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BioLINGUA is a computational system designed to support biologists’ efforts to
construct models, make predictions, and interpret data. In this paper, we focus on
the specific task of revising an initial model of gene regulation based on expression
levels from gene microarrays. We describe BIOLINGUA’s formalism for representing
process models, its method for predicting qualitative correlations from such models,
and its use of data to constrain search through the space of revised models. We
also report experimental results on revising a model of photosynthetic regulation
in Cyanobacteria to better fit expression data for both wild and mutant strains,
along with model mutilation studies designed to test our method’s robustness. In
closing, we discuss related work on representing, discovering, and revising biological
models, after which we propose some directions for future research.

1 Introduction and Motivation

There is general agreement that scientists need computational tools to assist
in analyzing the rapidly increasing amount of biological data. Unfortunately,
most existing software makes only limited contact with the methods that prac-
ticing biologists use in formulating and evaluating their models. In particular,
most computational tools in biology have focused on knowledge-lean methods
for data analysis, such as clustering, whereas biologists typically reason in a
knowledge-rich manner using models of biological processes.

In this paper, we describe BIOLINGUA, a suite of computational tools
designed to assist working biologists in building and reasoning about their
process models. Our goal in developing the system has been to match the
ways in which biologists think about explanatory models, rather than to apply
existing algorithms to available data in ways seldom pursued by biologists
themselves. Working biologists, like other scientists, use data and models
interactively, utilizing their models to interpret new experimental results and
in turn revising these models in response to observations.
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In the sections that follow, we describe our initial version of BIOLINGUA,
which supports data intepretation and model revision in the arena of regulatory
models. We start by defining the task of revising an intitial model given
expression data and then report on BIOLINGUA’s approach to representing
models, using them to make predictions, and carrying out heuristic search
through the space of candidate models. After this, we discuss related work on
representing knowledge about biological processes and discovering models that
encode them. In closing, we note some limitations of our system and suggest
directions for future research on computational discovery aides for biologists.

2 The Task of Revising Regulatory Models

One important facet of biological theory concerns the regulation of gene ex-
pression. Although scientists understand the basic mechanisms through which
DNA produces proteins and thus biochemical behavior, they have yet to de-
termine most of the regulatory networks that control the degree to which each
gene is expressed. However, for particular organisms under certain conditions,
biologists have developed partial models of gene regulation. The measurement
and analysis of gene expression levels, either through Northern blots or cDNA
microarrays, has played a central role in the elucidation of regulatory models,
as both measures quantify gene activity in terms of RNA concentration?

There are two typical ways in which expression data are used to extend
knowledge about regulatory mechanisms. The most common computational
approach involves the use of clustering to infer which genes occur in coregulated
classes. This knowledge-lean approach lets one reduce the high dimensionality
of microarray data to a manageable level, but the result is typically descrip-
tive rather than explanatory in nature. A second paradigm, more commonly
used by practicing biologists, uses data about expression levels to test specific
pathway hypotheses. This knowledge-rich approach lets one evaluate proposed
explanations, but it generally does not move beyond these hypotheses to sug-
gest improved regulatory models.

We have designed BIOLINGUA to combine the best aspects of these two
approaches to regulatory model discovery. We can state the task in semi-formal
terms as:

e Given: a partial model of gene regulation for some organism;

e (fiven: data about the expression levels of relevant genes;

e Given: knowledge of biological processes that regulate gene expression;
e Find: an improved regulatory model that explains the data better.

bThe distance between these measures and actual biochemical activity is considerable,
but they still provide valuable information to biologists.
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Computational tools that support this task will let biologists use microarray
data both to test their regulatory models and to revise them in response to
relevant observations.

3 An Approach to Regulatory Model Revision

Now that we have stated the task of revising an initial regulatory model based
on microarray data, we can describe the approach that BioLINGUA takes to
this discovery problem.

3.1 Representing Models of Gene Regulation

Before we can develop algorithms to improve regulatory models, we must select
some representation for those models. Most work in machine learning and
data mining, including that in biological domains, draws on representational
formalisms like decision trees, logical rules, or Bayesian networks that were
designed by artificial intelligence researchers themselves. These formalisms
are often adequate for representing complex regularities and making accurate
predictions, but they make little or no contact with notations commonly used
by practicing scientists.

In contrast, we are committed to representing biological models in terms
that are familiar to biologists themselves. In biology talks and publications,
these models are often depicted graphically. Figure 1 presents one such model,
which we obtained from a plankton biologist, that aims to explain why Cyano-
bacteria bleaches when exposed to high light conditions and how this protects
the organism. Each node in the model corresponds to some observable or theo-
retical variable; each link stands for some biological process through which one
variable influences another. Solid lines in the figure denote internal processes,
while dashes indicate processes connected to the environment.

The model states that changes in light level modulate the activity of DFR,
a protein hypothesized to serve as a sensor. This in turn activates NBLR, which
then reduces the number of phycobilisome (PBS) rods that absorb light, which
is measurable photometrically as the organism’s greenness. The reduction in
PBS serves to protect the organism because the reduced PBS array absorbs less
light, which can be damaging at high levels. The organism’s health under high
light conditions can be measured in terms of the culture density. The model
also posits that DFR impacts health through a second pathway, by influencing
an unknown response regulator RR, which in turn down regulates expression of
the gene products psbAl, psbA2, and cpcB. The first two positively influence
the level of photosynthetic activity (Photo), which, if left unaltered, would also
damage the organism.
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Figure 1: An initial model for regulation of photosynthesis in Cyanobacteria.

Note that this model, although incorporating quantitative variables, is
qualitative in that it specifies directions of influence but not their degree. For
instance, one causal link indicates that increases in NBLR will increase NBLA,
but it does not state whether that relation obeys a linear or some other law,
nor does it specify any parameters. We have focused on qualitative models
not because quantitative ones are undesirable, but because biologists usually
operate on the former, and we want our computational tools to support their
typical reasoning styles.

Another characteristic of the model is that it is both partial and abstract.
The biologist who proposed this model made no claim about its complete-
ness, and clearly viewed it as a working hypothesis to which additional genes
and processes should be added as indicated by new data. Some processes are
abstract in the sense that they denote entire chains of subprocesses. For in-
stance, the link from DFR to NBLR stands for a signaling pathway, the details
of which hold little relevance at this level of analysis. The model also includes
abstract variables like RR, which denotes an unspecified gene, or possibly a
set of genes, that acts as an intermediary controller. BIOLINGUA’s formalism
lets it express such partial, abstract, and qualitative models of the type that
biologists propose and reason about.

3.2 Microarray Data on Gene Regulation

Like many other researchers, we are excited about the potential of cDNA mi-
croarrays for elucidating biochemical processes. Briefly, these devices measure
the expression level for hundreds to thousands of an organism’s genes, as re-
flected by the concentration of mRNA for each gene relative to that in a control
condition. One can collect such measurements under different environmental
conditions (e.g., clean vs. polluted water), for different organisms (e.g., healthy
vs. cancerous tissue), or for different points in time.
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We have access to such microarray data for several strains of Cyanobacte-
ria under high light conditions that cause the organism to bleach and reduce
its photosynthetic activity over a period of hours. These data include mea-
surements of the expression levels for about 300 genes believed to play a role
in photosynthesis, although we have focused on those genes mentioned in the
model. We have array data collected at 0, 30, 60, 120, and 360 minutes af-
ter high light was introduced, with four replicated measurements at each time
point. The dimensionality of these data, and thus the number of parameters
required in a numeric model, is much higher than the number of observations,
providing another reason to favor qualitative models over quantitative ones.

3.8 Making Predictions and Evaluating Models

B1OLINGUA needs some procedure to map a biological model like that in Fig-
ure 1 onto the microarray data we have available. Since its models are quali-
tative, they cannot directly predict the continuous expression levels, but they
can predict which variables should be correlated and the direction of those cor-
relations. For each pair of variables (nodes) in a model, the system enumerates
the paths that connect those variables. BIOLINGUA transforms each such path
into a predicted correlation by multiplying the signs on its links and, when the
predictions for all paths between two nodes agree, predicting that correlation®

However, when the correlations predicted by two or more paths disagree,
B1OoLINGUA must resolve the ambiguity in some manner. In a quantitative
model, each path would have its own degree of influence, and one could sum
their effects to determine the outcome. Lacking such quantitative information,
the system can still annotate the model to indicate that the positive (or nega-
tive) paths are dominant, and thus predict a positive (or negative) correlation.
This extended formalism lets any qualitative model predict a positive or neg-
ative correlation for each pair of observed variables, provided one is willing to
pay the cost of adding assumptions about dominance. For example, the model
in Figure 1 has three paths between the expression levels for DFR and Health.
The product of signs on each path is positive, meaning that they each predict
a positive correlation between the two variables. However, if the link from
NBLA to PBS were positive, this path would make a different prediction and
the model would need a dominance annotation to resolve the ambiguity.

This procedure lets BIOLINGUA generate qualitative correlations between
pairs of variables in a given model. Naturally, the system can compare these

¢Note that some paths pass through unobservable variables like RR; although we cannot
measure such terms’ values, that does not keep B1oLINGUA from utilizing them in predictive
paths between observable variables like DFR and psbAl.
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predictions to the observed correlations, which it computes from corresponding
expression levels in the arrays across different time steps. BIOLINGUA treats
any correlation that fails a significance test, in this case p < 0.05, as zero. The
system incorporates these matches against the data in its evaluation metric for
models. However, it also includes a measure of model complexity which favors
simpler models and a term which favors models that make more predictions
(i.e., a Popperian bias toward hypotheses that are easier to reject), which we
found necessary to guard against degenerate models. The specific function
used to evaluate candidates is

E = B(variables)+ B(links) 4+ B(annotations) + B(errors) — B(predictions) ,

where B(X) denotes the total number of X (e.g., links or errors) times the
number of bits needed to encode X. In this scheme, each variable and each
link requires 4 bits, each disambiguation annotation requires 0.1 bit, and each
prediction error and each prediction requires 3 bits. The resulting measure,
which is similar to minimum description length, gives the overall quality for
each model.

3.4 Revising Regulatory Models to Explain Microarray Data

As with most research on computational knowledge discovery, one can view
the revision of biological models in terms of heuristic search through a space
of candidate models. This framework requires one to make a number of design
decisions, including the state from which to initiate the search, the operators
used to generate new states, the knowledge used to constrain these operators’
application, the evaluation metric used to select among competing states, the
overall scheme for search control, and the criterion used to halt the search.

Biologists often have some abstract qualitative model in mind at each
stage of their research. BIOLINGUA takes such a model as the starting point
for its search process. Some natural operators for revising such a model include
adding a signed link, removing a link, and reversing the sign on a link. In the
current implementation, BIOLINGUA’s evaluation function for selecting among
models is simply the measure of model quality E described earlier. The control
scheme that utilizes this function is greedy search through the model space,
with failure to improve on the evaluation metric as the halting criterion.

For example, to generate an improved regulatory model for the photosyn-
thetic process in Cyanobacteria under high light, BIOLINGUA starts from the
model in Figure 1. This model’s 11 variables and 12 causal links lead to some
350 one-step revisions that produce distinct models, resulting from link rever-
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sals, link additions, and link deletions. The system generates each of these
candidates, calculates their E scores given the expression data, and selects the
best one as the current model. It then repeats this process, continuing until
further changes fail to yield improvements in the evaluation metric.

4 Experimental Results on Photosynthetic Regulation

Ultimately, BIOLINGUA’s success as a discovery system will depend on whether
it can use expression data to improve biological models. Here we report initial
experiments designed to test the program’s abilities on this dimension.

4.1 Improving Models of Wild and Mutant Cyanobacteria

We have already described an initial model, shown in Figure 1, of bleaching
in Cyanobacteria that we obtained from biologists, along with expression data
on the genes that regulate this process over time. The data lead to 18 positive
correlations and 10 negative correlations among the observed expression levels.

When given this initial model and these qualitative data, BIOLINGUA’s
revision module carries out its greedy search through the model space, taking
eight steps and examining 2382 candidates along the way. Additional revisions
lead to no improvement in the evaluation function, causing the system to halt.
Figure 2 shows the final revised model that results from this search process,
which matches the observed expression levels better than the starting model
and has a better evaluation score (E = —46 rather than E = 12.2).

This model differs from the initial one in some important ways. These
include deletion of the links from DFR to NBLR, from psbA1 to Photo, from
RR to psbA2, and from RR to cpcB. The revised model also contains three
new links, indicating a positive influence from cpcB to NBLR and negative
influences from psbA1 to psbA2 and from psbA2 to cpcB. The revision process
has also changed signs on the links from RR to psbAl, from PBS to Health,
and from Photo to Health.

In addition to proposing regulatory models for wild strains of an organism,
biologists also desire to model mutant strains. We have access to array data for
a nonbleaching mutant of Cyanobacteria under the same high light conditions
as for the wild strain. Because such a mutant presumably differs genetically
from the wild organism in at most a few ways, it seems natural to utilize
Bi1oLINGUA’s revision module to formulate a model of the mutant’s regulatory
processes. In this case, the system considers 2270 candidates while taking nine
steps through the model space. Figure 3 presents the resulting model, which
has a better score (E = —24.6) than the initial one (E = 12.2).
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Figure 2: A revised model for regulation of photosynthesis in wild Cyanobacteria.

There are a number of differences between the revised model for the mutant
strain and the initial model. These include deletion of the links from DFR to
RR, from RR to psbA2, from RR to cpcB, and from psbAl to Photo. The
mutant model also specifies three new links, indicating positive influences from
psbA1 to cpcB and from cpcB to psbA2, along with a negative influence from
NBLA to RR. The revision mechanism has also changed signs on the links
from psbA2 to Photo and from Photo to Health.

These revised models have some biological plausibility, but they also have
problematic aspects. Generally speaking, it seems plausible that DFR, influ-
ences photosynthetic activity through NBLR (in the wild strain) or a psbA1l
cascade (in the mutant strain), and additional experiments could test these
proposals. On the other hand, in both cases the revision process produced
models with cascades whereas the initial model had separate influences, specif-
ically from RR. Although such chains are not impossible, there is no reason to
prefer such structures. Additional knowledge, either in the form of biological
constraints or an improved evaluation metric, could resolve this ambiguity.

4.2  Robustness of the Approach

Although the previous runs demonstrate BIOLINGUA’s relevance to problems
in model revision that arise among practicing biologists, they do not provide
evidence of its robustness. To evaluate BIOLINGUA’s revision module along
this dimension, we designed an experiment to determine whether the quality
of the final revised model degrades gracefully with decreasing correctness of
the initial model. Thus, we took the revised model from Figure 2 as our target
T and generated different initial models by taking random steps through the
model space. In this manner, we generated ten distinct models that differed
from T by one step, another ten that differed by two steps, and so forth, halting
at five steps from the target. We then ran the revision algorithm on each initial
model with the expression data that produced the model in Figure 2.
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Figure 3: A revised model for regulation of photosynthesis in mutant Cyanobacteria.

+

We measured two dependent variables as a function of distance from the
target model. The first involved the revised model’s accuracy at predicting
qualitative correlations, specifically the number of correctly predicted correla-
tions or non-correlations over the total number of possible correlations. The
second was simply the distance (number of steps in the search space) between
the revised model and the target model 7. We hypothesized that both mea-
sures would get worse, on average, with distance between the initial and target
models, but that this degradation would be graceful.

The results were generally consistent with our expectations. The predictive
accuracy of the target model on the expression data was 94 percent, whereas
the revised models from runs starting one, two, three, four, and five steps
from the target had average accuracies of 84, 79, 78, 65, and 63 percent,
respectively. Similarly, the average distance of these revised models from the
target, in terms of steps through the model space, was 3.5, 3.5, 5.9, 4.4, and
5.0, respectively. Thus, the method’s behavior degraded as the revision task
became more difficult, but this occurred in a graceful manner.

5 Related Research on Computational Discovery

Our approach to computational biological discovery builds on three previous
lines of research. The first framework has focused on the explicit representation
of knowledge about biological pathways. For instance, Karp et al.’s EcoCvyc!
encodes most established pathways for E. Coli and lets users display this knowl-
edge graphically. Kanehisa? reports another effort that has produced KEGG,
which codifies similar knowledge about a range of organisms. The knowledge
stored in these systems is impressive, including information about metabolic
pathways, regulatory pathways, and molecular assemblies, but their ability to
reason over this knowledge remains limited. Tomita et al.? describe another
framework, E-Cell, which stores similar knowledge and includes mechanisms

494



for predicting behavior, but even E-Cell lacks the ability to revise its models
in response to observations, which is BIOLINGUA’s central feature.

A second framework has focused explicitly on the discovery of biological
knowledge from data. We have already contrasted our approach with the more
common technique of clustering microarray data in a knowledge-lean manner,
but there exists some other work on constructing process explanations from
such data. For example, Koza et al.* use heuristic search methods to estimate,
from time-series data about concentrations, the structure and parameters of
a metabolic model. Zupan et al.® describe GENEPATH, a system that comes
somewhat closer to our approach in that it combines biological knowledge and
data about the effects of mutations to propose qualitative genetic networks.
Hartemink et al.,® although not focused on discovery, propose a similar nota-
tion for encoding regulatory models and another evaluation metric that could
direct search through the model space.

A third research framework has focused not on constructing models from
scratch but rather on revising existing theories to improve their fit to data.
For example, Ourston and Mooney” present a method that uses data to revise
models stated as sets of propositional Horn clauses, whereas Towell® reports
a related approach transforms such models into multilayer neural networks,
then uses backpropagation to improve their fit to observations. Our technique
comes closer to Karp’s HYPGENE,? which uses qualitative phenomena to revise
a model cast in biological terms, but which differs considerably in its formalism
and reasoning mechanisms. This framework has emphasized supervised rather
than unsupervised data, but it shares the notion of revising an initial model.

Each of these frameworks has clear merits. Our research is novel in that
it combines these three themes into a single system for the computational
discovery of biological knowledge.

6 Concluding Remarks

BioLiNGUA is a computational tool kit designed to assist biologists in stating
process models, using those models to make predictions, interpreting obser-
vations in light of those predictions, and improving their models in response.
Our initial work has focused on revising a given regulatory model to better
fit observed expression levels, an approach that differs considerably from the
knowledge-lean methods typically applied to such data.

We illustrated BIOLINGUA’s application to this task in the context of a
particular model of photosynthetic regulation in Cyanobacteria and expression
data collected for that organism. We presented the system’s formal represen-
tation for biological process models, a method that uses such models to predict
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qualitative correlations between expression levels, and an algorithm that car-
ries out heuristic search through the space of regulatory models, guided by
data and a bias toward simpler models. In addition, we demonstrated the sys-
tem’s revision of an initial model of photosynthetic regulation, given expression
data for wild and mutant Cyanobacteria. We also studied BioLINGUA’s ability
to recover a model’s structure after mutilating it to varying degrees, and the
system exhibited reasonable robustness on this task.

Although our results to date are encouraging, we must extend BIOLINGUA
in a number of directions before it can become a useful tool for biologists.
For example, the current system can add, remove, and reverse causal links to
the initial model, but it cannot introduce new variables that correspond to
observed expression levels for known genes, which seems desirable. Achieving
this functionality means adding a new revision operator and thus enlarging
the space of candidate models, which in turn will require an improved search
mechanism. This expanded search process would benefit from interaction with
biologists, who could help to guide the decision process in cases where different
models have similar scores.

Future versions of the system should support link types that correspond
to additional biological concepts. For example, BIOLINGUA should distinguish
between metabolic processes, which are effectively instantaneous, and regula-
tory processes, which typically take place over time. This distinction will also
mean extending our formalism and prediction mechanism to support time-
delayed effects. One response to this challenge comes from qualitative physics,
which describes dynamic systems in terms of qualitative differential equations.
This approach is consistent with our bias toward qualitative models.

A more fundamental issue concerns BIOLINGUA’s current modeling formal-
ism. Although biologists state some models in terms of measurable statistical
variables, such as gene expression levels, they often describe an organism’s be-
havior in terms of mechanical processes that operate on individual molecules.
Karp’s work® on modeling the Tryptophan operon provides one approach to
representing such mechanisms. Future versions of BIOLINGUA should support
the ability to make statistical predictions from such mechanical models, and
thus make better contact with biologists’ conceptual repertoire.

In the longer term, we envision BIOLINGUA developing into an interactive
discovery aide that lets a biologist specify initial models, focus the system’s
attention on particular data and parts of those models it should attempt to
improve, select among candidate models with similar scores, and generally con-
trol high-level aspects of the discovery process. Combined with other planned
extensions, this facility should make BIOLINGUA a more valuable tool for prac-
ticing biologists.
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