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t. We address the task of indu
ing biologi
al models from time-series data on gene expressions and ba
kground knowledge about 
an-didate biologi
al pro
esses. We des
ribe IPM, an algorithm for indu
ingquantitative pro
ess models from su
h input, and we demonstrate itsuse on data and knowledge about the regulation of photosynthesis inCyanoba
teria. We also report experiments with syntheti
 data on simi-lar problems that study the number of samples needed to �nd the 
orre
tmodel parameters. In 
losing, we dis
uss related work on modeling generegulation and suggest dire
tions for future resear
h in this area.1. Introdu
tion and Ba
kgroundMi
robiology aims to understand the me
hanisms by whi
h organisms survive,grow, and reprodu
e. Like other s
ien
es, it 
olle
ts observations, identi�es re-
urring phenomena, and attempts to explain these phenomena using existingknowledge. Biologists have made great strides in explaining metabolism, energystorage, and related me
hanisms in terms of 
hemi
al rea
tions among proteinsand other mole
ules. However, as yet they have only a limited understandingof how these me
hanisms are regulated so that they be
ome more or less a
tiveunder di�erent 
onditions.In this paper, we des
ribe a 
omputational approa
h to elu
idating su
hregulatory models. We take advantage of the relatively new te
hnology of 
DNAmi
roarrays, whi
h let one measure simultaneously the expression levels of manygenes. If one presents the organism with some external stimulus, su
h as light,and takes samples over time, then one 
an obtain time-series data about the
ovariation of expression for many di�erent genes, whi
h should provide hintsabout their regulation.As we re
ount later, the 
omputational biology literature has reported a va-riety of formalisms for representing regulatory models and methods for indu
ingthem from data. What most approa
hes la
k is some way to en
ode existingbiologi
al knowledge and using it to 
onstrain sear
h through the model spa
e.As a result, models generated by these methods make little 
onta
t with domain




on
epts, whi
h makes them less 
omprehensible to biologists. In 
ontrast, theapproa
h we report responds dire
tly to this 
hallenge.We begin by presenting a motivating problem { the regulation of photo-synthesis { and reviewing some experimental results in this area that demandexplanation. After this, we propose a formalism for stating quantitative modelsin this area, whi
h we illustrate with a spe
i�
 example. Next we present a re-lated formalism for en
oding ba
kground knowledge about biologi
al pro
esses,then turn to a system for indu
ing pro
ess models from this domain knowledgeand time-series data. We demonstrate this method's behavior on both naturaldata from the experiment, to show its relevan
e, and syntheti
 data, to mea-sure its robustness. We 
on
lude with a review of other approa
hes to inferringregulatory models and proposals for future work on this topi
.2. A Motivating Problem: Photosynthesis RegulationWithout doubt, photosynthesis is one of the most important me
hanisms inthe operation of the Earth e
osystem. This pro
ess harnesses light energy toprodu
e plant growth, generates the oxygen that we breathe, and removes the
arbon dioxide that we produ
e through natural and arti�
ial means. Thus, adeeper understanding of photosynthesis, and the fa
tors that in
uen
e it, wouldimprove our ability to explain and predi
t 
ru
ial 
hanges in our environment.Photosynthesis is a 
omplex 
ombination of rea
tions that are 
atalyzed bya system of protein 
omplexes, most of whi
h are bound into the thylakoidmembrane of the 
hloroplasts of higher plants. There are two sets of rea
tions,referred to as `light' and `dark'. The former, whi
h operate only in the light, useabsorbed light energy to produ
e a variety of bio
hemi
al spe
ies, whi
h are inturn used by the remainder of the 
ell as energy. The `dark' rea
tions, whi
h donot require light, use some of the energy produ
ed by light rea
tions to 
ombineCO2 mole
ules into sugars, whi
h are then either used to produ
e 
ellular energyand other produ
ts or stored for later utilization.One side e�e
t of the normal photosyntheti
 rea
tion is the 
reation of `rea
-tive oxygen spe
ies' (ROS), whi
h 
an be very damaging to 
ellular 
omponents,espe
ially those in the photosyntheti
 apparatus. Cells appear to have systemsthat aim to minimize 
reation of ROS, that `
lean up' or neutralize ROS, and forrepairing damage. For these and other reasons, the 
omplex network of me
h-anisms for energy produ
tion, storage, and utilization in 
ells in
ludes manyregulatory 
ontrols.Although the bio
hemi
al rea
tions involved in photosynthesis, and the gen-eral shape of its regulation, are fairly well understood, the details of regulatorysignals and me
hanisms remain obs
ure. Biologists know about a variety of ab-stra
t regulatory me
hanisms that 
ould a�e
t photosyntheti
 a
tivity, su
h assignal transdu
tion and trans
ription, but they are un
ertain about whi
h onesare responsible and the detailed forms in whi
h they o

ur. For instan
e, theprotein produ
ed during translation is known to degrade, but it remains un
learwhether this takes pla
e at a 
onstant rate or whether it is regulated.



To further elu
idate the details of photosynthesis regulation, Labiosa et al.(2003) 
arried out an experiment with Cyanoba
teria, a uni
ellular organism,under simulated naturalisti
 
onditions. In parti
ular, they 
onstru
ted a 
y
lo-stat that repli
ated the light variations that o

ur with the 24-hour day-night
y
le.3 Samples of the organism were 
olle
ted at times equivalent to 2 AM, 8AM, 10 AM, noon, 2 PM, 6 PM, and midnight. These were analyzed using 
DNAmi
roarray te
hnology to measure mRNA levels for 3000 genes in ea
h sample.Figure 1 shows the temporal behavior of the 17 genes that were most highly
orrelated with light intensity. Inspe
tion revealed that ea
h had been impli
atedin photosynthesis previously, whi
h makes biologi
al sense. However, the shapeof their 
urves (given in logarithmi
 s
ale) is somewhat unexpe
ted. Expressionlevels are low at night, in
rease rapidly when the sun rises, and de
rease againafter sunset, but they also exhibit a substantial drop around noon. An adequatemodel of these genes' regulation should a

ount for all of these regularities in atleast qualitative terms, and preferably in quantitative ones as well.Moreover, in addition to reprodu
ing the shape of these expression 
urves,an a

eptable model of gene regulation should also be 
onsistent with existingknowledge about both photosynthesis and more general biologi
al me
hanisms.These requirements set the stage for the 
oming se
tions, in whi
h we 
onsiderthe representation, simulation, and indu
tion of su
h models for gene regulation.3. Representing Dynami
al Models of Gene RegulationBefore we 
an assist biologists in 
onstru
ting models of gene regulation, we mustsele
t some formalism in whi
h to represent 
andidate models. Be
ause biologydoes not have a tradition, like physi
s and 
hemistry, of formal notations, mostwork along these lines has borrowed frameworks from other �elds like 
omputers
ien
e, ele
tri
al engineering, and physi
s.Only some of these formalisms 
an 
hara
terize the behavior of dynami
alsystems that 
hange over time. These in
lude Boolean networks (e.g., Shmule-vi
h et al., 2002), dynami
 Bayesian networks (e.g., Imoto et al., 2002), di�er-ential equations (e.g., Tomita et al., 1999), and Petri networks (e.g., Matsunoet al., 2002). Despite their representational power, these frameworks make lim-ited 
onta
t with biologists' established 
on
epts, though some fare better alongthis dimension than others.The problem is that biologists' papers and talks repeatedly make informalreferen
e to pro
esses that operate within living organisms. Resear
h in arti�-
ial intelligen
e has produ
ed formalisms that 
ast models as sets of intera
tingpro
esses to explain dynami
al behavior, with Forbus' (1984) qualitative pro
esstheory being a notable example. This o�ers a notation for biologi
al me
hanisms,but it fo
uses on qualitative simulations that predi
t only the dire
tions in whi
h
ontinuous variables 
hange over time.3 This devi
e was built, and the study was run, in the Carnegie Institute of Washing-ton's Department of Plant Biology.
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Fig. 1. Observed expression levels of 14 Cyanoba
teria genes over a 24-hour period.We have developed a hybrid representation that embeds numeri
 equationswithin the qualitative stru
tures provided by Forbus' approa
h. A model 
on-sists of a set of biologi
al pro
esses, ea
h of whi
h des
ribes the quantitativerelations among two or more variables that are 
ast as one or more algebrai
 ordi�erential equations. Ea
h pro
ess may also in
lude arithmeti
 
onditions onquantitative variables that spe
ify when it is a
tive. Su
h a quantitative pro-
ess model must refer to some measurable variables, but it may also in
ludeunobservable, theoreti
al terms.For example, Table 1 shows one possible model of the expression phenomenafrom Figure 1. This spe
i�es six quantitative variables { light intensity, energyin the system (redox), rate of mRNA trans
ription, and the 
on
entrations ofmRNA, photosyntheti
 protein, and rea
tive oxygen spe
ies (ROS). Only two ofthese variables { light and mRNA { are dire
tly observable, with the remainderbeing theoreti
al terms that are biologi
ally plausible.The model in
orporates seven distin
t pro
esses. Photosynthesis 
ombineslight with proteins to produ
e energy or redox, but it also in
reases ROS as aside e�e
t. The photo translation pro
ess in
reases the 
on
entration of photo-syntheti
 proteins, with the in
rease depending on the 
on
entration of mRNA.However, another pro
ess, protein degradation ros, leads to a redu
tion in bothprotein and ROS 
on
entration. A fourth pro
ess, mRNA trans
ription, in
reasesthe mRNA 
on
entration by an amount 
ontrolled by the variable trans
rip-tion rate, whi
h is in turn in
uen
ed by two other pro
esses. The �rst, regu-late light, states that the rate is dire
tly proportional to light, whereas the otherpro
ess, regulate redox, states that it is inversely proportional to redox, whi
his itself redu
ed. A �nal pro
ess, mRNA degradation, states that the mRNA
on
entration de
reases by a �xed proportion on every time step.



Table 1. A quantitative pro
ess model for photosyntheti
 regulation.model Photo Reg;variables light;mRNA; photo protein;ROS; redox; trans
ription rate;observables light;mRNA;pro
ess photosynthesis;equations d[redox; t; 1℄ = 0:01 � light � photo protein;d[ros; t; 1℄ = 0:02 � light � photo protein;pro
ess photo translation;equations d[photo protein; t; 1℄ = 0:5 �mRNA;pro
ess protein degradation ros;
onditions photo protein > 0;equations d[photo protein; t; 1℄ = �0:01 �ROS;d[ROS; t; 1℄ = �0:01 � ROS;pro
ess mRNA trans
ription;equations d[mRNA; t; 1℄ = trans
ription rate;pro
ess regulate light;equations trans
ription rate = 0:8 � light;pro
ess regulate redox;
onditions redox > 0;equations trans
ription rate = �0:5 � redox;d[redox; t; 1℄ = �0:03 � redox;pro
ess mRNA degradation;equations d[mRNA; t; 1℄ = �0:01 �mRNA;Like any model, this example makes important simplifying assumptions. Forinstan
e, it refers to a single, aggregate measure of mRNA rather than to theamounts for individual genes, and does the same for photo protein and tran-s
ription rate. Photosynthesis is treated as a single pro
ess, rather than as the
omplex set of a
tivities that we know it involves, and the pro
esses of trans
rip-tion, degradation, and trans
ription regulation are abstra
ted in a similar way.Also, the 
omponent pro
esses are all plausible biologi
ally, but some are moreso than others. For instan
e, we know that trans
ription is regulated and thatboth protein and mRNA 
an degrade, but not the details of these a
tivities.Nevertheless, given su
h a quantitative pro
ess model, we 
an simulate itto make predi
tions about how variables will 
hange over time. This involves
ompiling the pro
ess notation into a set of linked algebrai
 and di�erentialequations, giving them initial values for some variables, and invoking numeri
alapproximation te
hniques to 
al
ulate values for ea
h su

essive time step. Theonly 
ompli
ation beyond established methods is that, be
ause 
onditions 
anbe
ome true or false, one may need to use di�erent equations on ea
h time step.Otherwise, the simulation pro
ess is relatively straightforward. However, �ndinga model that 
an generate the observed traje
tory is a diÆ
ult task; in fa
t, themodel in Table 1 provides a poor �t to the data. We would like 
omputationaltools that 
an sear
h the spa
e of model stru
tures and their parameters, ideallytaking advantage of biologi
al domain knowledge, to whi
h we now turn.



Table 2. Seven generi
 pro
esses for gene regulation.generi
 pro
ess photosynthesis;variables Lflightg; Pfphoto proteing; Rfredoxg; Sfrosg;parameters alpha [0; 1℄; beta [0; 1℄;equations d[R; t; 1℄ = alpha � L � P ;d[S; t; 1℄ = beta � L � P ;generi
 pro
ess automati
 degradation;variables Cf
on
entrationg;parameters gamma [0; 1℄;
onditions C > 0;equations d[C; t; 1℄ = �1 � gamma � C;generi
 pro
ess 
ontrolled degradation;variables Df
on
entrationg; Ef
on
entrationg;parameters delta [0; 1℄;
onditions D > 0; E > 0;equations d[D; t; 1℄ = �1 � delta �E;d[E; t; 1℄ = �1 � delta � E;generi
 pro
ess translation; generi
 pro
ess trans
ription;variables Pfphoto proteing;MfmRNAg; variables MfmRNAg; Rfrateg;parameters rho [0; 10℄; equations d[M; t; 1℄ = R;equations d[P; t; 1℄ = rho �M ;generi
 pro
ess regulate one; generi
 pro
ess regulate two;variables Rfrateg; Sfsignalg; variables Rfrateg; Sfsignalg;parameters mu [�1; 1℄; parameters nu [�1; 1℄; pi [0; 1℄;equations R = mu � S; equations R = nu � S;d[S; t; 1℄ = �1 � pi � S;4. En
oding Biologi
al Ba
kground KnowledgeA key 
hara
teristi
 of model just des
ribed was that it is explanatory . An ex-planation moves beyond a simple des
ription of observations to a

ount for themin terms of other, more basi
 stru
tures or pro
esses. The explanatory referentsare typi
ally unobservable in the 
urrent situation, but they make 
onta
t withknown, familiar me
hanisms. The automated 
onstru
tion of su
h explanatorymodels requires that we represent the ba
kground knowledge to whi
h they refer.To this end, we utilize the notion of generi
 pro
esses . These are similar inspirit to the spe
i�
 pro
esses that appear in a model, in that they spe
ify equa-tions and a
tivation 
onditions, but they do not 
ommit to parti
ular variablesor parameter values. Table 2 presents seven generi
 pro
esses for the domain ofplant bio
hemistry, most of whi
h have dire
t analogs in Table 1.Note that ea
h generi
 pro
ess in
ludes a set of generi
 variables, along withtype information that 
onstrains the spe
i�
 variables against whi
h they 
anmat
h. Ea
h stru
ture also in
ludes the names of parameters that appear in
onditions or equations, along with upper and lower bounds on their values. Forinstan
e, the generi
 pro
ess regulate two involves one variable, R, that must be



a rate, and another, S, that must be a signal (say light, redox, or ROS), and itrefers to two parameters, one of whi
h (pi) must fall between zero and one.Some generi
 pro
esses are more spe
i�
 than others. For example, those forphotosynthesis, trans
ription, and translation e�e
tively refer to spe
i�
 vari-ables, and are generi
 only in not 
ommitting to parameter values. Others, likethose for degradation and regulation, refer to 
lasses of variables and 
an beinstantiated in di�erent ways. This lets us en
ode un
ertainty about whi
h vari-ables are a
tually involved in these pro
esses, but still supports the 
onstrainedsear
h for spe
i�
 models._Zytkow (1990) has distinguished between general laws or pro
esses that o

urin a domain and models that hold for a spe
i�
 situation, with models being 
astin terms of known laws or pro
esses. For example, Ohm's and Kir
ho�'s lawsdes
ribe general knowledge about the behavior of ele
tri
 
ir
uits, but they mustbe 
ombined in parti
ular ways to 
hara
terize a spe
i�
 devi
e. Our generi
 pro-
esses play the role of general biologi
al laws, and we 
an use them to 
onstru
tspe
i�
 models of gene regulation.5. Indu
ing Dynami
al Models from Time-Series DataTaken together, time-series data about gene expressions and generi
 biologi
alpro
esses provide us with the raw material to 
onstru
t regulatory models. Thistask is an instan
e of what we have 
alled indu
tive pro
ess modeling (Langleyet al., in press). The goal of pro
ess model indu
tion is to generate a spe
i�
pro
ess model, like the one in Table 1, that makes referen
e to known generi
pro
esses and that �ts the traje
tories of observed variables. Su
h a model isexplanatory, rather than purely des
riptive, be
ause it refers to unobserved vari-ables and pro
esses. Moreover, we hold that su
h a pro
ess model will be under-standable to domain s
ientists be
ause it is 
ast in terms of familiar 
on
epts.In our 
urrent problem, the data 
on
ern the expression levels of various genesover time, as shown in Figure 1, along with the asso
iated light intensities. Theba
kground knowledge in
ludes plausible forms for pro
esses like photosynthe-sis, trans
ription, translation, and degradation, like those in Table 2, in
ludingtype 
onstraints on their variables and bounds on their parameters. The targetis a model like that in Table 1, whi
h 
ontains variants of these generi
 pro
essesthat 
ommit to spe
i�
 variables and their parameter values. Ideally, this spe-
i�
 model should generate traje
tories that mat
h the training data and makea

urate predi
tions about future values.We have implemented an algorithm, IPM, that de
omposes the task of in-du
tive pro
ess modeling into two subproblems. The �rst stage involves a 
on-strained exhaustive sear
h through the spa
e of model stru
tures. To this end,the system �nds all ways to instantiate the generi
 pro
esses with known spe-
i�
 variables that are 
onsistent with the type 
onstraints. Some 24 instantiatedpro
esses are generated in this manner from the ba
kground knowledge aboutphotosynthesis and gene regulation presented earlier. IPM then 
omposes theseinstantiated 
omponents in all possible ways that involve less than N pro
esses,



Table 3. Model for photosyntheti
 regulation and initial values indu
ed by IPM.model Photo Reg;variables light;mRNA; photo protein;ROS; redox; trans
ription rate;observables light;mRNA;initials mRNA = 0:253; photo protein = 0:836; ROS = 0:059; redox = 0:361;pro
ess photosynthesis;equations d[redox; t; 1℄ = 0:0155 � light � photo protein;d[ros; t; 1℄ = 0:019 � light � photo protein;pro
ess photo translation;equations d[photo protein; t; 1℄ = 7:539 �mRNA;pro
ess automati
 degradation1;
onditions photo protein > 0;equations d[photo protein; t; 1℄ = �1 � 1:905 � photo protein;pro
ess 
ontrolled degradation1;
onditions redox > 0; ros > 0;equations d[redox; t; 1℄ = �1 � 0:0003 � ros;d[ros; t; 1℄ = �1 � 0:0003 � ros;pro
ess mRNA trans
ription;equations d[mRNA; t; 1℄ = trans
ription rate;pro
ess regulate one 1;equations trans
ription rate = 0:938 � light;pro
ess regulate two 2;equations trans
ription rate = 1:203 � redox;d[redox; t; 1℄ = �1 � 0:0002 � redox;removing 
andidates that omit any of the observed variables. For example, whenN = 7, this s
heme produ
es 288 model stru
tures.Ea
h su
h 
andidate spe
i�es the model's variables and their 
ausal relation-ships, but it does not in
lude the values for the parameters. Thus, IPM's se
ondstage 
arries out a gradient des
ent sear
h through the parameter spa
e de�nedby ea
h model stru
ture. This sear
h is bounded by the 
onstraints ea
h generi
pro
ess pla
es on its parameter values, giving a hyper
ube within whi
h a

ept-able values 
an fall. Earlier versions of IPM invoked a version of the Newtonmethod to �t parameters, 
ombined with multiple restarts to mitigate problemswith lo
al optima. The 
urrent implementation instead utilizes a se
ond-ordergradient-des
ent method that has been des
ribed by Saito and Nakano (1997).Re
all that the example model in Figure 2 in
ludes a number of unobservedvariables, some of whi
h o

ur in the left-hand sides of di�erential equations. Thismeans that, in addition to �nding values for the parameters in ea
h pro
ess, IPMmust also infer the initial values for ea
h su
h variable. To this end, the systemsimply treats these as additional parameters that must be �t by the gradientdes
ent me
hanism. Elsewhere (Langley et al., in press) we have evaluated this
apability on syntheti
 data, and also shown that one 
an use a similar approa
hto indu
e the thresholds that appear in 
onditions on pro
esses.
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Fig. 2. Predi
ted and observed levels of average gene expression over a 24-hour period.To demonstrate that IPM 
an produ
e reasonable models of the pro
essesthat govern gene regulation, we provided it with the ba
kground knowledge fromTable 2 and time-series data from the 1
y
lostat study. However, be
ause we hadonly seven samples, we did not attempt to 
onstru
t a model that predi
ted sep-arate expression levels for ea
h of the 14 genes. Instead, we averaged the resultsfor these genes at ea
h time step and use the resulting means as the trainingset for model indu
tion. We also told the system that 
andidate models shouldin
lude the observable variables light and mRNA, the unobservable variablesphoto protein, ROS, redox, and trans
ription rate, and the types for ea
h one.The pro
ess model that IPM generated from these data, shown in Table 3,has similarities and di�eren
es from the model presented earlier in Table 1. Thenew model in
ludes pro
esses for photosynthesis, translation, and trans
ription,but this is hardly surprising, sin
e their variable types are so 
onstrained as toalmost demand their in
lusion. More interesting was the in
lusion of automati
degradation for photosyntheti
 proteins, degradation for redox 
ontolled by ROS,and the absen
e of any degradation pro
ess for mRNA. Both models in
ludedtwo distin
t pro
esses for regulating trans
ription rate, one involving light andthe other relying on redox.Figure 2 shows the traje
tories that this model predi
ts over a 24-hour period,along with the average expression levels 
omputed from the genes measured inthe 
y
lostat experiment. The indu
ed model reprodu
es the general M shapeobserved in the data, and the quantitative �t is quite good. The two 
urvesappear to diverge in some pla
es, but this is be
ause the model makes predi
tionsthroughout the day, whereas su

essive observations are simply 
onne
ted bystraight lines. To determine whether the predi
tions around 6 AM and 10 PMare a

urate, we must await further samples from the biologists.
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Fig. 3. Distan
e between indu
ed and target parameters as a fun
tion of sampling rate.Although the pro
ess model indu
ed by IPM provides a reasonable �t to theobserved expression levels, we 
annot determine its 
orre
tness be
ause biolo-gists are still un
ertain about su
h issues themselves. However, we 
an 
arry outsimilar runs on analogous data generated from known models to estimate the sys-tem's ability to infer the 
orre
t 
andidate. To this end, we assumed the indu
edmodel had the 
orre
t stru
ture and used it to generate ten sets of syntheti
time-series data, based on di�erent model parameters, over the same 24-hourperiod, and with the same light levels, as the natural data. Sin
e mi
roarraysare quite noisy, we added ten per
ent noise to ea
h of these data sets.A key question is whether the sampling rate used in the a
tual 
y
lostat study(seven samples over 24 hours) is high enough to let IPM indu
e the 
orre
t model,so we systemati
ally varied the number of samples (from 3 to 24) provided tothe system. Ideally, we would let the system sear
h through the spa
e of 288model stru
tures for ea
h sampling rate and training set, but this would take animpra
ti
al amount of 
omputer time. Instead, we provided the 
orre
t modelstru
ture and ran the parameter-�tting model instead, on the assumption that,if this �nds the 
orre
t parameter values, then IPM 
ould �nd the 
orre
t modelstru
ture, sin
e it 
arries out exhaustive sear
h through the stru
ture spa
e.Our dependent measure was the Eu
lidean di�eren
e between the targetparameters and those found by the system, averaged over all parameters in themodel and a
ross runs on the ten di�erent training sets. Be
ause we knew thetarget values and 
ould measure the parametri
 a

ura
y dire
tly, we did notneed a separate test set. Figure 3 shows the distan
es as a fun
tion of the numberof samples. As one might expe
t, the average distan
e de
reases as more databe
ome available, but the distan
e is still dropping at one sample per hour. Thissuggests that we 
annot treat the model found on the a
tual data as espe
iallyreliable, and that future experiments on photosynthesis regulation should 
olle
tmore samples to make the indu
tion task tra
table for this biologi
al system.



6. Related and Future Resear
hOur approa
h to 
omputational dis
overy has 
lose 
onne
tions with other re-
ent e�orts on the indu
tion of di�erential equation models by Todorovski andD�zeroski (1997), Bradley et al. (1999), and Koza et al. (2001), whi
h also takeadvantage of domain knowledge to 
onstru
t models of dynami
al systems. How-ever, we are fo
used on modeling gene regulation, so we will limit our 
ommentsto this area. Mu
h of the resear
h on this topi
 deals with stati
 models, andthus 
annot a

ount for how gene expressions 
hange over time. The remainingwork di�ers from our own by using dis
rete variables or making little 
onta
twith existing knowledge. For instan
e, Ong et al. (2002) invoke knowledge aboutpromoters to 
onstrain the stru
ture of a dynami
 Bayesian network, but theydis
retize their data. Imoto et al.'s (2002) method indu
es a quantitative dynam-i
al model, but it makes little use of biologi
al knowledge. Resear
h on Booleannetwork models (e.g., Shmulevi
h et al., 2002) su�ers from both drawba
ks.Our own previous resear
h on gene regulation (Bay et al., in press) has 
om-bined quantitative 
ausal relations with ba
kground knowledge in the form ofan initial model. However, like most work in this area, our representation ofbiologi
al pro
esses was quite simplisti
 (in this 
ase, linear relations) and madelimited 
onta
t with general biologi
al 
on
epts, su
h as the distin
tion amongtranslation, trans
ription, and degradation. On the other hand, our 
urrent ap-proa
h models regulation only at the aggregate level, whereas most work in thisarea des
ribes intera
tions among spe
i�
 genes.Although our initial results in this domain are en
ouraging, it is 
lear thatmore work remains ahead. One obvious dire
tion for future resear
h would de-velop analogous pro
ess models for other fa
ets of Cyanoba
teria, su
h as energystorage and utilization, in whi
h spe
i�
 genes have been impli
ated. This wouldrequire the 
reation of generi
 pro
esses for these me
hanisms and their use inmodeling the expression levels of these genes. We should also expand our studieswith syntheti
 data to better understand how our methods s
ale to settings withdi�erent noise levels, more generi
 pro
esses, and more 
omplex target models.In the longer term, we should extend our approa
h to indu
e models thatexplain the expressions of individual genes rather than only their aggregate lev-els. Su
h models will have substantially more parameters, so we will also needadditional ways to 
onstrain sear
h through the parameter spa
e. Moving inthis dire
tion also means we must extend our framework to support larger-s
alemodels of biologi
al systems. A natural approa
h would rely on hierar
hi
al mod-els that des
ribe the organism in terms of subsystems, whi
h would be based onba
kground knowledge about generi
 subsystems in addition to generi
 pro
esses.In summary, we have des
ribed an approa
h to representing, utilizing, andindu
ing biologi
al pro
ess models from generi
 ba
kground knowledge and time-series data on gene expression and other variables, and we have demonstratedits operation on both natural and syntheti
 data related to the regulation ofphotosynthesis. Our formulation has advantages over previous te
hniques, inthat its relian
e on domain knowledge should in
rease interpretability and redu
evarian
e. The results to date are en
ouraging, and the framework suggests avariety of promising paths to explore in future resear
h.
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