
Induing Biologially Plausible Modelsfrom Temporal Expression DataPat Langley,1 Dileep George,1 Kazumi Saito2Je� Shrager,1 and Stephen Bay11 Computational Learning Laboratory, CSLIStanford University, Stanford, California 94305 USAlangley�sli.stanford.edu2 NTT Communiation Siene Laboratories2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japansaito�slab.kel.ntt.o.jpAbstrat. We address the task of induing biologial models from time-series data on gene expressions and bakground knowledge about an-didate biologial proesses. We desribe IPM, an algorithm for induingquantitative proess models from suh input, and we demonstrate itsuse on data and knowledge about the regulation of photosynthesis inCyanobateria. We also report experiments with syntheti data on simi-lar problems that study the number of samples needed to �nd the orretmodel parameters. In losing, we disuss related work on modeling generegulation and suggest diretions for future researh in this area.1. Introdution and BakgroundMirobiology aims to understand the mehanisms by whih organisms survive,grow, and reprodue. Like other sienes, it ollets observations, identi�es re-urring phenomena, and attempts to explain these phenomena using existingknowledge. Biologists have made great strides in explaining metabolism, energystorage, and related mehanisms in terms of hemial reations among proteinsand other moleules. However, as yet they have only a limited understandingof how these mehanisms are regulated so that they beome more or less ativeunder di�erent onditions.In this paper, we desribe a omputational approah to eluidating suhregulatory models. We take advantage of the relatively new tehnology of DNAmiroarrays, whih let one measure simultaneously the expression levels of manygenes. If one presents the organism with some external stimulus, suh as light,and takes samples over time, then one an obtain time-series data about theovariation of expression for many di�erent genes, whih should provide hintsabout their regulation.As we reount later, the omputational biology literature has reported a va-riety of formalisms for representing regulatory models and methods for induingthem from data. What most approahes lak is some way to enode existingbiologial knowledge and using it to onstrain searh through the model spae.As a result, models generated by these methods make little ontat with domain



onepts, whih makes them less omprehensible to biologists. In ontrast, theapproah we report responds diretly to this hallenge.We begin by presenting a motivating problem { the regulation of photo-synthesis { and reviewing some experimental results in this area that demandexplanation. After this, we propose a formalism for stating quantitative modelsin this area, whih we illustrate with a spei� example. Next we present a re-lated formalism for enoding bakground knowledge about biologial proesses,then turn to a system for induing proess models from this domain knowledgeand time-series data. We demonstrate this method's behavior on both naturaldata from the experiment, to show its relevane, and syntheti data, to mea-sure its robustness. We onlude with a review of other approahes to inferringregulatory models and proposals for future work on this topi.2. A Motivating Problem: Photosynthesis RegulationWithout doubt, photosynthesis is one of the most important mehanisms inthe operation of the Earth eosystem. This proess harnesses light energy toprodue plant growth, generates the oxygen that we breathe, and removes thearbon dioxide that we produe through natural and arti�ial means. Thus, adeeper understanding of photosynthesis, and the fators that inuene it, wouldimprove our ability to explain and predit ruial hanges in our environment.Photosynthesis is a omplex ombination of reations that are atalyzed bya system of protein omplexes, most of whih are bound into the thylakoidmembrane of the hloroplasts of higher plants. There are two sets of reations,referred to as `light' and `dark'. The former, whih operate only in the light, useabsorbed light energy to produe a variety of biohemial speies, whih are inturn used by the remainder of the ell as energy. The `dark' reations, whih donot require light, use some of the energy produed by light reations to ombineCO2 moleules into sugars, whih are then either used to produe ellular energyand other produts or stored for later utilization.One side e�et of the normal photosyntheti reation is the reation of `rea-tive oxygen speies' (ROS), whih an be very damaging to ellular omponents,espeially those in the photosyntheti apparatus. Cells appear to have systemsthat aim to minimize reation of ROS, that `lean up' or neutralize ROS, and forrepairing damage. For these and other reasons, the omplex network of meh-anisms for energy prodution, storage, and utilization in ells inludes manyregulatory ontrols.Although the biohemial reations involved in photosynthesis, and the gen-eral shape of its regulation, are fairly well understood, the details of regulatorysignals and mehanisms remain obsure. Biologists know about a variety of ab-strat regulatory mehanisms that ould a�et photosyntheti ativity, suh assignal transdution and transription, but they are unertain about whih onesare responsible and the detailed forms in whih they our. For instane, theprotein produed during translation is known to degrade, but it remains unlearwhether this takes plae at a onstant rate or whether it is regulated.



To further eluidate the details of photosynthesis regulation, Labiosa et al.(2003) arried out an experiment with Cyanobateria, a uniellular organism,under simulated naturalisti onditions. In partiular, they onstruted a ylo-stat that repliated the light variations that our with the 24-hour day-nightyle.3 Samples of the organism were olleted at times equivalent to 2 AM, 8AM, 10 AM, noon, 2 PM, 6 PM, and midnight. These were analyzed using DNAmiroarray tehnology to measure mRNA levels for 3000 genes in eah sample.Figure 1 shows the temporal behavior of the 17 genes that were most highlyorrelated with light intensity. Inspetion revealed that eah had been impliatedin photosynthesis previously, whih makes biologial sense. However, the shapeof their urves (given in logarithmi sale) is somewhat unexpeted. Expressionlevels are low at night, inrease rapidly when the sun rises, and derease againafter sunset, but they also exhibit a substantial drop around noon. An adequatemodel of these genes' regulation should aount for all of these regularities in atleast qualitative terms, and preferably in quantitative ones as well.Moreover, in addition to reproduing the shape of these expression urves,an aeptable model of gene regulation should also be onsistent with existingknowledge about both photosynthesis and more general biologial mehanisms.These requirements set the stage for the oming setions, in whih we onsiderthe representation, simulation, and indution of suh models for gene regulation.3. Representing Dynamial Models of Gene RegulationBefore we an assist biologists in onstruting models of gene regulation, we mustselet some formalism in whih to represent andidate models. Beause biologydoes not have a tradition, like physis and hemistry, of formal notations, mostwork along these lines has borrowed frameworks from other �elds like omputersiene, eletrial engineering, and physis.Only some of these formalisms an haraterize the behavior of dynamialsystems that hange over time. These inlude Boolean networks (e.g., Shmule-vih et al., 2002), dynami Bayesian networks (e.g., Imoto et al., 2002), di�er-ential equations (e.g., Tomita et al., 1999), and Petri networks (e.g., Matsunoet al., 2002). Despite their representational power, these frameworks make lim-ited ontat with biologists' established onepts, though some fare better alongthis dimension than others.The problem is that biologists' papers and talks repeatedly make informalreferene to proesses that operate within living organisms. Researh in arti�-ial intelligene has produed formalisms that ast models as sets of interatingproesses to explain dynamial behavior, with Forbus' (1984) qualitative proesstheory being a notable example. This o�ers a notation for biologial mehanisms,but it fouses on qualitative simulations that predit only the diretions in whihontinuous variables hange over time.3 This devie was built, and the study was run, in the Carnegie Institute of Washing-ton's Department of Plant Biology.
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Fig. 1. Observed expression levels of 14 Cyanobateria genes over a 24-hour period.We have developed a hybrid representation that embeds numeri equationswithin the qualitative strutures provided by Forbus' approah. A model on-sists of a set of biologial proesses, eah of whih desribes the quantitativerelations among two or more variables that are ast as one or more algebrai ordi�erential equations. Eah proess may also inlude arithmeti onditions onquantitative variables that speify when it is ative. Suh a quantitative pro-ess model must refer to some measurable variables, but it may also inludeunobservable, theoretial terms.For example, Table 1 shows one possible model of the expression phenomenafrom Figure 1. This spei�es six quantitative variables { light intensity, energyin the system (redox), rate of mRNA transription, and the onentrations ofmRNA, photosyntheti protein, and reative oxygen speies (ROS). Only two ofthese variables { light and mRNA { are diretly observable, with the remainderbeing theoretial terms that are biologially plausible.The model inorporates seven distint proesses. Photosynthesis ombineslight with proteins to produe energy or redox, but it also inreases ROS as aside e�et. The photo translation proess inreases the onentration of photo-syntheti proteins, with the inrease depending on the onentration of mRNA.However, another proess, protein degradation ros, leads to a redution in bothprotein and ROS onentration. A fourth proess, mRNA transription, inreasesthe mRNA onentration by an amount ontrolled by the variable transrip-tion rate, whih is in turn inuened by two other proesses. The �rst, regu-late light, states that the rate is diretly proportional to light, whereas the otherproess, regulate redox, states that it is inversely proportional to redox, whihis itself redued. A �nal proess, mRNA degradation, states that the mRNAonentration dereases by a �xed proportion on every time step.



Table 1. A quantitative proess model for photosyntheti regulation.model Photo Reg;variables light;mRNA; photo protein;ROS; redox; transription rate;observables light;mRNA;proess photosynthesis;equations d[redox; t; 1℄ = 0:01 � light � photo protein;d[ros; t; 1℄ = 0:02 � light � photo protein;proess photo translation;equations d[photo protein; t; 1℄ = 0:5 �mRNA;proess protein degradation ros;onditions photo protein > 0;equations d[photo protein; t; 1℄ = �0:01 �ROS;d[ROS; t; 1℄ = �0:01 � ROS;proess mRNA transription;equations d[mRNA; t; 1℄ = transription rate;proess regulate light;equations transription rate = 0:8 � light;proess regulate redox;onditions redox > 0;equations transription rate = �0:5 � redox;d[redox; t; 1℄ = �0:03 � redox;proess mRNA degradation;equations d[mRNA; t; 1℄ = �0:01 �mRNA;Like any model, this example makes important simplifying assumptions. Forinstane, it refers to a single, aggregate measure of mRNA rather than to theamounts for individual genes, and does the same for photo protein and tran-sription rate. Photosynthesis is treated as a single proess, rather than as theomplex set of ativities that we know it involves, and the proesses of transrip-tion, degradation, and transription regulation are abstrated in a similar way.Also, the omponent proesses are all plausible biologially, but some are moreso than others. For instane, we know that transription is regulated and thatboth protein and mRNA an degrade, but not the details of these ativities.Nevertheless, given suh a quantitative proess model, we an simulate itto make preditions about how variables will hange over time. This involvesompiling the proess notation into a set of linked algebrai and di�erentialequations, giving them initial values for some variables, and invoking numerialapproximation tehniques to alulate values for eah suessive time step. Theonly ompliation beyond established methods is that, beause onditions anbeome true or false, one may need to use di�erent equations on eah time step.Otherwise, the simulation proess is relatively straightforward. However, �ndinga model that an generate the observed trajetory is a diÆult task; in fat, themodel in Table 1 provides a poor �t to the data. We would like omputationaltools that an searh the spae of model strutures and their parameters, ideallytaking advantage of biologial domain knowledge, to whih we now turn.



Table 2. Seven generi proesses for gene regulation.generi proess photosynthesis;variables Lflightg; Pfphoto proteing; Rfredoxg; Sfrosg;parameters alpha [0; 1℄; beta [0; 1℄;equations d[R; t; 1℄ = alpha � L � P ;d[S; t; 1℄ = beta � L � P ;generi proess automati degradation;variables Cfonentrationg;parameters gamma [0; 1℄;onditions C > 0;equations d[C; t; 1℄ = �1 � gamma � C;generi proess ontrolled degradation;variables Dfonentrationg; Efonentrationg;parameters delta [0; 1℄;onditions D > 0; E > 0;equations d[D; t; 1℄ = �1 � delta �E;d[E; t; 1℄ = �1 � delta � E;generi proess translation; generi proess transription;variables Pfphoto proteing;MfmRNAg; variables MfmRNAg; Rfrateg;parameters rho [0; 10℄; equations d[M; t; 1℄ = R;equations d[P; t; 1℄ = rho �M ;generi proess regulate one; generi proess regulate two;variables Rfrateg; Sfsignalg; variables Rfrateg; Sfsignalg;parameters mu [�1; 1℄; parameters nu [�1; 1℄; pi [0; 1℄;equations R = mu � S; equations R = nu � S;d[S; t; 1℄ = �1 � pi � S;4. Enoding Biologial Bakground KnowledgeA key harateristi of model just desribed was that it is explanatory . An ex-planation moves beyond a simple desription of observations to aount for themin terms of other, more basi strutures or proesses. The explanatory referentsare typially unobservable in the urrent situation, but they make ontat withknown, familiar mehanisms. The automated onstrution of suh explanatorymodels requires that we represent the bakground knowledge to whih they refer.To this end, we utilize the notion of generi proesses . These are similar inspirit to the spei� proesses that appear in a model, in that they speify equa-tions and ativation onditions, but they do not ommit to partiular variablesor parameter values. Table 2 presents seven generi proesses for the domain ofplant biohemistry, most of whih have diret analogs in Table 1.Note that eah generi proess inludes a set of generi variables, along withtype information that onstrains the spei� variables against whih they anmath. Eah struture also inludes the names of parameters that appear inonditions or equations, along with upper and lower bounds on their values. Forinstane, the generi proess regulate two involves one variable, R, that must be



a rate, and another, S, that must be a signal (say light, redox, or ROS), and itrefers to two parameters, one of whih (pi) must fall between zero and one.Some generi proesses are more spei� than others. For example, those forphotosynthesis, transription, and translation e�etively refer to spei� vari-ables, and are generi only in not ommitting to parameter values. Others, likethose for degradation and regulation, refer to lasses of variables and an beinstantiated in di�erent ways. This lets us enode unertainty about whih vari-ables are atually involved in these proesses, but still supports the onstrainedsearh for spei� models._Zytkow (1990) has distinguished between general laws or proesses that ourin a domain and models that hold for a spei� situation, with models being astin terms of known laws or proesses. For example, Ohm's and Kirho�'s lawsdesribe general knowledge about the behavior of eletri iruits, but they mustbe ombined in partiular ways to haraterize a spei� devie. Our generi pro-esses play the role of general biologial laws, and we an use them to onstrutspei� models of gene regulation.5. Induing Dynamial Models from Time-Series DataTaken together, time-series data about gene expressions and generi biologialproesses provide us with the raw material to onstrut regulatory models. Thistask is an instane of what we have alled indutive proess modeling (Langleyet al., in press). The goal of proess model indution is to generate a spei�proess model, like the one in Table 1, that makes referene to known generiproesses and that �ts the trajetories of observed variables. Suh a model isexplanatory, rather than purely desriptive, beause it refers to unobserved vari-ables and proesses. Moreover, we hold that suh a proess model will be under-standable to domain sientists beause it is ast in terms of familiar onepts.In our urrent problem, the data onern the expression levels of various genesover time, as shown in Figure 1, along with the assoiated light intensities. Thebakground knowledge inludes plausible forms for proesses like photosynthe-sis, transription, translation, and degradation, like those in Table 2, inludingtype onstraints on their variables and bounds on their parameters. The targetis a model like that in Table 1, whih ontains variants of these generi proessesthat ommit to spei� variables and their parameter values. Ideally, this spe-i� model should generate trajetories that math the training data and makeaurate preditions about future values.We have implemented an algorithm, IPM, that deomposes the task of in-dutive proess modeling into two subproblems. The �rst stage involves a on-strained exhaustive searh through the spae of model strutures. To this end,the system �nds all ways to instantiate the generi proesses with known spe-i� variables that are onsistent with the type onstraints. Some 24 instantiatedproesses are generated in this manner from the bakground knowledge aboutphotosynthesis and gene regulation presented earlier. IPM then omposes theseinstantiated omponents in all possible ways that involve less than N proesses,



Table 3. Model for photosyntheti regulation and initial values indued by IPM.model Photo Reg;variables light;mRNA; photo protein;ROS; redox; transription rate;observables light;mRNA;initials mRNA = 0:253; photo protein = 0:836; ROS = 0:059; redox = 0:361;proess photosynthesis;equations d[redox; t; 1℄ = 0:0155 � light � photo protein;d[ros; t; 1℄ = 0:019 � light � photo protein;proess photo translation;equations d[photo protein; t; 1℄ = 7:539 �mRNA;proess automati degradation1;onditions photo protein > 0;equations d[photo protein; t; 1℄ = �1 � 1:905 � photo protein;proess ontrolled degradation1;onditions redox > 0; ros > 0;equations d[redox; t; 1℄ = �1 � 0:0003 � ros;d[ros; t; 1℄ = �1 � 0:0003 � ros;proess mRNA transription;equations d[mRNA; t; 1℄ = transription rate;proess regulate one 1;equations transription rate = 0:938 � light;proess regulate two 2;equations transription rate = 1:203 � redox;d[redox; t; 1℄ = �1 � 0:0002 � redox;removing andidates that omit any of the observed variables. For example, whenN = 7, this sheme produes 288 model strutures.Eah suh andidate spei�es the model's variables and their ausal relation-ships, but it does not inlude the values for the parameters. Thus, IPM's seondstage arries out a gradient desent searh through the parameter spae de�nedby eah model struture. This searh is bounded by the onstraints eah generiproess plaes on its parameter values, giving a hyperube within whih aept-able values an fall. Earlier versions of IPM invoked a version of the Newtonmethod to �t parameters, ombined with multiple restarts to mitigate problemswith loal optima. The urrent implementation instead utilizes a seond-ordergradient-desent method that has been desribed by Saito and Nakano (1997).Reall that the example model in Figure 2 inludes a number of unobservedvariables, some of whih our in the left-hand sides of di�erential equations. Thismeans that, in addition to �nding values for the parameters in eah proess, IPMmust also infer the initial values for eah suh variable. To this end, the systemsimply treats these as additional parameters that must be �t by the gradientdesent mehanism. Elsewhere (Langley et al., in press) we have evaluated thisapability on syntheti data, and also shown that one an use a similar approahto indue the thresholds that appear in onditions on proesses.
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Fig. 2. Predited and observed levels of average gene expression over a 24-hour period.To demonstrate that IPM an produe reasonable models of the proessesthat govern gene regulation, we provided it with the bakground knowledge fromTable 2 and time-series data from the 1ylostat study. However, beause we hadonly seven samples, we did not attempt to onstrut a model that predited sep-arate expression levels for eah of the 14 genes. Instead, we averaged the resultsfor these genes at eah time step and use the resulting means as the trainingset for model indution. We also told the system that andidate models shouldinlude the observable variables light and mRNA, the unobservable variablesphoto protein, ROS, redox, and transription rate, and the types for eah one.The proess model that IPM generated from these data, shown in Table 3,has similarities and di�erenes from the model presented earlier in Table 1. Thenew model inludes proesses for photosynthesis, translation, and transription,but this is hardly surprising, sine their variable types are so onstrained as toalmost demand their inlusion. More interesting was the inlusion of automatidegradation for photosyntheti proteins, degradation for redox ontolled by ROS,and the absene of any degradation proess for mRNA. Both models inludedtwo distint proesses for regulating transription rate, one involving light andthe other relying on redox.Figure 2 shows the trajetories that this model predits over a 24-hour period,along with the average expression levels omputed from the genes measured inthe ylostat experiment. The indued model reprodues the general M shapeobserved in the data, and the quantitative �t is quite good. The two urvesappear to diverge in some plaes, but this is beause the model makes preditionsthroughout the day, whereas suessive observations are simply onneted bystraight lines. To determine whether the preditions around 6 AM and 10 PMare aurate, we must await further samples from the biologists.
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Fig. 3. Distane between indued and target parameters as a funtion of sampling rate.Although the proess model indued by IPM provides a reasonable �t to theobserved expression levels, we annot determine its orretness beause biolo-gists are still unertain about suh issues themselves. However, we an arry outsimilar runs on analogous data generated from known models to estimate the sys-tem's ability to infer the orret andidate. To this end, we assumed the induedmodel had the orret struture and used it to generate ten sets of synthetitime-series data, based on di�erent model parameters, over the same 24-hourperiod, and with the same light levels, as the natural data. Sine miroarraysare quite noisy, we added ten perent noise to eah of these data sets.A key question is whether the sampling rate used in the atual ylostat study(seven samples over 24 hours) is high enough to let IPM indue the orret model,so we systematially varied the number of samples (from 3 to 24) provided tothe system. Ideally, we would let the system searh through the spae of 288model strutures for eah sampling rate and training set, but this would take animpratial amount of omputer time. Instead, we provided the orret modelstruture and ran the parameter-�tting model instead, on the assumption that,if this �nds the orret parameter values, then IPM ould �nd the orret modelstruture, sine it arries out exhaustive searh through the struture spae.Our dependent measure was the Eulidean di�erene between the targetparameters and those found by the system, averaged over all parameters in themodel and aross runs on the ten di�erent training sets. Beause we knew thetarget values and ould measure the parametri auray diretly, we did notneed a separate test set. Figure 3 shows the distanes as a funtion of the numberof samples. As one might expet, the average distane dereases as more databeome available, but the distane is still dropping at one sample per hour. Thissuggests that we annot treat the model found on the atual data as espeiallyreliable, and that future experiments on photosynthesis regulation should olletmore samples to make the indution task tratable for this biologial system.



6. Related and Future ResearhOur approah to omputational disovery has lose onnetions with other re-ent e�orts on the indution of di�erential equation models by Todorovski andD�zeroski (1997), Bradley et al. (1999), and Koza et al. (2001), whih also takeadvantage of domain knowledge to onstrut models of dynamial systems. How-ever, we are foused on modeling gene regulation, so we will limit our ommentsto this area. Muh of the researh on this topi deals with stati models, andthus annot aount for how gene expressions hange over time. The remainingwork di�ers from our own by using disrete variables or making little ontatwith existing knowledge. For instane, Ong et al. (2002) invoke knowledge aboutpromoters to onstrain the struture of a dynami Bayesian network, but theydisretize their data. Imoto et al.'s (2002) method indues a quantitative dynam-ial model, but it makes little use of biologial knowledge. Researh on Booleannetwork models (e.g., Shmulevih et al., 2002) su�ers from both drawbaks.Our own previous researh on gene regulation (Bay et al., in press) has om-bined quantitative ausal relations with bakground knowledge in the form ofan initial model. However, like most work in this area, our representation ofbiologial proesses was quite simplisti (in this ase, linear relations) and madelimited ontat with general biologial onepts, suh as the distintion amongtranslation, transription, and degradation. On the other hand, our urrent ap-proah models regulation only at the aggregate level, whereas most work in thisarea desribes interations among spei� genes.Although our initial results in this domain are enouraging, it is lear thatmore work remains ahead. One obvious diretion for future researh would de-velop analogous proess models for other faets of Cyanobateria, suh as energystorage and utilization, in whih spei� genes have been impliated. This wouldrequire the reation of generi proesses for these mehanisms and their use inmodeling the expression levels of these genes. We should also expand our studieswith syntheti data to better understand how our methods sale to settings withdi�erent noise levels, more generi proesses, and more omplex target models.In the longer term, we should extend our approah to indue models thatexplain the expressions of individual genes rather than only their aggregate lev-els. Suh models will have substantially more parameters, so we will also needadditional ways to onstrain searh through the parameter spae. Moving inthis diretion also means we must extend our framework to support larger-salemodels of biologial systems. A natural approah would rely on hierarhial mod-els that desribe the organism in terms of subsystems, whih would be based onbakground knowledge about generi subsystems in addition to generi proesses.In summary, we have desribed an approah to representing, utilizing, andinduing biologial proess models from generi bakground knowledge and time-series data on gene expression and other variables, and we have demonstratedits operation on both natural and syntheti data related to the regulation ofphotosynthesis. Our formulation has advantages over previous tehniques, inthat its reliane on domain knowledge should inrease interpretability and reduevariane. The results to date are enouraging, and the framework suggests avariety of promising paths to explore in future researh.
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