most resear
h on 
omputational knowledge dis
overy, one 
an viewthe revision of biologi
al models in terms of heuristi
 sear
h through a spa
eof 
andidate models. This framework requires one to make a number of designde
isions, in
luding the state from whi
h to initiate the sear
h, the operatorsused to generate new states, the knowledge used to 
onstrain these operators'appli
ation, the evaluation metri
 used to sele
t among 
ompeting states, theoverall s
heme for sear
h 
ontrol, and the 
riterion used to halt the sear
h.Biologists often have some abstra
t qualitative model in mind at ea
hstage of their resear
h. BioLingua takes su
h a model as the starting pointfor its sear
h pro
ess. Some natural operators for revising su
h a model in
ludeadding a signed link, removing a link, and reversing the sign on a link. In the
urrent implementation, BioLingua's evaluation fun
tion for sele
ting amongmodels is simply the measure of model quality E des
ribed earlier. The 
ontrols
heme that utilizes this fun
tion is greedy sear
h through the model spa
e,with failure to improve on the evaluation metri
 as the halting 
riterion.For example, to generate an improved regulatory model for the photosyn-theti
 pro
ess in Cyanoba
teria under high light, BioLingua starts from themodel in Figure 1. This model's 11 variables and 12 
ausal links lead to some350 one-step revisions that produ
e distin
t models, resulting from link rever-491



sals, link additions, and link deletions. The system generates ea
h of these
andidates, 
al
ulates their E s
ores given the expression data, and sele
ts thebest one as the 
urrent model. It then repeats this pro
ess, 
ontinuing untilfurther 
hanges fail to yield improvements in the evaluation metri
.4 Experimental Results on Photosyntheti
 RegulationUltimately, BioLingua's su

ess as a dis
overy system will depend on whetherit 
an use expression data to improve biologi
al models. Here we report initialexperiments designed to test the program's abilities on this dimension.4.1 Improving Models of Wild and Mutant Cyanoba
teriaWe have already des
ribed an initial model, shown in Figure 1, of blea
hingin Cyanoba
teria that we obtained from biologists, along with expression dataon the genes that regulate this pro
ess over time. The data lead to 18 positive
orrelations and 10 negative 
orrelations among the observed expression levels.When given this initial model and these qualitative data, BioLingua'srevision module 
arries out its greedy sear
h through the model spa
e, takingeight steps and examining 2382 
andidates along the way. Additional revisionslead to no improvement in the evaluation fun
tion, 
ausing the system to halt.Figure 2 shows the �nal revised model that results from this sear
h pro
ess,whi
h mat
hes the observed expression levels better than the starting modeland has a better evaluation s
ore (E = �46 rather than E = 12:2).This model di�ers from the initial one in some important ways. Thesein
lude deletion of the links from DFR to NBLR, from psbA1 to Photo, fromRR to psbA2, and from RR to 
p
B. The revised model also 
ontains threenew links, indi
ating a positive in
uen
e from 
p
B to NBLR and negativein
uen
es from psbA1 to psbA2 and from psbA2 to 
p
B. The revision pro
esshas also 
hanged signs on the links from RR to psbA1, from PBS to Health,and from Photo to Health.In addition to proposing regulatory models for wild strains of an organism,biologists also desire to model mutant strains. We have a

ess to array data fora nonblea
hing mutant of Cyanoba
teria under the same high light 
onditionsas for the wild strain. Be
ause su
h a mutant presumably di�ers geneti
allyfrom the wild organism in at most a few ways, it seems natural to utilizeBioLingua's revision module to formulate a model of the mutant's regulatorypro
esses. In this 
ase, the system 
onsiders 2270 
andidates while taking ninesteps through the model spa
e. Figure 3 presents the resulting model, whi
hhas a better s
ore (E = �24:6) than the initial one (E = 12:2).492
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Figure 2: A revised model for regulation of photosynthesis in wild Cyanoba
teria.There are a number of di�eren
es between the revised model for the mutantstrain and the initial model. These in
lude deletion of the links from DFR toRR, from RR to psbA2, from RR to 
p
B, and from psbA1 to Photo. Themutant model also spe
i�es three new links, indi
ating positive in
uen
es frompsbA1 to 
p
B and from 
p
B to psbA2, along with a negative in
uen
e fromNBLA to RR. The revision me
hanism has also 
hanged signs on the linksfrom psbA2 to Photo and from Photo to Health.These revised models have some biologi
al plausibility, but they also haveproblemati
 aspe
ts. Generally speaking, it seems plausible that DFR in
u-en
es photosyntheti
 a
tivity through NBLR (in the wild strain) or a psbA1
as
ade (in the mutant strain), and additional experiments 
ould test theseproposals. On the other hand, in both 
ases the revision pro
ess produ
edmodels with 
as
ades whereas the initial model had separate in
uen
es, spe
if-i
ally from RR. Although su
h 
hains are not impossible, there is no reason toprefer su
h stru
tures. Additional knowledge, either in the form of biologi
al
onstraints or an improved evaluation metri
, 
ould resolve this ambiguity.4.2 Robustness of the Approa
hAlthough the previous runs demonstrate BioLingua's relevan
e to problemsin model revision that arise among pra
ti
ing biologists, they do not provideeviden
e of its robustness. To evaluate BioLingua's revision module alongthis dimension, we designed an experiment to determine whether the qualityof the �nal revised model degrades gra
efully with de
reasing 
orre
tness ofthe initial model. Thus, we took the revised model from Figure 2 as our targetT and generated di�erent initial models by taking random steps through themodel spa
e. In this manner, we generated ten distin
t models that di�eredfrom T by one step, another ten that di�ered by two steps, and so forth, haltingat �ve steps from the target. We then ran the revision algorithm on ea
h initialmodel with the expression data that produ
ed the model in Figure 2.493
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Figure 3: A revised model for regulation of photosynthesis in mutant Cyanoba
teria.We measured two dependent variables as a fun
tion of distan
e from thetarget model. The �rst involved the revised model's a

ura
y at predi
tingqualitative 
orrelations, spe
i�
ally the number of 
orre
tly predi
ted 
orrela-tions or non-
orrelations over the total number of possible 
orrelations. These
ond was simply the distan
e (number of steps in the sear
h spa
e) betweenthe revised model and the target model T . We hypothesized that both mea-sures would get worse, on average, with distan
e between the initial and targetmodels, but that this degradation would be gra
eful.The results were generally 
onsistent with our expe
tations. The predi
tivea

ura
y of the target model on the expression data was 94 per
ent, whereasthe revised models from runs starting one, two, three, four, and �ve stepsfrom the target had average a

ura
ies of 84, 79, 78, 65, and 63 per
ent,respe
tively. Similarly, the average distan
e of these revised models from thetarget, in terms of steps through the model spa
e, was 3.5, 3.5, 5.9, 4.4, and5.0, respe
tively. Thus, the method's behavior degraded as the revision taskbe
ame more diÆ
ult, but this o

urred in a gra
eful manner.5 Related Resear
h on Computational Dis
overyOur approa
h to 
omputational biologi
al dis
overy builds on three previouslines of resear
h. The �rst framework has fo
used on the expli
it representationof knowledge about biologi
al pathways. For instan
e, Karp et al.'s E
oCy
1en
odes most established pathways for E. Coli and lets users display this knowl-edge graphi
ally. Kanehisa2 reports another e�ort that has produ
ed KEGG,whi
h 
odi�es similar knowledge about a range of organisms. The knowledgestored in these systems is impressive, in
luding information about metaboli
pathways, regulatory pathways, and mole
ular assemblies, but their ability toreason over this knowledge remains limited. Tomita et al.3 des
ribe anotherframework, E-Cell, whi
h stores similar knowledge and in
ludes me
hanisms494



for predi
ting behavior, but even E-Cell la
ks the ability to revise its modelsin response to observations, whi
h is BioLingua's 
entral feature.A se
ond framework has fo
used expli
itly on the dis
overy of biologi
alknowledge from data. We have already 
ontrasted our approa
h with the more
ommon te
hnique of 
lustering mi
roarray data in a knowledge-lean manner,but there exists some other work on 
onstru
ting pro
ess explanations fromsu
h data. For example, Koza et al.4 use heuristi
 sear
h methods to estimate,from time-series data about 
on
entrations, the stru
ture and parameters ofa metaboli
 model. Zupan et al.5 des
ribe GenePath, a system that 
omessomewhat 
loser to our approa
h in that it 
ombines biologi
al knowledge anddata about the e�e
ts of mutations to propose qualitative geneti
 networks.Hartemink et al.,6 although not fo
used on dis
overy, propose a similar nota-tion for en
oding regulatory models and another evaluation metri
 that 
oulddire
t sear
h through the model spa
e.A third resear
h framework has fo
used not on 
onstru
ting models froms
rat
h but rather on revising existing theories to improve their �t to data.For example, Ourston and Mooney7 present a method that uses data to revisemodels stated as sets of propositional Horn 
lauses, whereas Towell8 reportsa related approa
h transforms su
h models into multilayer neural networks,then uses ba
kpropagation to improve their �t to observations. Our te
hnique
omes 
loser to Karp'sHypGene,9 whi
h uses qualitative phenomena to revisea model 
ast in biologi
al terms, but whi
h di�ers 
onsiderably in its formalismand reasoning me
hanisms. This framework has emphasized supervised ratherthan unsupervised data, but it shares the notion of revising an initial model.Ea
h of these frameworks has 
lear merits. Our resear
h is novel in thatit 
ombines these three themes into a single system for the 
omputationaldis
overy of biologi
al knowledge.6 Con
luding RemarksBioLingua is a 
omputational tool kit designed to assist biologists in statingpro
ess models, using those models to make predi
tions, interpreting obser-vations in light of those predi
tions, and improving their models in response.Our initial work has fo
used on revising a given regulatory model to better�t observed expression levels, an approa
h that di�ers 
onsiderably from theknowledge-lean methods typi
ally applied to su
h data.We illustrated BioLingua's appli
ation to this task in the 
ontext of aparti
ular model of photosyntheti
 regulation in Cyanoba
teria and expressiondata 
olle
ted for that organism. We presented the system's formal represen-tation for biologi
al pro
ess models, a method that uses su
h models to predi
t495



qualitative 
orrelations between expression levels, and an algorithm that 
ar-ries out heuristi
 sear
h through the spa
e of regulatory models, guided bydata and a bias toward simpler models. In addition, we demonstrated the sys-tem's revision of an initial model of photosyntheti
 regulation, given expressiondata for wild and mutant Cyanoba
teria. We also studied BioLingua's abilityto re
over a model's stru
ture after mutilating it to varying degrees, and thesystem exhibited reasonable robustness on this task.Although our results to date are en
ouraging, we must extend BioLinguain a number of dire
tions before it 
an be
ome a useful tool for biologists.For example, the 
urrent system 
an add, remove, and reverse 
ausal links tothe initial model, but it 
annot introdu
e new variables that 
orrespond toobserved expression levels for known genes, whi
h seems desirable. A
hievingthis fun
tionality means adding a new revision operator and thus enlargingthe spa
e of 
andidate models, whi
h in turn will require an improved sear
hme
hanism. This expanded sear
h pro
ess would bene�t from intera
tion withbiologists, who 
ould help to guide the de
ision pro
ess in 
ases where di�erentmodels have similar s
ores.Future versions of the system should support link types that 
orrespondto additional biologi
al 
on
epts. For example, BioLingua should distinguishbetween metaboli
 pro
esses, whi
h are e�e
tively instantaneous, and regula-tory pro
esses, whi
h typi
ally take pla
e over time. This distin
tion will alsomean extending our formalism and predi
tion me
hanism to support time-delayed e�e
ts. One response to this 
hallenge 
omes from qualitative physi
s,whi
h des
ribes dynami
 systems in terms of qualitative di�erential equations.This approa
h is 
onsistent with our bias toward qualitative models.A more fundamental issue 
on
ernsBioLingua's 
urrent modeling formal-ism. Although biologists state some models in terms of measurable statisti
alvariables, su
h as gene expression levels, they often des
ribe an organism's be-havior in terms of me
hani
al pro
esses that operate on individual mole
ules.Karp's work9 on modeling the Tryptophan operon provides one approa
h torepresenting su
h me
hanisms. Future versions of BioLingua should supportthe ability to make statisti
al predi
tions from su
h me
hani
al models, andthus make better 
onta
t with biologists' 
on
eptual repertoire.In the longer term, we envision BioLingua developing into an intera
tivedis
overy aide that lets a biologist spe
ify initial models, fo
us the system'sattention on parti
ular data and parts of those models it should attempt toimprove, sele
t among 
andidate models with similar s
ores, and generally 
on-trol high-level aspe
ts of the dis
overy pro
ess. Combined with other plannedextensions, this fa
ility should make BioLingua a more valuable tool for pra
-ti
ing biologists. 496
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