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Temporal Aggregation Bias and Inference of Causal Regulatory Networks

Abstract

Time course experiments with microarrays have be-
gun to provide a glimpse into the dynamic behavior
of gene expression. In a typical experiment, scien-
tists use microarrays to measure the abundance of
mRNA at discrete time points after the onset of a
stimulus. Recently, there has been much work on
using these data to infer causal regulatory networks
that model how genes influence each other. How-
ever, microarray studies typically have slow sam-
pling rates that can lead to temporal aggregation
of the signal. That is, each successive sampling
point represents the sum of all signal movements
since the previous sample. In this paper, we show
that temporal aggregation can bias algorithms for
causal inference and lead them to discover spuri-
ous relations that would not be found if the signal
were sampled at a faster rate. We discuss the effects
of temporal aggregation on inference, the problems
it creates, and potential directions for solutions.

1 Introduction
An important step in understanding cellular functions is dis-
covering how genes dynamically regulate their expression in
response to external and internal cell signals. Experimental
techniques such as microarrays have begun to provide obser-
vations of dynamic behavior by reporting expression levels
on a genome-wide scale. For example, Spellman et al.[1998]
and Cho et al.[1998] measured gene expression levels during
the cell cycle ofS. cerevisiae, Khodursky et al.[2000] exam-
ined how expression levels inE. coli change during trypto-
phan starved and rich conditions, and Hihara et al.[2001]
examined the transient and long term response of gene ex-
pression in Cyanobacteria after exposure to high light levels.

It seems natural to use these data to uncover the reg-
ulatory dynamics of gene expression. Many researchers
have proposed methods to “reverse engineer” or to learn the
causal structure of the relationships between genes from time
series data[D’Haeseleeret al., 1999; Khanet al., 2002;
Murphy and Mian, 1999; Onget al., 2002; Ong and Page,
2001; van Somerenet al., 2000; 2001; Weaveret al., 1999;
Kundajeet al., 2002]. Success in this task would not only al-
low predictions of gene expression levels under similar con-

ditions, but also forecasting the effect of interventions such as
gene deletions or forced overexpression.

One issue that is often ignored is the effect of temporal ag-
gregation bias[Granger, 1969; Christiano and Eichenbaum,
1986; McCrorie, 2001; Gulasekaran and Abeysinghe, 2002]
on the inferred regulatory structures. Temporal aggregation
occurs when a process is sampled slower than the natural rate
at which it is changing. For example, a hypothetical time se-
ries that could be the expression level of a gene is shown in
Figure 1. Each sample, indicated by the squares, represents
the net change in the signal since the last sample. In partic-
ular, the measurement att = 40 is the sum or aggregate of
all signal changes sincet=30. With samples every 10 time
units, it may be possible to reconstruct the gross shape of the
signal, but knowledge of the finer structure is lost. Tempo-
ral aggregation occurs in both continuous and discrete time
processes when they are sampled too coarsely.
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Figure 1: Slow sampling leads to temporal aggregation.

In econometrics, temporal aggregation is well known to
have substantial negative effects on the inference of causal
relations in discrete time models[Granger, 1969; Christiano
and Eichenbaum, 1986; McCrorie, 2001; Gulasekaran and
Abeysinghe, 2002]. It can lead to identification of spurious
causal relations making correct inference extremely difficult.
However, many papers on inferring genetic regulatory net-
works from temporal data have ignored the potential pitfalls
of slow sampling rates. In this paper, we argue that temporal
aggregation presents serious challenges for inferring dynamic
regulatory networks from sampled microarray data.



In the next section, we show in principle how temporal ag-
gregation can lead to spurious causal relationships and dis-
cuss how this affects algorithms for inferring regulatory net-
works. We then demonstrate on synthetic data that temporal
aggregation can be a serious problem that makes inferring the
causal structure of even a simple system extremely difficult.
Next, we discuss the implications for learning from experi-
mental data sets: we consider the sampling rates from current
experiments and argue that temporal aggregation is a problem
of practical significance under these conditions. Finally,we
discuss possible approaches for dealing with temporal aggre-
gation and suggest directions for future research.

2 Temporal Aggregation and Spurious
Causality

In this section, we show how temporal aggregation can lead to
incorrect inference of causal relationships between variables
that have no direct link. To clarify the meaning of causal, we
interpret the statement “x causesy” to mean that if the vari-
ablex were explicitly controlled theny would change in re-
sponse. However, to discuss inference algorithms, we require
an operational definition, and we will use the term “cause” in
the sense of Granger[1969] and define it as follows.

Definition 1. A time seriesx(t) Granger causes
another time seriesy(t) if the prediction ofy(t+1)
is improved by using present and past values ofx
when all other information, such as the history ofy
and other variables, has been considered.

We will use lower case variables, e.g.,x(t), to represent
disaggregated signals and upper case variables likeX(T ) to
represent the aggregated signal that is recorded during sam-
pling. The time indext corresponds to the disaggregated sig-
nal, andT corresponds to the index of the aggregated signal.

Temporal aggregation can lead algorithms to infer spuri-
ous Granger causality relationships. That is, in an aggregated
signal it may appear thatX(T ) causesZ(T ) becauseX(T )
improves the prediction ofZ(T + 1) even when all other in-
formation has been considered. However, if the data were
analyzed at a finer sampling resolution, i.e., in the disaggre-
gated form, thenx(t) would not improve the prediction ofz(t+ 1) and thus would not be considered a cause.

Granger causality is directly related to notions of causality
in most frameworks used for analyzing gene expression data.
For example, consider rough network models[van Someren
et al., 2001], which represent a wide class of models with lin-
ear relationships between genes (or other chemical species).
These models have the form1Xi(T + 1) = g( JXj=1WijXj(T )) ; (1)

where a non-zeroWij means that geneXj is a direct cause
of geneXi. The functiong(�) can be any monotonic activa-
tion function such as a sigmoid. The parameters and structure

1This is slight a simplification of the equations presented byvan
Someren et al.[2001].

of these models are typically learned by minimizing a score
function based on prediction error, which often incorporates a
penalty for complexity. Thus during model search, a hypoth-
esized causal relation must improve prediction to be included
as a direct link (i.e., a non-zeroWij ).

Another common framework for inferring regulatory net-
works is based on the causal interpretation of dynamic
Bayesian networks (DBN)[Murphy and Mian, 1999; Ong
and Page, 2001; Onget al., 2002; Khanet al., 2002] learned
from data. A Bayesian network[Pearl, 1988] is a graphical
model in which nodes represent variables and the pattern of
directed links represent conditional independence relations.
A dynamic Bayesian network extends the Bayesian network
formalism to model how variables evolve over time. DBNs
can be represented as a directed graph in which each variable
is represented by a node for every time point. When inter-
preted causally, a link from variableX(t = i) to Y (t = j)
indicates thatX at time i is a direct cause ofY at time j.
Each variable has a local model that determines its value as a
probabilistic function of its causes (parents).

There are two main approaches to learning the structure
of a Bayesian network from data. The first is a score based
approach (e.g.,[Cooper and Herskovits, 1992; Heckerman,
1999; Friedmanet al., 2000]) where the goal is to find the
network that yields the best predictions of the data. This
ties into Granger causality in the same way as rough network
models: i.e., a hypothesized causal relation must improve pre-
diction when all other information has been considered. The
second method of learning is based on matching the condi-
tional independence relations observed between variablesin
the data with those entailed by the network structure (e.g.,
[Glymouret al., 1987; Saavedraet al., 2001]). Saavedra et al.
[2001] took this approach to infer regulatory relations from
yeast cell cycle data. As with scoring approaches, this also
ties to Granger causality because testing for conditional inde-
pendence is equivalent to testing if a variable has predictive
power. Under a linear model, two variables are conditionally
independent if and only if they have a zero partial correlation
[Pearl, 1998].

A useful way of understanding why spurious causal rela-
tions occur under temporal aggregation is to view these sys-
tems graphically in the same manner as a dynamic Bayesian
network. Many formalisms for inferring genetic regulatory
networks can be considered special cases of Dynamic Bayes
networks[Murphy and Mian, 1999] including Boolean net-
works [Liang et al., 1998; Akutsuet al., 1999; Somogyi
and Sniegoski, 1996], rough network models, both linear
[D’Haeseleeret al., 1999] and non-linear models[Weaveret
al., 1999], as well as the vector autoregressive models com-
monly used to analyze economic time series.

In Bayesian and dynamic Bayesian networks one can view
the graphical representation and directly determine condi-
tional independence relationships and hence whether a vari-
able is predictive of another. Two variablesA andB are con-
ditionally independent if there is an intermediate variableC
on all undirected paths between them such that

1. C does not have converging arrows (i.e., C  , !C!, C!) and C is observed;



2. C has converging arrows (!C ) and neitherC nor its
descendents are observed.

This criterion is known asd-separation[Pearl, 1998].
Figure 2a shows a dynamic Bayes net representation of a

three variable system:x(t) = f(x(t�1)), y = f(x(t�1); y(t�1)), andz = f(y(t�1); z(t�1)). For each time step, the
network has been “unrolled” and has a node representing the
value of each variable at that time point. Arrows represent
functional dependencies which may be across time steps. For
example, the value ofy(t= 2) is a function ofx(t= 1) andy(t = 1). In this figure, we have observations at every time
step. The variablez is conditionally independent ofx giveny (i.e., all paths fromx to z are blocked byy under condi-
tion 1). Hence, analyzing the data generated by this process
would let us infer thatx does not Granger causez because
they are conditionally independent giveny (x adds no predic-
tive power oncey is known) and thaty Granger causesz.
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Figure 2: Dynamic Bayes net representation of a three vari-
able system. Observed nodes are shaded; unobserved nodes
are clear. (a) Sampling at every time step. (b) Sampling with
temporal aggregation.

When the signal is aggregated, we miss observations and
we might have the situation in Figure 2b where the obser-
vations att = 2 and t = 3 are missing. With aggregation,X(T =1) is no longer conditionally independent ofZ(T =2)
given the history ofY . There are several unblocked paths
fromX toZ such asX(T =1), y(t=2), z(t=3), Z(T =2).
Thus, it will appear thatX Granger causesZ even though this
is not true in the disaggregated case. Essentially,X(T = 1)
gives information about the missed samples att=2 andt=3.
This in turn provides information about the value ofZ in the
next sample in the aggregated data atT = 2. If the latent
unobserved steps are not modeled it will appear as ifX is a
direct cause ofZ.

Aggregation will lead to correlation betweenX andZ that
cannot be explained byY . In this case, algorithms based on
predictive scoring or conditional independence relationships
will infer a direct, but spurious, link betweenX andZ. In
general, with any set of variables that are individually corre-
lated, aggregation will lead them to look like causes of each
other[McCrorie, 2001].

In bivariate systems with one-directional causality, aggre-
gation can actually lead to the inference of a spurious bidirec-
tional causality relation (a feedback cycle). For example,con-
sider Figure 3a. Herex is a cause ofy asx(t) provides useful
information for predictingy(t+1) and thereforex Granger
causesy. However,y(t) does not produce information useful

for predicting the future values ofx, soy does not Granger
causex. In Figure 3b, the aggregated variableX still pro-
vides information about future values ofY , so as beforeX is
a cause ofY . However, now that some observations are miss-
ing, Y can provide useful information for predicting future
values ofX through many paths such asY (T =1), x(t=1),x(t = 3), X(T = 2). Essentially, the observed values ofY
give information about the missed samples ofX which then
helps in predicting future values. Therefore, when analyzing
the aggregated data,Y will Granger causeX . Since it appears
thatX causesY , andY causesX , we would incorrectly infer
bidirectional causality (a feedback cycle).
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Figure 3: Dynamic Bayes net representation of a two variable
system. Observed nodes are shaded; unobserved nodes are
clear. (a) Sampling at every time step. (b) Sampling with
temporal aggregation.

In summary, aggregation causes variables not directly re-
lated to each other to have predictive power that cannot be ex-
plained away by other variables. This leads most algorithms
to infer a direct, but spurious, link between them.

3 Experiments with Synthetic Data
In this section, we describe experiments with a simple syn-
thetic system and we show that aggregation can lead to spuri-
ous inferences about causal relationships. We begin by con-
sidering the discrete-time three variable system:x(t) = Asin(Bt) + �1(t) (2)y(t) = x(t�d1) + �2(t) (3)z(t) = y(t�d2) + �3(t) (4)

We interpret this set of equations in the same manner as struc-
tural equation models[Bollen, 1989; Pearl, 1998] where the
variable on the left hand side of the equality is caused by the
variables on the right hand side. The variablex is a sinusoid
with amplitudeA, period2�=B; x causesy but the effect is
delayed by timed1; andy causesz with a delay ofd2. The
noise variables�1(t), �2(t), and�3(t) represent errors caused
by omitted factors and are uncorrelated. The variablex is not
a cause ofz and only affectsz indirectly throughy.

We will use this system to generate synthetic data and
show that spurious Granger causality relationships can occur
with different methods for causal learning. Specifically, we
will examine how methods for learning vector autoregressive
models and methods based on partial correlation behave on
aggregated data.

For our experiments, we used Equations 2–4 to generate
data and we systematically varied the aggregation rate by
sampling every 1,2,...,10 samples of the original time index.



We set the random noise variables�i(t) to N(0; �2) where�2 = f0:01; 0:25; 1; 4g. We randomly set the delaysd1 andd2 to an integer between 1 and 20. We set the amplitude,A,
of the sine to 5 and the period to 40. In Figure 1, we show
an example of this signal for�2 = 0:25. Note that we do
not claim that these synthetic data accurately describe real
biological systems, but clearly a real biological system will
have a more complicated structure making the causal learn-
ing problem even harder.

3.1 Vector Autoregressive Models
In our first experiment, we try to learn a vector autoregressive
model forZ with the following form,Z(T ) = w+ pXi=1 �iX(T�i)+ pXi=1 �iY (T�i)+ pXi=1 
iZ(T�i)

(5)
That is, the value of the variableZ at timeT is a linear com-
bination of past values of the variablesX , Y , andZ plus
a constantw. The order of the system,p, refers to the maxi-
mum delay in the aggregated time indexT . For disaggregated
data, this model can exactly represent the generating process
in Equations 2-4. This model can be represented as a dynamic
Bayes network, and if the order of the system is limited to 1,
a rough network model.

In any model inferred from the data, all of the�i coeffi-
cients should be zero sincex(t � d) does not directly affectz(t) for any value ofd. We generated 100 data sets for each
combination of aggregation rate and noise level according to
the procedure outlined earlier. Each data set was 500 points
long in the aggregated time indexT and we ignored the be-
ginning points to eliminate problems with the initial values
of y andz. For each data set, we fit an vector autoregressive
model forZ with the Matlab package ARfit[Schneider and
Neumaier, 2001]. ARfit uses a stepwise least squares proce-
dure to estimate the parametersw, �i, �i, and
i.

In Figure 4, we show the number of times ARfit inferred
thatX was a cause ofZ for a given aggregation rate with�2 = 0:25. The results for other noise levels were similar. We
considered�i to represent a causal influence if its magnitude
was significantly different from zero (i.e., the three standard
deviation confidence intervals2 did not include zero).

With no aggregation (aggregation rate = 1), ARfit correctly
generates a model with onlyY as a predictor. However, even
a slight amount of aggregation causes an incorrect causal in-
ference thatX is directly related toZ. Note that the spurious
causal inference is not explained by variance in parameter es-
timates and the aggregation problem cannot be solved by sim-
ply obtaining larger amounts of data.

In addition to creating spurious causal links between vari-
ables, aggregation also leads to known causal interactionsdis-
appearing. In Figure 5, we plotted the frequency ofY appear-
ing as a cause ofZ, i.e.,�i 6= 0 for at least onei. With no
aggregationY almost always appears as a cause. With aggre-
gation (rate� 2),Y frequently failed to appear as a cause.

What this means for causal learning is that when the data
signal is aggregated, variables not directly linked can have

2uncorrected for multiple hypotheses
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Figure 4: Rate of inferringX as a (spurious) cause ofZ.
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Figure 5: Rate of inferringY as a cause ofZ.

very strong predictive power for each other and this cannot be
explained away with mediating factors. This leads to spurious
links under predictive score based measures.

3.2 Partial Correlation
Another common method of causal learning is to use corre-
lations and partial correlations to tease out the causal rela-
tions between variables. Correlation measures the predictive
power of two variables for each other under a linear model.
Partial correlation measures predictive power of two vari-
ables accounting for the effects of other variables[Anderson,
1984]. Partial correlation analysis is widely used to deter-
mine causal effects from data (e.g.,[Glymour et al., 1987;
Dahlhaus, 2000]) and for model selection in autoregressive
processes[Barndorff-Nielsen and Schou, 1973]. If a corre-
lation between two variablesx andz is explained away by a
third variabley (i.e, the partial correlation�xz:y = 0), thenx andz are not directly related. With time series data, two
variables should be uncorrelated for all possible time shifts
once the effects of other variables are removed.

For the second experiment, we examined how the partial
correlation of variablesX andZ controlling for Y varied
with aggregation. As before, we generated 100 data sets for
each combination of aggregation rate and noise level. For
each data set we measured the sample partial correlation ofX andZ controlling forY as follows: first, we found the lag,dz, betweenX andZ that maximizes their cross-correlation



and then found the minimum partial correlation controlling
for Y with a lag[0; dz℄. In Figure 6 we show the minimum
partial correlations averaged across the 100 data sets with�2 = 0:25. The results for other noise values were similar.
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Figure 6: Mean magnitude of the partial correlation ofX andZ controlling forY . The vertical lines represent one standard
deviation of the partial correlation coefficient.

The results show thatY only explains the apparent corre-
lation betweenX andZ when there is no aggregation (ag-
gregation rate = 1). As soon as the signal is aggregated, the
partial correlation rises to substantial levels. This indicates an
interaction betweenX andZ which cannot be explained byY thus leading to a spurious causal link.

What this means for causal learning is that temporal ag-
gregation destroys conditional independence relations inthe
data and thus indirectly related variables will have a depen-
dency which cannot be explained away by other variables.
This leads to incorrect inference of a direct causal link.

3.3 Interpolation
In the previous two experiments, we showed that in the aggre-
gated time index autoregressive and partial correlation meth-
ods would frequently find spurious causal relations. Another
alternative is developing models in the original time indexby
replacing the missed samples with interpolated values. We
repeated the experiments by interpolating the aggregated data
with cubic splines to reconstruct the missing data samples.

With autoregressive models, interpolation did not help at
low noise values (�2 = 0:01), andX was inferred as a spu-
rious cause ofZ in the majority of trials. At higher noise
values (�2 = 4), X was less likely to be inferred as a cause
(compared with no interpolation), although still substantially
more frequently than if there were no aggregation.

One significant change with interpolation is that past val-
ues ofZ were always inferred as causes ofZ(t). That is, in
every trial with an aggregation rate greater than or equal to2,Z(t� d) for at least one value ofd was inferred as a cause ofZ(t) (with no aggregationZ(t � d) is almost never inferred
as a cause). Clearly, this is an incorrect inference asZ(t) has
no dependence on historical values ofZ in the original equa-
tions. The spurious dependence arises because interpolation
by definition is the act of estimating the value of a variable
between observed points (i.e., past and future values). The

autoregressive model is recovering portions of the mathemat-
ical structure applied to interpolate the data.

We repeated the partial correlation experiment with inter-
polated data. Again, interpolation did not reduce the aggrega-
tion problem and the results were similar to those in Figure 6.

To summarize, interpolation does not mitigate the aggrega-
tion problem for inference with autoregressive models or par-
tial correlation. Interpolation however, introduces additional
relationships between the past, present, and future valuesof a
variable thus further confounding causal reconstruction.

4 Temporal Aggregation in Gene Expression
Data

We have shown that temporal aggregation can make causal
inference extremely difficult as it is easy to infer spuriousre-
lationships not present in the disaggregated data. In this sec-
tion, we argue that temporal aggregation is a serious problem
for inferring causal regulatory networks from microarray ex-
pression data. The central question is how fast are expression
levels changing and how does this compare with the sampling
rate? We argue that present methods are insufficient to recon-
struct causal regulatory networks at current sampling rates in
the absence of other knowledge or experimental designs.

4.1 Sampling Rates and Gene Expression Levels

Time course experiments that sample the state of gene expres-
sion with microarrays have slow sampling rates. Studies such
as those conducted by Spellman et al.[1998] and Cho et al.
[1998] sampled a system every 7 to 30 minutes. Khodursky et
al. [2000] used uneven sampling intervals and took measure-
ments at 5, 15, 30, and 60 minutes after their experiment’s
start. Likewise, Hihara et al.[2001] used uneven samples at
15 min., 60 min., 6 hours, and 15 hours.

The data from these experiments indicate that current sam-
pling rates cannot fully capture the changes of mRNA lev-
els and at best allow only coarse reconstruction of the orig-
inal signal. For example, Spellman et al.[1998] and Cho
et al. [1998] measured gene expression ofS. cerevisiaeas it
progressed through the cell cycle. In total, they conducted
four experiments, each corresponding to a different method
of synchronizing the cells:� factor, cdc15, cdc28, and elutri-
ation. The sampling varied from every 7 minutes (� factor) to
every 30 minutes (elutriation) and covered from 14 to 24 time
points. These are among the fastest published sampling rates
for microarray studies. In Figure 7, we plot the expression
of several genes. In part (a), we show ace2, a transcription
factor, and its target cln3[Simonet al., 2001]. In part (b), we
show hta1 and hht1 which code for histones related to chro-
matin structure that are upregulated in the S phase of the cell
cycle[Simonet al., 2001].

Clearly, the signal varies rapidly between adjacent time
points and does not instill confidence that the expression lev-
els are adequately sampled. Although the large variation
could be caused by measurement error, or a common noise
source unrelated to the signal, such as a bad chip, it is also
likely that rapid changes in expression levels are not fully
captured and the signal is aggregated between time points.
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Figure 7: Expression of genes during the cell cycle ofS. Cere-
visiae. (a) ace2 and cln3 under cdc15 synchronization. (b)
hht1 and hta1 under cdc28 synchronization.

Finally, the rate of gene expression can respond abruptly
to changes in cell conditions. For example, Lu et al.[2002]
conducted studies with green fluorescent protein (GFP), a re-
porter gene product that can be observed visually and thus
making it possible to obtain near real time and continuous
measurements of gene expression. They used GFP to measure
the activity of the araBAD operon in E. coli. An operon is
set of contiguous genes that are transcribed together. Lu etal.
found that the rate of expression could abruptly increase inre-
sponse to arabinose and decrease in response to glucose. Any
algorithm that attempts to determine causal structure would
need data that detect these change points.

4.2 Effects on Reconstruction of Causal Relations
Temporal aggregation may also explain the poor results in
causal learning reported by computational approaches tested
on real microarray data. Specifically, Ong and Page[2001],
and in an expanded study Ong, Glasner, and Page[2002],
evaluated the effectiveness of dynamic Bayesian networks for
inferring the regulatory structure of tryptophan metabolism in
E. Coliwith sparse time course data and found many apparent
spurious causal relations.

In their study, they used a DBN to learn how the oper-
ons in E. Coli regulate each other. For example, the trp
operon would include the genes trpA, trpB, trpC, trpD,
and trpE. In their network, Ong and Page included vari-
ables that represented the activity level of 141 known oper-
ons determined from previous work[Salgadoet al., 1999;
Cravenet al., 2000] and the genes in each operon. The level
of expression of each gene is controlled by the activity of its
operon. Each operon, in turn, is controlled by its activity level
at the previous time step and possibly by one other operon at
the previous time step. Note that the activity levels of the
operons are not directly observable, but are inferred from the
expression levels of the controlled genes.

To learn causal structure, Ong and Page used data from
Khodursky et al.[2000] who examined how gene expression
levels in E. coli change during tryptophan starved and rich
conditions. Khodursky exposedE. coli to varying conditions
and measured gene expression levels at 4 time points: 5, 15,
30, and 60 minutes after the experiment’s start. In their first
study Ong and Page[2001] used two time series of 4 data
points each for tryptophan rich and starved conditions. In the
second study, Ong, Glasner, and Page[2002] had an addi-
tional 4 points for tryptophan starved conditions.

They compared their discovered network with the biolog-
ical literature (summarized in[Khodurskyet al., 2000]) and
found that “in every case above where a tryptophan-related
operon was chosen as the best or second-best parent of an-
other tryptophan related operon, the relationship betweenthe
operons in the regulatory pathway either flows in the opposite
direction or is a relationship of indirect influence rather than
direct”[Ong and Page, 2001]. For example, the DBN learning
algorithms inferred that the trp operon was a probable direct
parent of trpR, which is a reversal of the known regulatory
relation. It also inferred that several known siblings werereg-
ulators of each other: the trp operon was found to be a parent
of mtr although both are believed to be regulated by trpR.

These results are consistent with temporal aggregation,
however other factors such as the limited number of parents
for each operon or possible errors in assigning genes to oper-
ons could also contribute to the spurious results.

5 Implications for Future Research

We believe microarray data alone are insufficient for causal
inference of time dynamics. The currently used sampling
rates appear to be too low (e.g., once every 10-30 minutes) to
distinguish causality from correlation given how fast expres-
sion can change. At a minimum then, researchers proposing
new algorithms should investigate their robustness and sensi-
tivity to temporal aggregation of the data.

We envision three venues for addressing the problem of
temporal aggregation: (1) Improving the sampling rates with
alternative measurement technologies. (2) Incorporatingdata
from experimental designs with causal interventions. (3) Us-
ing background knowledge in conjunction with the data sig-
nal.

5.1 Improving Sampling Rates

Improving sampling rates to adequately capture the expres-
sion signal will eliminate aggregation bias, but this may be
difficult to achieve with current experimental procedures for
microarrays. The primary limitation is cost, for both the mi-
croarrays which may be several hundred dollars each, and
the experimental apparatus to support the biological materi-
als needed for each data point. However, there are other tech-
niques, such as inserting reporter genes coding for GFP[Lu et
al., 2002], that allow continuous andin vivomeasurements of
gene expression. These methods appear very promising, but
they have some drawbacks for genome-wide analysis. For
example, GFP is usually inserted into cells on a plasmid that
tracks a specific promoter and not an individual gene. Thus,
GFP will not capture modifications that change the rate of
mRNA expression for the genes within an operon. It may
also be difficult to get simultaneous measurements from mul-
tiple promoters thus making system-wide analysis impossi-
ble. However, one could measure a subset of genes that re-
late to a specific system of interest. For example, Kalir et
al. [2001] used multiple GFP reporter plasmids with differ-
ent promoters to obtain measurements of 14 operons involved
with the synthesis of flagella inE. coli.



5.2 Experimental Designs with Causal
Interventions

Temporal aggregation makes inference difficult because the
aggregated signal does not adequately capture fluctuations
from noise terms that are essential for explaining away the
predictive power of indirectly related variables. However, an-
other promising approach is to use data from experimental
designs with causal interventions which may not require fine
sampling to determine causal effects. For example, Kalir et
al. [2001] used timing studies after a perturbation to partially
elucidate the causal ordering of gene regulation in the con-
struction of flagella. Stationary phaseE.coli were placed into
a fresh medium which stimulated growth and Kalir et al. used
statistics from the rise time of fluorescence to determine the
ordering of promoters in gene regulation. Although this did
not completely tease apart the causal structure of regulation,
it did provide a partial order on the regulation that can occur.
Vance, Arkin, and Ross[2002] took a similar approach to
determine the causal connectivity of reaction networks from
pulses in the concentration of chemical species.

5.3 Using Background Knowledge
Using background knowledge in conjunction with the data
signal can reduce the chance of inferring spurious causal re-
lationships by constraining inference algorithms. For exam-
ple, Ong, Glasner, and Page[2002] in their experiment with
regulation inE. coli (described Section 4.2) used the operon
structure to eliminate “ ‘useless’ arcs between genes in the
same operon”. Genes within an operon are typically highly
correlated as they are controlled with a common promoter,
but they do not generally regulate each other. Inference from
aggregated time series measurements would then likely result
in many spurious links between these genes, but enforcing the
constraint that genes in the same operon cannot regulate each
other eliminates this problem.

Another situation where background knowledge may help
reduce spurious inferences is when a causal ordering on vari-
ables is known. For instance, inE. coli the order in which
genes are expressed to construct flagella is partially known
[Kalir et al., 2001]. If it is known thatY comes beforeZ,
we do not need to test ifZ is a possible parent ofY . This
prevents us from inferring thatZ is a cause ofY even if the
aggregated data indicates that this is the case.

6 Conclusions
In this paper, we discussed temporal aggregation which oc-
curs when a signal is sampled too coarsely, and how it can
bias causal inference. We showed in principle that aggrega-
tion could lead to unexplainable correlations between indi-
rectly connected variables leading algorithms to infer a di-
rect but spurious causal relationship. We demonstrated with
a simple synthetic system, that even when the data is gener-
ated from a model within the representational class that the
inference algorithm is designed to recover, aggregation can
cause spurious causal relations. Interpolation does not miti-
gate this problem and can make it even worse by introducing
additional correlations that do not exist in the true system.
In future work on inferring regulatory networks, we believe

that it will be necessary to design algorithms that recognize
the limitations arising from temporal aggregation and work
within these constraints.
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