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Abstract. We address the task of inducing biological models from time-
series data on gene expressions and background knowledge about can-
didate biological processes. We describe IPM, an algorithm for inducing
quantitative process models from such input, and we demonstrate its
use on data and knowledge about the regulation of photosynthesis in
Cyanobacteria. We also report experiments with synthetic data on simi-
lar problems that study the number of samples needed to find the correct
model parameters. In closing, we discuss related work on modeling gene
regulation and suggest directions for future research in this area.

1. Introduction and Background

Microbiology aims to understand the mechanisms by which organisms survive,
grow, and reproduce. Like other sciences, it collects observations, identifies re-
curring phenomena, and attempts to explain these phenomena using existing
knowledge. Biologists have made great strides in explaining metabolism, energy
storage, and related mechanisms in terms of chemical reactions among proteins
and other molecules. However, as yet they have only a limited understanding
of how these mechanisms are regulated so that they become more or less active
under different conditions.

In this paper, we describe a computational approach to elucidating such
regulatory models. We take advantage of the relatively new technology of cDNA
microarrays, which let one measure simultaneously the expression levels of many
genes. If one presents the organism with some external stimulus, such as light,
and takes samples over time, then one can obtain time-series data about the
covariation of expression for many different genes, which should provide hints
about their regulation.

As we recount later, the computational biology literature has reported a va-
riety of formalisms for representing regulatory models and methods for inducing
them from data. What most approaches lack is some way to encode existing
biological knowledge and using it to constrain search through the model space.
As a result, models generated by these methods make little contact with domain



concepts, which makes them less comprehensible to biologists. In contrast, the
approach we report responds directly to this challenge.

We begin by presenting a motivating problem — the regulation of photo-
synthesis — and reviewing some experimental results in this area that demand
explanation. After this, we propose a formalism for stating quantitative models
in this area, which we illustrate with a specific example. Next we present a re-
lated formalism for encoding background knowledge about biological processes,
then turn to a system for inducing process models from this domain knowledge
and time-series data. We demonstrate this method’s behavior on both natural
data from the experiment, to show its relevance, and synthetic data, to mea-
sure its robustness. We conclude with a review of other approaches to inferring
regulatory models and proposals for future work on this topic.

2. A Motivating Problem: Photosynthesis Regulation

Without doubt, photosynthesis is one of the most important mechanisms in
the operation of the Earth ecosystem. This process harnesses light energy to
produce plant growth, generates the oxygen that we breathe, and removes the
carbon dioxide that we produce through natural and artificial means. Thus, a
deeper understanding of photosynthesis, and the factors that influence it, would
improve our ability to explain and predict crucial changes in our environment.

Photosynthesis is a complex combination of reactions that are catalyzed by
a system of protein complexes, most of which are bound into the thylakoid
membrane of the chloroplasts of higher plants. There are two sets of reactions,
referred to as ‘light’ and ‘dark’. The former, which operate only in the light, use
absorbed light energy to produce a variety of biochemical species, which are in
turn used by the remainder of the cell as energy. The ‘dark’ reactions, which do
not require light, use some of the energy produced by light reactions to combine
CO2 molecules into sugars, which are then either used to produce cellular energy
and other products or stored for later utilization.

One side effect of the normal photosynthetic reaction is the creation of ‘reac-
tive oxygen species’ (ROS), which can be very damaging to cellular components,
especially those in the photosynthetic apparatus. Cells appear to have systems
that aim to minimize creation of ROS, that ‘clean up’ or neutralize ROS, and for
repairing damage. For these and other reasons, the complex network of mech-
anisms for energy production, storage, and utilization in cells includes many
regulatory controls.

Although the biochemical reactions involved in photosynthesis, and the gen-
eral shape of its regulation, are fairly well understood, the details of regulatory
signals and mechanisms remain obscure. Biologists know about a variety of ab-
stract regulatory mechanisms that could affect photosynthetic activity, such as
signal transduction and transcription, but they are uncertain about which ones
are responsible and the detailed forms in which they occur. For instance, the
protein produced during translation is known to degrade, but it remains unclear
whether this takes place at a constant rate or whether it is regulated.



To further elucidate the details of photosynthesis regulation, Labiosa et al.
(2003) carried out an experiment with Cyanobacteria, a unicellular organism,
under simulated naturalistic conditions. In particular, they constructed a cyclo-
stat that replicated the light variations that occur with the 24-hour day-night
cycle.? Samples of the organism were collected at times equivalent to 2 AM, 8
AM; 10 AM, noon, 2 PM, 6 PM, and midnight. These were analyzed using cDNA
microarray technology to measure mRNA levels for 3000 genes in each sample.

Figure 1 shows the temporal behavior of the 17 genes that were most highly
correlated with light intensity. Inspection revealed that each had been implicated
in photosynthesis previously, which makes biological sense. However, the shape
of their curves (given in logarithmic scale) is somewhat unexpected. Expression
levels are low at night, increase rapidly when the sun rises, and decrease again
after sunset, but they also exhibit a substantial drop around noon. An adequate
model of these genes’ regulation should account for all of these regularities in at
least qualitative terms, and preferably in quantitative ones as well.

Moreover, in addition to reproducing the shape of these expression curves,
an acceptable model of gene regulation should also be consistent with existing
knowledge about both photosynthesis and more general biological mechanisms.
These requirements set the stage for the coming sections, in which we consider
the representation, simulation, and induction of such models for gene regulation.

3. Representing Dynamical Models of Gene Regulation

Before we can assist biologists in constructing models of gene regulation, we must
select some formalism in which to represent candidate models. Because biology
does not have a tradition, like physics and chemistry, of formal notations, most
work along these lines has borrowed frameworks from other fields like computer
science, electrical engineering, and physics.

Only some of these formalisms can characterize the behavior of dynamical
systems that change over time. These include Boolean networks (e.g., Shmule-
vich et al., 2002), dynamic Bayesian networks (e.g., Imoto et al., 2002), differ-
ential equations (e.g., Tomita et al., 1999), and Petri networks (e.g., Matsuno
et al., 2002). Despite their representational power, these frameworks make lim-
ited contact with biologists’ established concepts, though some fare better along
this dimension than others.

The problem is that biologists’ papers and talks repeatedly make informal
reference to processes that operate within living organisms. Research in artifi-
cial intelligence has produced formalisms that cast models as sets of interacting
processes to explain dynamical behavior, with Forbus’ (1984) qualitative process
theory being a notable example. This offers a notation for biological mechanisms,
but it focuses on qualitative simulations that predict only the directions in which
continuous variables change over time.

% This device was built, and the study was run, in the Carnegie Institute of Washing-
ton’s Department of Plant Biology.
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Fig. 1. Observed expression levels of 14 Cyanobacteria genes over a 24-hour period.

We have developed a hybrid representation that embeds numeric equations
within the qualitative structures provided by Forbus’ approach. A model con-
sists of a set of biological processes, each of which describes the quantitative
relations among two or more variables that are cast as one or more algebraic or
differential equations. Each process may also include arithmetic conditions on
quantitative variables that specify when it is active. Such a quantitative pro-
cess model must refer to some measurable variables, but it may also include
unobservable, theoretical terms.

For example, Table 1 shows one possible model of the expression phenomena
from Figure 1. This specifies six quantitative variables — light intensity, energy
in the system (redox), rate of mRNA transcription, and the concentrations of
mRNA, photosynthetic protein, and reactive oxygen species (ROS). Only two of
these variables — light and mRNA — are directly observable, with the remainder
being theoretical terms that are biologically plausible.

The model incorporates seven distinct processes. Photosynthesis combines
light with proteins to produce energy or redox, but it also increases ROS as a
side effect. The photo_translation process increases the concentration of photo-
synthetic proteins, with the increase depending on the concentration of mRNA.
However, another process, protein_degradation_ros, leads to a reduction in both
protein and ROS concentration. A fourth process, mRNA _transcription, increases
the mRNA concentration by an amount controlled by the variable transcrip-
tion_rate, which is in turn influenced by two other processes. The first, regu-
late_light, states that the rate is directly proportional to light, whereas the other
process, regulate_redox, states that it is inversely proportional to redox, which
is itself reduced. A final process, mRNA _degradation, states that the mRNA
concentration decreases by a fixed proportion on every time step.



Table 1. A quantitative process model for photosynthetic regulation.

model Photo_Reg;

variables light, mRN A, photo_protein, ROS, redox, transcription_rate;
observables light, mRN A;

process photosynthesis;
equations d[redox,t,1] = 0.01 = light * photo_protein;
d[ros,t,1] = 0.02 = light * photo_protein;
process photo_translation;
equations d[photo_protein,t,1] = 0.5 * mRN A;
process protein_degradation_ros;
conditions photo_protein > 0;
equations d[photo_protein,t,1] = —0.01 * ROS;
d[ROS,t,1] = —0.01 * ROS;
process mRNA transcription;
equations dimRN A, t, 1] = transcription_rate;
process regulate_light;
equations transcription_rate = 0.8 x light;
process regulate_redox;
conditions redox > 0;
equations transcription_rate = —0.5 % redox;
dlredozx,t,1] = —0.03 * redox;
process mRNA _degradation;
equations dimRN A, t,1] = —0.01 *x mRN A;

Like any model, this example makes important simplifying assumptions. For
instance, it refers to a single, aggregate measure of mRNA rather than to the
amounts for individual genes, and does the same for photo_protein and tran-
scription_rate. Photosynthesis is treated as a single process, rather than as the
complex set of activities that we know it involves, and the processes of transcrip-
tion, degradation, and transcription regulation are abstracted in a similar way.
Also, the component processes are all plausible biologically, but some are more
so than others. For instance, we know that transcription is regulated and that
both protein and mRNA can degrade, but not the details of these activities.

Nevertheless, given such a quantitative process model, we can simulate it
to make predictions about how variables will change over time. This involves
compiling the process notation into a set of linked algebraic and differential
equations, giving them initial values for some variables, and invoking numerical
approximation techniques to calculate values for each successive time step. The
only complication beyond established methods is that, because conditions can
become true or false, one may need to use different equations on each time step.
Otherwise, the simulation process is relatively straightforward. However, finding
a model that can generate the observed trajectory is a difficult task; in fact, the
model in Table 1 provides a poor fit to the data. We would like computational
tools that can search the space of model structures and their parameters, ideally
taking advantage of biological domain knowledge, to which we now turn.



Table 2. Seven generic processes for gene regulation.

generic process photosynthesis;
variables L{light}, P{photo_protein}, R{redox}, S{ros};
parameters alpha [0, 1], beta [0, 1];
equations d[R,t,1] = alpha x L * P;
d[S,t,1] = beta * L % P;
generic process automatic_degradation;
variables C{concentration};
parameters gamma [0, 1];
conditions C > 0;
equations d[C,t,1] = —1 % gamma * C;
generic process controlled_degradation;
variables D{concentration}, E{concentration};
parameters delta [0, 1];
conditions D > 0, E > 0;

equations d[D,t,1] = —1 % delta * E;
d[E;t,1] = —1 = delta * E;

generic process translation; generic process transcription;
variables P{photo_protein}, M{mRN A}; variables M{mRN A}, R{rate};
parameters rho [0, 10]; equations d[M,t,1] = R;
equations d[P,t,1] = rho * M;

generic process regulate_one; generic process regulate_two;
variables R{rate}, S{signal}; variables R{rate}, S{signal};
parameters mu [—1,1]; parameters nu [—1, 1], pi [0, 1];
equations R = mu * S| equations R = nu * S

d[S,t, 1] = —1*pi* S;

4. Encoding Biological Background Knowledge

A key characteristic of model just described was that it is ezplanatory. An ex-
planation moves beyond a simple description of observations to account for them
in terms of other, more basic structures or processes. The explanatory referents
are typically unobservable in the current situation, but they make contact with
known, familiar mechanisms. The automated construction of such explanatory
models requires that we represent the background knowledge to which they refer.

To this end, we utilize the notion of generic processes. These are similar in
spirit to the specific processes that appear in a model, in that they specify equa-
tions and activation conditions, but they do not commit to particular variables
or parameter values. Table 2 presents seven generic processes for the domain of
plant biochemistry, most of which have direct analogs in Table 1.

Note that each generic process includes a set of generic variables, along with
type information that constrains the specific variables against which they can
match. Each structure also includes the names of parameters that appear in
conditions or equations, along with upper and lower bounds on their values. For
instance, the generic process regulate_two involves one variable, R, that must be



a rate, and another, S, that must be a signal (say light, redox, or ROS), and it
refers to two parameters, one of which (pi) must fall between zero and one.

Some generic processes are more specific than others. For example, those for
photosynthesis, transcription, and translation effectively refer to specific vari-
ables, and are generic only in not committing to parameter values. Others, like
those for degradation and regulation, refer to classes of variables and can be
instantiated in different ways. This lets us encode uncertainty about which vari-
ables are actually involved in these processes, but still supports the constrained
search for specific models.

Zytkow (1990) has distinguished between general laws or processes that occur
in a domain and models that hold for a specific situation, with models being cast
in terms of known laws or processes. For example, Ohm’s and Kirchoff’s laws
describe general knowledge about the behavior of electric circuits, but they must
be combined in particular ways to characterize a specific device. Our generic pro-
cesses play the role of general biological laws, and we can use them to construct
specific models of gene regulation.

5. Inducing Dynamical Models from Time-Series Data

Taken together, time-series data about gene expressions and generic biological
processes provide us with the raw material to construct regulatory models. This
task is an instance of what we have called inductive process modeling (Langley
et al., in press). The goal of process model induction is to generate a specific
process model, like the one in Table 1, that makes reference to known generic
processes and that fits the trajectories of observed variables. Such a model is
explanatory, rather than purely descriptive, because it refers to unobserved vari-
ables and processes. Moreover, we hold that such a process model will be under-
standable to domain scientists because it is cast in terms of familiar concepts.

In our current problem, the data concern the expression levels of various genes
over time, as shown in Figure 1, along with the associated light intensities. The
background knowledge includes plausible forms for processes like photosynthe-
sis, transcription, translation, and degradation, like those in Table 2, including
type constraints on their variables and bounds on their parameters. The target
is a model like that in Table 1, which contains variants of these generic processes
that commit to specific variables and their parameter values. Ideally, this spe-
cific model should generate trajectories that match the training data and make
accurate predictions about future values.

We have implemented an algorithm, IPM, that decomposes the task of in-
ductive process modeling into two subproblems. The first stage involves a con-
strained exhaustive search through the space of model structures. To this end,
the system finds all ways to instantiate the generic processes with known spe-
cific variables that are consistent with the type constraints. Some 24 instantiated
processes are generated in this manner from the background knowledge about
photosynthesis and gene regulation presented earlier. IPM then composes these
instantiated components in all possible ways that involve less than N processes,



Table 3. Model for photosynthetic regulation and initial values induced by IPM.

model Photo_Reg;

variables light, mRN A, photo_protein, ROS, redox, transcription_rate;
observables light, mRN A;
initials mRN A = 0.253, photo_protein = 0.836, ROS = 0.059, redox = 0.361;

process photosynthesis;
equations d[redox,t,1] = 0.0155 = light * photo_protein;
d[ros,t,1] = 0.019 = light * photo_protein;
process photo_translation;
equations d[photo_protein,t,1] = 7.539 * mRN A;
process automatic_degradationl;
conditions photo_protein > 0;
equations d[photo_protein,t,1] = —1 % 1.905 * photo_protein;
process controlled_degradationl;
conditions redox > 0,105 > 0;
equations d[redox,t,1] = —1 % 0.0003 * ros;
d[ros,t,1] = —1 % 0.0003 * ros;
process mRNA _transcription;
equations d[mRN A, t, 1] = transcription_rate;
process regulate_one_1;
equations transcription_rate = 0.938 x light;
process regulate_two_2;
equations transcription_rate = 1.203 x redoz;
dlredox,t,1] = —1 % 0.0002 * redox;

removing candidates that omit any of the observed variables. For example, when
N =17, this scheme produces 288 model structures.

Each such candidate specifies the model’s variables and their causal relation-
ships, but it does not include the values for the parameters. Thus, IPM’s second
stage carries out a gradient descent search through the parameter space defined
by each model structure. This search is bounded by the constraints each generic
process places on its parameter values, giving a hypercube within which accept-
able values can fall. Earlier versions of IPM invoked a version of the Newton
method to fit parameters, combined with multiple restarts to mitigate problems
with local optima. The current implementation instead utilizes a second-order
gradient-descent method that has been described by Saito and Nakano (1997).

Recall that the example model in Figure 2 includes a number of unobserved
variables, some of which occur in the left-hand sides of differential equations. This
means that, in addition to finding values for the parameters in each process, IPM
must also infer the initial values for each such variable. To this end, the system
simply treats these as additional parameters that must be fit by the gradient
descent mechanism. Elsewhere (Langley et al., in press) we have evaluated this
capability on synthetic data, and also shown that one can use a similar approach
to induce the thresholds that appear in conditions on processes.
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Fig. 2. Predicted and observed levels of average gene expression over a 24-hour period.

To demonstrate that IPM can produce reasonable models of the processes
that govern gene regulation, we provided it with the background knowledge from
Table 2 and time-series data from the lcyclostat study. However, because we had
only seven samples, we did not attempt to construct a model that predicted sep-
arate expression levels for each of the 14 genes. Instead, we averaged the results
for these genes at each time step and use the resulting means as the training
set for model induction. We also told the system that candidate models should
include the observable variables light and mRNA, the unobservable variables
photo_protein, ROS, redox, and transcription_rate, and the types for each one.

The process model that IPM generated from these data, shown in Table 3,
has similarities and differences from the model presented earlier in Table 1. The
new model includes processes for photosynthesis, translation, and transcription,
but this is hardly surprising, since their variable types are so constrained as to
almost demand their inclusion. More interesting was the inclusion of automatic
degradation for photosynthetic proteins, degradation for redox contolled by ROS,
and the absence of any degradation process for mRNA. Both models included
two distinct processes for regulating transcription_rate, one involving light and
the other relying on redox.

Figure 2 shows the trajectories that this model predicts over a 24-hour period,
along with the average expression levels computed from the genes measured in
the cyclostat experiment. The induced model reproduces the general M shape
observed in the data, and the quantitative fit is quite good. The two curves
appear to diverge in some places, but this is because the model makes predictions
throughout the day, whereas successive observations are simply connected by
straight lines. To determine whether the predictions around 6 AM and 10 PM
are accurate, we must await further samples from the biologists.



8
1

Average distance
6
1

< -

© T T T 1
0 6 12 18 24
Number of samples

Fig. 3. Distance between induced and target parameters as a function of sampling rate.

Although the process model induced by IPM provides a reasonable fit to the
observed expression levels, we cannot determine its correctness because biolo-
gists are still uncertain about such issues themselves. However, we can carry out
similar runs on analogous data generated from known models to estimate the sys-
tem’s ability to infer the correct candidate. To this end, we assumed the induced
model had the correct structure and used it to generate ten sets of synthetic
time-series data, based on different model parameters, over the same 24-hour
period, and with the same light levels, as the natural data. Since microarrays
are quite noisy, we added ten percent noise to each of these data sets.

A key question is whether the sampling rate used in the actual cyclostat study
(seven samples over 24 hours) is high enough to let IPM induce the correct model,
so we systematically varied the number of samples (from 3 to 24) provided to
the system. Ideally, we would let the system search through the space of 288
model structures for each sampling rate and training set, but this would take an
impractical amount, of computer time. Instead, we provided the correct model
structure and ran the parameter-fitting model instead, on the assumption that,
if this finds the correct parameter values, then IPM could find the correct model
structure, since it carries out exhaustive search through the structure space.

Our dependent measure was the Euclidean difference between the target
parameters and those found by the system, averaged over all parameters in the
model and across runs on the ten different training sets. Because we knew the
target values and could measure the parametric accuracy directly, we did not
need a separate test set. Figure 3 shows the distances as a function of the number
of samples. As one might expect, the average distance decreases as more data
become available, but the distance is still dropping at one sample per hour. This
suggests that we cannot treat the model found on the actual data as especially
reliable, and that future experiments on photosynthesis regulation should collect
more samples to make the induction task tractable for this biological system.



6. Related and Future Research

Our approach to computational discovery has close connections with other re-
cent efforts on the induction of differential equation models by Todorovski and
Dzeroski (1997), Bradley et al. (1999), and Koza et al. (2001), which also take
advantage of domain knowledge to construct models of dynamical systems. How-
ever, we are focused on modeling gene regulation, so we will limit our comments
to this area. Much of the research on this topic deals with static models, and
thus cannot account for how gene expressions change over time. The remaining
work differs from our own by using discrete variables or making little contact
with existing knowledge. For instance, Ong et al. (2002) invoke knowledge about
promoters to constrain the structure of a dynamic Bayesian network, but they
discretize their data. Imoto et al.’s (2002) method induces a quantitative dynam-
ical model, but it makes little use of biological knowledge. Research on Boolean
network models (e.g., Shmulevich et al., 2002) suffers from both drawbacks.

Our own previous research on gene regulation (Bay et al., in press) has com-
bined quantitative causal relations with background knowledge in the form of
an initial model. However, like most work in this area, our representation of
biological processes was quite simplistic (in this case, linear relations) and made
limited contact with general biological concepts, such as the distinction among
translation, transcription, and degradation. On the other hand, our current ap-
proach models regulation only at the aggregate level, whereas most work in this
area describes interactions among specific genes.

Although our initial results in this domain are encouraging, it is clear that
more work remains ahead. One obvious direction for future research would de-
velop analogous process models for other facets of Cyanobacteria, such as energy
storage and utilization, in which specific genes have been implicated. This would
require the creation of generic processes for these mechanisms and their use in
modeling the expression levels of these genes. We should also expand our studies
with synthetic data to better understand how our methods scale to settings with
different noise levels, more generic processes, and more complex target models.

In the longer term, we should extend our approach to induce models that
explain the expressions of individual genes rather than only their aggregate lev-
els. Such models will have substantially more parameters, so we will also need
additional ways to constrain search through the parameter space. Moving in
this direction also means we must extend our framework to support larger-scale
models of biological systems. A natural approach would rely on hierarchical mod-
els that describe the organism in terms of subsystems, which would be based on
background knowledge about generic subsystems in addition to generic processes.

In summary, we have described an approach to representing, utilizing, and
inducing biological process models from generic background knowledge and time-
series data on gene expression and other variables, and we have demonstrated
its operation on both natural and synthetic data related to the regulation of
photosynthesis. Our formulation has advantages over previous techniques, in
that its reliance on domain knowledge should increase interpretability and reduce
variance. The results to date are encouraging, and the framework suggests a
variety of promising paths to explore in future research.
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