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Temporal Aggregation Bias and Inference of Causal Regulaty Networks

Abstract ditions, but also forecasting the effect of interventionstsas
gene deletions or forced overexpression.

One issue that is often ignored is the effect of temporal ag-
gregation biagGranger, 1969; Christiano and Eichenbaum,
1986; McCrorie, 2001; Gulasekaran and Abeysinghe, 2002
on the inferred regulatory structures. Temporal aggregati
occurs when a process is sampled slower than the natural rate
at which it is changing. For example, a hypothetical time se-
ries that could be the expression level of a gene is shown in
Figure 1. Each sample, indicated by the squares, represents
the net change in the signal since the last sample. In partic-
ular, the measurement at= 40 is the sum or aggregate of
all signal changes sinde= 30. With samples every 10 time
units, it may be possible to reconstruct the gross shapeeof th
signal, but knowledge of the finer structure is lost. Tempo-
ral aggregation occurs in both continuous and discrete time
processes when they are sampled too coarsely.

Time course experiments with microarrays have be-
gun to provide a glimpse into the dynamic behavior
of gene expression. In a typical experiment, scien-
tists use microarrays to measure the abundance of
MRNA at discrete time points after the onset of a
stimulus. Recently, there has been much work on
using these data to infer causal regulatory networks
that model how genes influence each other. How-
ever, microarray studies typically have slow sam-
pling rates that can lead to temporal aggregation
of the signal. That is, each successive sampling
point represents the sum of all signal movements
since the previous sample. In this paper, we show
that temporal aggregation can bias algorithms for
causal inference and lead them to discover spuri-
ous relations that would not be found if the signal
were sampled at a faster rate. We discuss the effects
of temporal aggregation on inference, the problems
it creates, and potential directions for solutions.

1 Introduction

An important step in understanding cellular functions is-di
covering how genes dynamically regulate their expression i
response to external and internal cell signals. Experiaient
techniques such as microarrays have begun to provide obser-
vations of dynamic behavior by reporting expression levels
on a genome-wide scale. For example, Spellman ¢1804

expression

and Cho et al[1999 measured gene expression levels during 0 20 w ime 60 s 100
the cell cycle ofS. cerevisiagKhodursky et al[2000 exam-
ined how expression levels i&. coli change during trypto- Figure 1: Slow sampling leads to temporal aggregation.

phan starved and rich conditions, and Hihara et [20001]
examined the transient and long term response of gene ex- In econometrics, temporal aggregation is well known to
pression in Cyanobacteria after exposure to high lightifeve have substantial negative effects on the inference of tausa
It seems natural to use these data to uncover the regelations in discrete time modéel&ranger, 1969; Christiano
ulatory dynamics of gene expression. Many researcherand Eichenbaum, 1986; McCrorie, 2001; Gulasekaran and
have proposed methods to “reverse engineer” or to learn thAbeysinghe, 200R It can lead to identification of spurious
causal structure of the relationships between genes from ti  causal relations making correct inference extremely diffic
series datdD’Haeseleeret al, 1999; Khanet al, 2002; However, many papers on inferring genetic regulatory net-
Murphy and Mian, 1999; Ongt al, 2002; Ong and Page, works from temporal data have ignored the potential p#fall
2001; van Somereat al,, 2000; 2001; Weaveet al, 1999;  of slow sampling rates. In this paper, we argue that temporal
Kundajeet al., 2004. Success in this task would not only al- aggregation presents serious challenges for inferringuhyja
low predictions of gene expression levels under similar-conregulatory networks from sampled microarray data.



In the next section, we show in principle how temporal ag-of these models are typically learned by minimizing a score
gregation can lead to spurious causal relationships and digunction based on prediction error, which often incorpess
cuss how this affects algorithms for inferring regulatostn  penalty for complexity. Thus during model search, a hypoth-
works. We then demonstrate on synthetic data that temporasized causal relation must improve prediction to be instld
aggregation can be a serious problem that makes inferreng thas a direct link (i.e., a non-zeid’;).
causal structure of even a simple system extremely difficult  Another common framework for inferring regulatory net-
Next, we discuss the implications for learning from experi-works is based on the causal interpretation of dynamic
mental data sets: we consider the sampling rates from durreBayesian networks (DBN)Murphy and Mian, 1999; Ong
experiments and argue that temporal aggregation is a probleand Page, 2001; Org al., 2002; Kharet al, 2009 learned
of practical significance under these conditions. Finallg,  from data. A Bayesian netwollPearl, 1988is a graphical
discuss possible approaches for dealing with temporakaggr model in which nodes represent variables and the pattern of

gation and suggest directions for future research. directed links represent conditional independence aiati
A dynamic Bayesian network extends the Bayesian network
2 Temporal Aggregation and Spurious formalism to model how variables evolve over time. DBNs
Causality can be represented as a directed graph in which each variable

, , . is represented by a node for every time point. When inter-
In this section, we show how temporal aggregation can lead tgreted causally, a link from variabl& (t = i) to Y (¢t = )
incorrect inference of causal relationships between e®  jngicates that\y at timei is a direct cause of at time ;.

that have no direct link. To clarify the meaning of causal, wegach variable has a local model that determines its value as a

interpret the sta‘gementr“causesy" to mean that if the'van- probabilistic function of its causes (parents).

ablex were explicitly controlled thep would change inre- = a8 are two main approaches to learning the structure

sponse. However, to discuss inference algorithms, werequi ot 5 gayesian network from data. The first is a score based

an operational definition, and we will use the term “cause Napproach (e.glCooper and Herskovits, 1992: Heckerman,

the sense of Grang§t96d and define it as follows. 1999; Friedmaret al, 2000) where the goal is to find the
Definition 1. A time seriesz(t) Granger causes network that yields the best predictions of the data. This
another time serieg(t) if the prediction ofy(¢+1) ties into Granger causality in the same way as rough network

is improved by using present and past values: of mpcjels: ie., ahypothe;sized causal relation must i_mprc&tep
when all other information, such as the historyyof diction when all other information has been considered. The

and other variables, has been considered. second method of learning is based on matching the condi-
tional independence relations observed between variébles
We will use lower case variables, e.g(t), to represent the data with those entailed by the network structure (e.g.,
disaggregated signals and upper case variablesYikg) to  [Glymouret al, 1987; Saavedrat al, 2001). Saavedra et al.
represent the aggregated signal that is recorded during sarf2001 took this approach to infer regulatory relations from
pling. The time index corresponds to the disaggregated sig-yeast cell cycle data. As with scoring approaches, this also
nal, andl’ corresponds to the index of the aggregated signalties to Granger causality because testing for conditiorcg+
Temporal aggregation can lead algorithms to infer spurifpendence is equivalent to testing if a variable has presicti
ous Granger causality relationships. That is, in an aggeelga power. Under a linear model, two variables are conditignall
signal it may appear that (T') causesZ(T') becauseX (1)  independentif and only if they have a zero partial correlati
improves the prediction of (7' + 1) even when all other in-  [Pearl, 1998
formation has been considered. However, if the data were A useful way of understanding why spurious causal rela-
analyzed at a finer sampling resolution, i.e., in the disaggr tions occur under temporal aggregation is to view these sys-
gated form, then:(¢) would not improve the prediction of tems graphically in the same manner as a dynamic Bayesian
z(t + 1) and thus would not be considered a cause. network. Many formalisms for inferring genetic regulatory
Granger causality is directly related to notions of catgali networks can be considered special cases of Dynamic Bayes
in most frameworks used for analyzing gene expression dataetworks[Murphy and Mian, 199Pincluding Boolean net-
For example, consider rough network modelan Someren  works [Liang et al, 1998; Akutsuet al, 1999; Somogyi
et al, 2001, which represent a wide class of models with lin- and Sniegoski, 1996 rough network models, both linear
ear relationships between genes (or other chemical specie§D’Haeseleeet al, 1999 and non-linear model@Veaveret
These models have the forim al., 1999, as well as the vector autoregressive models com-
, monly used to analyze economic time series.
. In Bayesian and dynamic Bayesian networks one can view
Xi(T+1) = -‘7(2 Wi; X;(T)) (1) the graphical representation and directly determine condi
=1 tional independence relationships and hence whether a vari
where a non-zerdV;; means that gend; is a direct cause able is predictive of another. Two variabldsand B are con-
of geneX;. The functiong(-) can be any monotonic activa- ditionally independent if there is an intermediate varabl
tion function such as a sigmoid. The parameters and streicturon all undirected paths between them such that

1This is slight a simplification of the equations presenteddny 1. C does not have converging arrows (i.e, C +, —
Someren et al[2001. C —,«+(C—)andCis observed,;



2. C has converging arrows C' <) and neitheC' norits  for predicting the future values af, soy does not Granger
descendents are observed. causez. In Figure 3b, the aggregated variabe still pro-
vides information about future values Bf so as beforeX is
Figure 2a shows a dynamic Bayes net representation of %galij’sigrilfbro?/m(aevirs'gfa\llvi;r;gﬁric;?c?noﬁasregsgi%gisrﬁj tmulris_
three variable system:(t) = f(z(t-1)),y = f(z(t1). y(t— 05 opy through many paths such 7' =1), z(t=1),

1)), andz = f(y(t—1),2(t—1)). For each time step, the : :
p " ; (t =3), X(T = 2). Essentially, the observed valuesf
network has been “unrolled” and has a node representing thf‘éVe information about the missed samplesioivhich then

value of each variable at that time point. Arrows represengjI

functional dependencies which may be across time steps. F P;%S 'nnfrZ?éﬁ'Sgéumfggﬁe; ;?esrggorge{nvggﬁganggzsl
example, the value af(t = 2) is a function ofz(t = 1) and gareg W 9 USe: - PP

y(t = 1). In this figure, we have observations at every timefhatX causes’, andY’ causes\, we would incorrectly infer

step. The variable is conditionally independent af given bidirectional causality (a feedback cycle).
y (i.e., all paths fromz to z are blocked by under condi-

tion 1). Hence, analyzing the data generated by this procesg X
would let us infer thatr does not Granger causebecause
they are conditionally independent givgifw adds no predic- |, v
t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4

This criterion is known asl-separatior{Pearl, 1998

tive power once is known) and thay Granger causes

T=1 T=2

X X (a) (b)

Y Y Figure 3: Dynamic Bayes net representation of a two variable
system. Observed nodes are shaded; unobserved nodes are
z z clear. (a) Sampling at every time step. (b) Sampling with

temporal aggregation.
t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4 p gg g

T=1 T=2 In summary, aggregation causes variables not directly re-
(a) (b) lated to each other to have predictive power that cannot be ex
) ] ) plained away by other variables. This leads most algorithms
Figure 2: Dynamic Bayes net representation of a three varitg infer a direct, but spurious, link between them.
able system. Observed nodes are shaded; unobserved nodes
are clear. (a) Sampling at every time step. (b) Sampling wit|*3 Experiments with Synthetic Data

temporal aggregation. . . . . . )
In this section, we describe experiments with a simple syn-

When the signal is aggregated, we miss observations anfetic system and we show that aggregation can lead to spuri-
we might have the situation in Figure 2b where the obserpys inferences about causal relationships. We begin by con-
vations att = 2 and¢ = 3 are missing. With aggregation, sidering the discrete-time three variable system:

X(T=1)is nolonger conditionally independent&{T = 2)

given the history ofY’. There are several unblocked paths z(t) = Asin(Bt) + e (t) ()
from X to Z such asX (T'=1), y(t=2), 2(t=3), Z(T =2). y(t) = z(t—dy) + e () (3)
Thus, it will appear thak” Granger causes even though this ) = ylt—ds) + es(t) (4)

is not true in the disaggregated case. Essentidliyl’ = 1)
gives information about the missed samples-ag andt=3.  We interpret this set of equations in the same manner as struc
This in turn provides information about the valuefn the  tural equation modelBollen, 1989; Pearl, 1998vhere the
next sample in the aggregated datdlat= 2. If the latent variable on the left hand side of the equality is caused by the
unobserved steps are not modeled it will appear @ i§ a  variables on the right hand side. The variabls a sinusoid
direct cause of. with amplitudeA, period2x/B; x causeg but the effect is
Aggregation will lead to correlation betweéhand” that  delayed by timel;; andy causes with a delay ofd,. The
cannot be explained by . In this case, algorithms based on noise variables, (¢), e2(t), andes(t) represent errors caused
predictive scoring or conditional independence relatips by omitted factors and are uncorrelated. The variatilenot
will infer a direct, but spurious, link betweeli andZ. In  a cause of and only affects indirectly throughy.
general, with any set of variables that are individuallyreer We will use this system to generate synthetic data and
lated, aggregation will lead them to look like causes of eactshow that spurious Granger causality relationships canrocc
other[McCrorie, 2001. with different methods for causal learning. Specificallyg w
In bivariate systems with one-directional causality, &ggr will examine how methods for learning vector autoregressiv
gation can actually lead to the inference of a spuriouséadir models and methods based on partial correlation behave on
tional causality relation (a feedback cycle). Forexampbe-  aggregated data.
sider Figure 3a. Here is a cause of asxz(t) provides useful For our experiments, we used Equations 2—4 to generate
information for predictingy(¢ + 1) and thereforez Granger data and we systematically varied the aggregation rate by
causey. Howevery(t) does not produce information useful sampling every 1,2,...,10 samples of the original time inde



We set the random noise variablg$t) to N (0,02) where

02 = {0.01,0.25,1,4}. We randomly set the delays and

ds to an integer between 1 and 20. We set the amplitude,

of the sine to 5 and the period to 40. In Figure 1, we show
an example of this signal for?> = 0.25. Note that we do

not claim that these synthetic data accurately describe rea
biological systems, but clearly a real biological systertl wi
have a more complicated structure making the causal learn-
ing problem even harder.

0®=025

Rate of inducing X as a cause of Z (%)

3.1 Vector Autoregressive Models
In our first experiment, we try to learn a vector autoregressi

model forZ with the following form, toz3 o eegtograe  © 0 Y
P P 4 . . . A .
Z(T) = w+z OéiX(T—i)+ZBiY(T—i)+Z’in(T—i) Figure 4: Rate of inferring( as a (spurious) cause &f
i=1 i=1 i=1 0?=0.25
(5) 100 —

That is, the value of the variablé at timeT is a linear com-
bination of past values of the variablés, Y, and Z plus
a constantv. The order of the systenp, refers to the maxi-
mum delay in the aggregated time indéxFor disaggregated
data, this model can exactly represent the generating gsoce
in Equations 2-4. This model can be represented as a dynamic
Bayes network, and if the order of the system is limited to 1,
a rough network model.

In any model inferred from the data, all of the coeffi-
cients should be zero sinegt — d) does not directly affect
z(t) for any value ofd. We generated 100 data sets for each

Rate of inducing Y as a cause of Z (%)

5 6
combination of aggregation rate and noise level according t Aggregation Rate
the procedure outlined earlier. Each data set was 500 points Fi 5 Rate of inferri of
long in the aggregated time indgxand we ignored the be- igure 5: Rate of inferring” as a cause of.

ginning points to eliminate problems with the initial vatue - .

of y and=. For each data set, we fit an vector autoregressivd€'Y Strong predictive power for each other and this caneot b
model for Z with the Matlab package ARfliSchneider and €XPlained away with mediating factors. This leads to spusio
Neumaier, 200l ARfit uses a stepwise least squares proceInks under predictive score based measures.

dure to estimate the parametarsa;, §;, andv;. : :

In Figure 4, we show the number of times ARfit inferred 3.2 Partial Correlation o
that X was a cause of for a given aggregation rate with Another common method of causal learning is to use corre-
o2 = 0.25. The results for other noise levels were similar. We lations and partial correlations to tease out the causat rel
consideredy; to represent a causal influence if its magnitudetions between variables. Correlation measures the preelict
was significantly different from zero (i.e., the three starti  Power of two variables for each other under a linear model.
deviation confidence intervalslid not include zero). Partial correlation measures predictive power of two vari-

With no aggregation (aggregation rate = 1), ARfit correctly @bles accounting for the effects of other variatjkesderson,
generates a model with only as a predictor. However, even 1984. Partial correlation analysis is widely used to deter-
a slight amount of aggregation causes an incorrect causal iffine causal effects from data (e.gGlymouret al, 1987;
ference thafX is directly related toZ. Note that the spurious DPahlhaus, 200f) and for model selection in autoregressive
causal inference is not explained by variance in paramster e Processe¢Barndorff-Nielsen and Schou, 19[3If a corre-
timates and the aggregation problem cannot be solved by sinfation between two variablesandz is explained away by a
ply obtaining larger amounts of data. third variabley (i.e, the partial correlatiop, ., = 0), then

In addition to creating spurious causal links between vari< andz are not directly related. With time series data, two
ables, aggregation also leads to known causal interaafisns  Variables should be uncorrelated for all possible timetshif
appearing. In Figure 5, we plotted the frequencycdppear-  once the effects of other variables are removed. '
ing as a cause o, i.e., 3; # 0 for at least oné. With no For the second experiment, we examined how the partial
aggregatiort” almost always appears as a cause. With aggrecorrelation of variablest and Z controlling for Y varied
gation (rate> 2), Y frequently failed to appear as a cause. With aggregation. As before, we generated 100 data sets for

What this means for causal learning is that when the dat§ach combination of aggregation rate and noise level. For

signal is aggregated, variables not directly linked canehav €ach data set we measured the sample partial correlation of
X andZ controlling forY” as follows: first, we found the lag,

2uncorrected for multiple hypotheses d., betweenX andZ that maximizes their cross-correlation



and then found the minimum partial correlation controlling autoregressive model is recovering portions of the matltema

for Y with a lag[0, d.]. In Figure 6 we show the minimum ical structure applied to interpolate the data.

partial correlations averaged across the 100 data sets with We repeated the partial correlation experiment with inter-

o? = 0.25. The results for other noise values were similar. polated data. Again, interpolation did not reduce the aggre
tion problem and the results were similar to those in Figure 6

ceos To summarize, interpolation does not mitigate the aggrega-

[N

tion problem for inference with autoregressive models af pa
0.9r . . . . Sy g
g | tial correlation. Interpolation however, introduces atdial
g” relationships between the past, present, and future vafiges
%‘”’ variable thus further confounding causal reconstruction.
£0.6[
%0.5— . . .
£04 4 Temporal Aggregation in Gene Expression
Bos Data
§°-2’ We have shown that temporal aggregation can make causal
01 inference extremely difficult as it is easy to infer spurioes

o

L lationships not present in the disaggregated data. In ¢uis s
Aggregation Rate tion, we argue that temporal aggregation is a serious pnoble
for inferring causal regulatory networks from microarrag e
Figure 6: Mean magnitude of the partial correlatiomotind  pression data. The central question is how fast are expressi
Z controlling forY". The vertical lines represent one standardjevels changing and how does this compare with the sampling
deviation of the partial correlation coefficient. rate? We argue that present methods are insufficient to recon
struct causal regulatory networks at current samplingsrate
the absence of other knowledge or experimental designs.

1 2 3

The results show that only explains the apparent corre-
lation betweenX and Z when there is no aggregation (ag-
gregation rate = 1). As soon as the signal is aggregated, t
partial correlation rises to substantial levels. This aadés an
interaction betweeX andZ which cannot be explained by Time course experiments that sample the state of gene expres
Y thus leading to a spurious causal link. sion with microarrays have slow sampling rates. Studieb suc

What this means for causal learning is that temporal agas those conducted by Spellman et[d/994 and Cho et al.
gregation destroys conditional independence relatiotén  [1999 sampled a system every 7 to 30 minutes. Khodursky et
data and thus indirectly related variables will have a depenal. [200d used uneven sampling intervals and took measure-
dency which cannot be explained away by other variablesnents at 5, 15, 30, and 60 minutes after their experiment’s

hg1 Sampling Rates and Gene Expression Levels

This leads to incorrect inference of a direct causal link. start. Likewise, Hihara et a[2001 used uneven samples at
_ 15 min., 60 min., 6 hours, and 15 hours.
3.3 Interpolation The data from these experiments indicate that current sam-

In the previous two experiments, we showed that in the aggrepling rates cannot fully capture the changes of mRNA lev-
gated time index autoregressive and partial correlatiothme els and at best allow only coarse reconstruction of the orig-
ods would frequently find spurious causal relations. Anotheinal signal. For example, Spellman et 41994 and Cho
alternative is developing models in the original time intbgx et al. [1998 measured gene expression®fcerevisiaas it
replacing the missed samples with interpolated values. Wgrogressed through the cell cycle. In total, they conducted
repeated the experiments by interpolating the aggregaited d four experiments, each corresponding to a different method
with cubic splines to reconstruct the missing data samples. of synchronizing the cellsy factor, cdc15, cdc28, and elutri-
With autoregressive models, interpolation did not help atation. The sampling varied from every 7 minutesfgctor) to
low noise valuesq? = 0.01), andX was inferred as a spu- every 30 minutes (elutriation) and covered from 14 to 24 time
rious cause ofZ in the majority of trials. At higher noise points. These are among the fastest published sampling rate
values 62 = 4), X was less likely to be inferred as a cause for microarray studies. In Figure 7, we plot the expression
(compared with no interpolation), although still subsially ~ of several genes. In part (a), we show ace2, a transcription
more frequently than if there were no aggregation. factor, and its target cInfSimonet al., 2001. In part (b), we
One significant change with interpolation is that past val-show htal and hhtl which code for histones related to chro-
ues ofZ were always inferred as causesft). Thatis, in  matin structure that are upregulated in the S phase of tthe cel
every trial with an aggregation rate greater than or equa| to cycle[Simonet al, 2001.
Z(t — d) for at least one value ef was inferred as a cause of ~ Clearly, the signal varies rapidly between adjacent time
Z(t) (with no aggregatior¥ (¢t — d) is almost never inferred points and does not instill confidence that the expression le
as a cause). Clearly, this is an incorrect inferenc@s has  els are adequately sampled. Although the large variation
no dependence on historical values/in the original equa- could be caused by measurement error, or a common noise
tions. The spurious dependence arises because integolatisource unrelated to the signal, such as a bad chip, it is also
by definition is the act of estimating the value of a variablelikely that rapid changes in expression levels are not fully
between observed points (i.e., past and future values). Theaptured and the signal is aggregated between time points.



o Y They compared their discovered network with the biolog-
05 F\ ical literature (summarized ifKhodurskyet al, 2004) and
P found that “in every case above where a tryptophan-related
operon was chosen as the best or second-best parent of an-
other tryptophan related operon, the relationship between
operons in the regulatory pathway either flows in the opposit
\ direction or is a relationship of indirect influence rathiear
o e e o direct’[Ong and Page, 20Q.1For example, the DBN learning

(a) (b) algorithms inferred that the trp operon was a probable direc

parent of trpR, which is a reversal of the known regulatory

Figure 7: Expression of genes during the cell cycl8 o€ere-  relation. It also inferred that several known siblings werg-
visiae (a) ace2 and cIn3 under cdc15 synchronization. (bulators of each other: the trp operon was found to be a parent
hht1 and htal under cdc28 synchronization. of mtr although both are believed to be regulated by trpR.

These results are consistent with temporal aggregation,

Finally, the rate of gene expression can respond abruptlyiowever other factors such as the limited number of parents
to changes in cell conditions. For example, Lu et[2003  for each operon or possible errors in assigning genes to oper
conducted studies with green fluorescent protein (GFP), a reons could also contribute to the spurious results.
porter gene product that can be observed visually and thus
making it possible to obtain near real time and continuous
measurements of gene expression. They used GFP to measfre Implications for Future Research
the activity of the araBAD operon in E. coli. An operon is
set of contiguous genes that are transcribed together. &lu et We believe microarray data alone are insufficient for causal
found that the rate of expression could abruptly increase-in  inference of time dynamics. The currently used sampling
sponse to arabinose and decrease in response to glucose. Aajes appear to be too low (e.g., once every 10-30 minutes) to
algorithm that attempts to determine causal structure svoul distinguish causality from correlation given how fast eeger
need data that detect these change points. sion can change. At a minimum then, researchers proposing

new algorithms should investigate their robustness ansisen

4.2 Effects on Reconstruction of Causal Relations tivity to temporal aggregation of the data.

Temporal aggregation may also explain the poor results in We envision three venues for addressing the problem of
causal learning reported by computational approachesctest temporal aggregation: (1) Improving the sampling rate wit
on real microarray data. Specifically, Ong and PE201],  alternative measurement technologies. (2) Incorporatatg
and in an expanded study Ong, Glasner, and #age4, from experimental designs with causal interventions. (8) U
evaluated the effectiveness of dynamic Bayesian networks f ing background knowledge in conjunction with the data sig-
inferring the regulatory structure of tryptophan metabwlin ~ nal.
E. Coliwith sparse time course data and found many apparent
spurious causal relations. 5.1 Improving Sampling Rates

In their study, they used a DBN to learn how the oper-
ons in E. Coli regulate each other. For example, the trplmproving sampling rates to adequately capture the expres-
operon would include the genes trpA, trpB, trpC, trpD, sion signal will eliminate aggregation bias, but this may be
and trpE. In their network, Ong and Page included vari-difficult to achieve with current experimental procedures f
ables that represented the activity level of 141 known opermicroarrays. The primary limitation is cost, for both the-mi
ons determined from previous wofi8algadoet al, 1999; croarrays which may be several hundred dollars each, and
Cravenet al, 2000 and the genes in each operon. The levelthe experimental apparatus to support the biological rirater
of expression of each gene is controlled by the activity ®f it als needed for each data point. However, there are other tech
operon. Each operon, inturn, is controlled by its activitydl  niques, such as inserting reporter genes coding for [EERt
at the previous time step and possibly by one other operon atl., 2004, that allow continuous anid vivo measurements of
the previous time step. Note that the activity levels of thegene expression. These methods appear very promising, but
operons are not directly observable, but are inferred floen t they have some drawbacks for genome-wide analysis. For
expression levels of the controlled genes. example, GFP is usually inserted into cells on a plasmid that

To learn causal structure, Ong and Page used data fromnacks a specific promoter and not an individual gene. Thus,
Khodursky et al[200d who examined how gene expression GFP will not capture modifications that change the rate of
levels inE. coli change during tryptophan starved and rich mRNA expression for the genes within an operon. It may
conditions. Khodursky exposéfl colito varying conditions  also be difficult to get simultaneous measurements from mul-
and measured gene expression levels at 4 time points: 5, 1Bple promoters thus making system-wide analysis impossi-
30, and 60 minutes after the experiment’s start. In theit firsble. However, one could measure a subset of genes that re-
study Ong and Pag2001 used two time series of 4 data late to a specific system of interest. For example, Kalir et
points each for tryptophan rich and starved conditionshént al. [2001] used multiple GFP reporter plasmids with differ-
second study, Ong, Glasner, and P§2@0d had an addi- ent promoters to obtain measurements of 14 operons involved
tional 4 points for tryptophan starved conditions. with the synthesis of flagella i&. coli.
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5.2 Experimental Designs with Causal that it will be necessary to design algorithms that recogniz
Interventions the limitations arising from temporal aggregation and work

Temporal aggregation makes inference difficult because th¥ithin these constraints.
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