
Revising Qualitative Models of Gene RegulationKazumi Saito,1 Stephen Bay,2 and Pat Langley21 NTT Communiation Siene Laboratories2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japansaito�slab.kel.ntt.o.jp2 Institute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306 USAsbay�apres.stanford.edu, langley�isle.orgAbstrat. We present an approah to revising qualitative ausal mod-els of gene regulation with DNA miroarray data. The method ombinessearh through a spae of variable orderings with searh through a spaeof parameters on ausal links, with weight deay driving the model to-ward integer values. We illustrate the tehnique on a model of photo-synthesis regulation and assoiated miroarray data. Experiments withsyntheti data that varied distane from the target model, noise, andnumber of training ases suggest the method is robust with respet tothese fators. In losing, we onsider related work on induing ausalregulatory models and suggest diretions for future researh.1 Introdution and MotivationLike other sienes, biology requires that its models �t available data. However,as the �eld moves from a fous on isolated proesses to system-level behaviors,developing and evaluating models has beome inreasingly diÆult. This hal-lenge has beome espeially lear with respet to models of gene regulation,whih attempt to explain omplex interations in whih the expression levels ofsome genes inuene the expression levels of others. A related hallenge onernsa shift in the nature of biologial data olletion from foused experiments, whihinvolve only a few variables, to DNA miroarrays, whih measure thousands ofexpression levels at the same time.In this paper, we desribe an approah that takes advantage of suh nonex-perimental data to revise existing models of gene regulation. Our method usesthese data, ombined with knowledge about the domain, to diret searh for amodel that better explains the observations. We emphasize qualitative ausal a-ounts beause biologists typially ast their regulatory models in this form. Wefous on model revision, rather than onstruting models from srath, beausebiologists often have partial models for the systems they study.We begin with a brief review of moleular biology and biohemistry, inludingthe entral notion of gene regulation, then present an existing regulatory modelof photosynthesis. After this, we desribe our method for using miroarray datato improve suh models, whih ombines ideas from learning in neural networksand the notion of minimum desription length. Next we report experimental



2studies of the method that draws on both biologial and syntheti data, alongwith the results of these experiments. In losing, we onsider related work oninduing ausal models of gene regulation and diretions for future researh onthis topi.2 Qualitative Causal Models of Gene RegulationA gene is a fundamental unit of heredity that determines an organism's physialtraits. It is an ordered sequene of nuleotides in deoxyribonulei aid (DNA)loated at at spei� position on a hromosome. Genes enode funtional prod-uts, alled proteins, that determine the struture, funtion, and regulation ofan organism's ells and tissues.The gene's nuleotide sequene is used to onstrut proteins through a mul-tiple stage proess. In brief, the enyzme RNA polymerase transribes eah geneinto a omplementary strand of messenger ribonulei aid (mRNA) using theDNA as a template. Ribosomes then translate the mRNA into a spei� se-quene of amino aids forming a protein. Transription is ontrolled throughthe RNA polymerase by transription fators that let it target spei� pointson the DNA. The transription fators may themselves be ontrolled throughsignalling asades that relay signals from ellular or extra-ellular events. Typ-ially, a signalling asade phosphorylates (or dephosphorylates) a transriptionfator, hanging its onformation (i.e., physial struture) and its ability to bindto the transription site. Translation is ontrolled by many di�erent mehanisms,inluding repressors binding to mRNA that prevents translation into proteins.In our work, we fous on revising biologial models that relate external ellsignals to hanges in gene transription (as measured by mRNA) and, ultimately,phenotype. Spei�ally, we look at a model of photosynthesis regulation that isintended to explain why Cyanobateria bleahes when exposed to high light on-ditions and how this protets the organism. This model, shown in Figure 1, wasadapted from a model provided by a mirobiologist (Grossman et al., 2001)1.Eah node in the model orresponds to an observable or theoretial variable thatdenotes a measurable stimulus, gene expression level, or physial harateristi.Eah link stands for a ausal biologial proess through whih one variable in-uenes another. Solid lines in the �gure denote internal proesses, while dashesindiate proesses onneted to the environment.The model states that hanges in light level modulate the expression of dspA,a protein hypothesized to serve as a sensor. This in turn regulates NBLR andNBLA expression, whih then redues the number of phyobilisome (PBS) rodsthat absorb light. The level of PBS is measured photometrially as the organism'sgreenness. The redution in PBS protets the organism's health by reduingabsorption of light, whih an be damaging at high levels. The organism's health1 The paper desribes an initial model for high light response in the yanobateriumSynehoous. This model was modi�ed slightly for the yanobaterium used inour experiments, Synehoystis PCC6803, by ations suh as replaing nblS with itshomolog dspA.



3
Light

NBLR

RR

cpcB

psbA2

psbA1

Photo

NBLA PBS

Health
+

+

+

+ −

+

+

−

−

−

−

−

dspA

Figure 1. Initial model for photosynthesis regulation of wild type Cyanobateria.under high light onditions an be measured in terms of the ulture density.The sensor dspA impats health through a seond pathway by inuening anunknown response regulator RR, whih in turn down regulates expression ofthe gene produts psbA1, psbA2, and pB. The �rst two positively inuenethe level of photosyntheti ativity (Photo) by altering the struture of thephotosystem. If left unregulated, this seond pathway would also damage theorganism in high light onditions.Although the model inorporates quantitative variables, it is qualitative inthat it spei�es ause and e�et but not the exat numerial form of the re-lationship. For example, one ausal link indiates that inreases in NBLR willinrease NBLA, but it does not speify the form of the relationship, nor does itspeify any parameters.The model is both partial and abstrat. The biologist who proposed themodel made no laim about its ompleteness and learly viewed it as a workinghypothesis to whih additional genes and proesses should be added as indiatedby new data. Some links are abstrat in the sense that they denote entire hainsof subproesses. For example, the link from dspA to NBLR stands for a signalingpathway, the details of whih are not relevant at this level of analysis. The modelalso inludes a theoretial variable RR, an unspei�ed gene (or possibly a set ofgenes) that ats as an intermediary ontroller.3 An Approah to Revising Qualitative Causal ModelsIn this paper, we represent ausal relationships between variables with a linearmodel. That is, eah quantitative variable x(i) is represented with an equationin the following form: x(i) = i�1Xj=1A(i; j)x(j) + b(i) (1)where A(i; j) is the ausal e�et of variable x(j) on x(i), and b(i) is an additiveonstant. The variables are ordered and variable x(i) an only be inuened bythose variables that ome before it.



4 In matrix form we an represent the equations for all x(i), i = 1::N , asx = Ax+ b. In this formulation A(i; j) = 0 if i � j, where A(i; j) denotes theelement in row i and olumn j of A. This onstraint enfores a ausal orderingon the variables. A model is ompletely spei�ed by an ordering of variables inx and an assignment of values to all elements of A and b that satisfy the aboveonstraints.Let A0 and b0 represent the initial model. We transform qualitative models,suh as Figure 1, into a matrix A0 by setting A(i; j) = 1 if there is a positivelink from variable j to i in the model, A(i; j) = �1 if the link is negative, andA(i; j) = 0 otherwise. The vetor b0 is set to the zero for all its elements. GivenA0, b0 and observations on x, we learn new values for A and b as follows:1. Pik an initial ordering for variables in x.2. Learn the best real valued matrix A aording to a sore funtion thatpenalizes for di�erenes from A0, and is subjet to the ordering onstraints.3. Swap variables in the ordering and go to step 2 (i.e., perform hill-limbingsearh in the spae of variable orderings). Continue until the sore obtainedno longer improves.4. Transform the real matrix A with the best sore into a disrete version withA(i; j) 2 �1; 0; 1 by thresholding.Step 1 determines the starting state of the searh. Our approah selets arandom ordering that is onsistent with the partial ordering implied by the initialmodel.During Step 2, our method relies on an approah to equation revision thatinvolves transforming the equation x = Ax + b into a neural network, revisingweights in that network, and then transforming the network bak into equationsin a similar fashion to Saito et al. (2001).This neural network approah uses a knowledge-based MDL riterion duringtraining to penalize models that di�er from the initial model. Spei�ally, let w0be the parameter vetor of the neural network that orresponds to the initialmodel. Our revision task is de�ned as a problem to �nd w �tting to observeddata, but it must be reasonably lose to w0. To this end, we onsider a ommu-niation problem where a sender wishes to transmit a data set to a reeiver usinga message of the shortest possible length, whih is known as the MDL prinipleproposed by Rissanen (1989). However, unlike the standard MDL riterion, wean naturally assume that the initial model with w0 is known to the reeiverin our revision task. Namely, we try to send message length with respet tow0 �w, rather than those of w. Sine we an avoid enoding parameter valuesequal to initial ones, the initial model is preferred. The new parameters w0 �ware regarded as weights of the neural network, and their initial values are setto 0. Then, in order to obtain a learning result that is reasonably lose to theinitial model, the network is trained with weight deay, using a method alledthe MDL regularizer (Saito & Nakano, 1997).When there exist some unobserved variables, suh as RR in Figure 1, weannot diretly revise links assoiated with unobserved variables. To ope with



5suh situations, our method adopts a simple forward-bakward estimation basedon the initial model. Let x(i) be an unobserved variable, then its value an beforwardly estimated by using an equation, x̂(i)(0) = Pj A(i; j)x(j) + b(j). Onthe other hand, let S be a set of observed variables diretly linked from x(i), i.e.,S = fx(k) : k > i^A(k; i) 6= 0g. For x(k) 2 S, we an obtain an equation for thebakward estimation, x(i) = A(k; i)�1(x(k)�Pj 6=i A(k; j)x(j)�b(k)). Thus, letM be the number of elements in S, then we have a set of bakwardly estimatedvalues, say fx̂(i)(1); :::; x̂(i)(M)g. Finally, our method estimates the value of x(i)as their average, by using an equation, x̂(i) = (M + 1)�1PMm=0 x̂(i)(m). There-fore, we an revise all the parameters using these estimated values. Clearly, wean iterate the above pair of proedures, estimation of the unobserved variablesand revision of the parameters, although the urrent implementation makes onlyone pass.As stated above, our method performs gradient searh through a spae ofparameters on ausal links with weight deay driving the model toward integervalues. However, the resulting values are not stritly integers. To overome thisproblem, in step 4 we employ a simple thresholding method. After sorting theresulting parameter values to predit one variable x(i), our method divides thissorted list into three portions by using two thresholds, T�1 and T+1. Namely,parameter value A(i; j) is set to �1 if A(i; j) < T�1; +1 if A(i; j) > T+1; 0 oth-erwise. Note that T�1 � T+1, and we an obtain all possible integer lists withinomputational omplexity of O(N2), where N denotes the number of parame-ters. Finally, among these integer lists, our method selet the best result whihminimizes the MDL ost funtion de�ned by f0:5� (#samples)� log(MSE)g+f(#revised parameters) � log(N)g: Here MSE stands for the mean squarederror on the samples. The �rst term of the ost funtion is a ode length fortransmitting data, derived by assuming Gaussian noise for variables, while theseond term is a ode length for revision information, i.e., multipliation of thenumber of revised parameters and the ode length for an integer to indiatewhih parameter is revised.4 Experimental Studies of the Revision MethodIn this setion, we desribe experimental studies of our revision method. We takea dual approah of evaluating the system using both natural data obtained frommiroarrays of Cyanobateria ultures and syntheti data generated from knownmathematial models. Natural data lets us evaluate the biologial plausibilityof hanges suggested by our algorithm. However, beause we have an extremelylimited number of miroarrays, it an be diÆult to evaluate the reliability of thesuggested revisions even if they appear biologially plausible. Therefore, we alsoused syntheti data to evaluate the robustness and reliability of our approah.Beause we an generate syntheti data from a known model, we an measurethe sensitivity and reliability of our algorithm in the presene of ompliatingfators suh as errors in the initial model, small sample sizes, and noise.



64.1 Revising the Model of Photosynthesis RegulationWe applied our method to revise the regulatory model of photosynthesis forwild type Cyanobateria.We have miroarray data whih inludes measurementsfor approximately 300 genes believed to play a role in photosynthesis. For thisanalysis, we fous on the genes in the model and do not onsider links to othergenes. The array data were olleted at 0, 30, 60, 120, and 360 minutes afterhigh light onditions were introdued, with four repliated measurements ateah time point. We treat both RR and Photo, whih represents the strutureof the photosystem, as unmeasured variables. We urrently treat the data asindependent samples and ignore their temporal aspet, along with dependeniesamong the four repliates.We implemented our method in the C programming language and ondutedall experiments on a 1:3 Ghz Pentium running Linux. Revising the photosynthe-sis model took 0.02 seonds of CPU time. For eah variable, the observed valueswere normalized to a mean of zero and a standard deviation of one. Figure 2shows the revised model, whih reets the three hanges:1. dropping the link from dspA to RR;2. onneting Photo to RR instead of psbA1 and psbA2; and3. hanging the sign of the link from PBS to Health from negative to positive.The �rst two hanges are diÆult to explain from a biologial perspetive. Be-ause dspA is a light sensor, there should be either a diret or indiret pathlinking it with the genes pB, psbA1, or psbA2. Dropping the link disonnetsdspA from those genes and removes it as possible ause. Also, the strutureof the photosystem (Photo) is believed to depend on at least one of psbA1 orpsbA2, and onneting Photo only to RR removes psbA1 and psbA2 as parents2. Changing the sign of the link from PBS to Health is more plausible. The ini-tial model was spei�ed for high light onditions in whih exessive light levelsdamage the organism. However, at lower light levels, inreased PBS should aidthe organism beause it is vital omponent in energy prodution. One expla-nation suggested by the mirobiologist is that light levels during the biologialexperiment may not have been set orretly and were not high enough to reduehealth.4.2 Robustness of the Revision ApproahWe evaluated the robustness of our approah by generating syntheti data froma known model and varying fators of interest. Spei�ally, we varied the numberof training samples, the number of errors in the initial model, the observabilityof variables, and the noise level. We expeted eah of these fators to inuenethe behavior of the revision algorithm.2 The genes psbA1 and psbA2 enode variants of the D1 protein, a neessary andentral omponent of the Photosystem II reation enter (Wiklund et al., 2001).
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+Figure 2. Revised model of photosynthesis regulation in Cyanobateria.We generated data sets with 25, 50, and 100 examples by treating the stru-ture of the model in Figure 1 as the true model. We assumed that eah variablewas a linear funtion of its parents with noise added from a random normal dis-tribution (� = 0:1 unless otherwise spei�ed). The root ausal variable, Light,has no parents and was assigned a random uniform value between 0 and 1. Wegenerated initial models to serve as starting points for revision by randomlyadding links to, or deleting links from, the true model in Figure 1.Figure 3 shows the experimental results with the x axis representing thenumber of errors in the initial model and the y axis representing the averagenumber of orretions (i.e., orret hanges minus inorret hanges) suggestedby the revision proess. Eah point represents the average of 20 trials. Part (a)shows the ability of our system to orret errors in the model when all variablesare observable. In general, there was good performane and even with as few as25 samples, our system an onsistently orret almost all of the errors in theinitial model. More training samples tended to improve performane. Part (b)shows the results when a variable, spei�ally RR, is unobserved. Overall, theperformane dereases substantially ompared to full observability. However, oursystem still has enough power to suggest orret revisions improving the model.Parts () and (d) show the performane with RR unobserved at greater noiselevels with � = 0:2 and � = 0:4 respetively. The number of orretions isomparable to � = 0:1 and suggests that our approah is robust to this type ofnoise. Note that � = 0:4 represents a large noise level in omparison with therange of the variables (e.g., light varies from 0 to 1). Finally, we observe thatwhen the initial model was orret (zero errors), our system never suggestedhanges to the model.5 Future ResearhThe results from our experiments on Cyanobateria data were disappointing, asthey were diÆult to explain from a biologial perspetive. However, on synthetidata our system was able to improve inorret initial models even when therewere few training samples, unobserved variables, and noise.
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(d)Figure 3. Average number of orretions to the initial model for 25, 50, and 100 sam-ples when (a) all variables observed, � = 0:1, (b) syntheti variable RR is unobserved,� = 0:1, () RR unobserved, � = 0:2, and (d) RR unobserved, � = 0:4..



9This suggests that our general approah is feasible, but that we may need toaddress some of the limitations, hosen by design, in our approah. For instane,we modeled the relationships between genes as a linear funtion. Although linearmodels are desirable beause they have few parameters, they annot model om-binatorial e�ets among genes or thresholds in whih a gene's expression mustbe above a ertain level before it an a�et other genes. The neural networkapproah to revision is not limited to linear models and we ould use a moregeneral form to represent relationships between genes.We also restrited the genes that ould appear in the model to a small subsetof those measured by the miroarray hips. The omplete set of data ontainsabout 300 variables from whih we used the 11 variables present in the initialmodel. Restriting the number of variables is a tradeo�. Inluding too manyvariables for the number of samples makes estimating relationships unreliablebeause of the multiple hypothesis testing problem (Sha�er, 1995). However,using too few variables inreases the likelihood that we may have ignored an im-portant variable from the analysis. Future implementations ould minimize thisproblem by inluding an operator for adding new genes during the revision pro-ess and using domain knowledge to selet only the most promising andidatesfor inorporation into the model.In addition, we should extend our approah to model revision in variousother ways. Sine transriptional gene regulation takes time to our, a sueed-ing system should searh through an expanded spae of models that inludetime delays on links3and feedbak yles. To handle more omplex biologialproesses, it should also be able to represent and revise models with subsystemsthat have little interation with eah other. Finally, eah of these extensionswould bene�t from inorporation of additional biologial knowledge, ast as tax-onomies over both genes and regulatory proesses, to onstrain the searh forimproved models.Finally we must test our approah on both more regulatory models and moremiroarray data before we an judge its pratial value. Our biologist ollabora-tors are olleting additional data on Cyanobateria under more variable ondi-tions, whih we predit will provide additional power to our revision method. Wealso plan to evaluate the tehnique on additional data sets that we have aquiredfrom other biologists, inluding ones that involve yeast development and lunganer.6 Related WorkAlthough most omputational analyses of miroarray data rely on lusteringto group related genes, we are not the �rst to fous on induing ausal mod-els of gene regulation. Most researh on this topi enodes regulatory mod-els as Bayesian networks with disrete variables (e.g., Friedman et al., 2000;Hartemink, 2002; Ong et al., 2002). Beause miroarray data are quantitative,3 An alternative is to model the regulation between genes with di�erential equations,possibly with expliit time delays.



10this approah often inludes a disretization step that may lose important in-formation, whereas our approah deals diretly with the observed ontinuousvalues.4 These researhers also report methods that onstrut ausal modelsfrom srath, rather than revising an initial model, though some inorporatebakground knowledge to onstrain the searh proess.An alternative approah represents hypotheses about gene regulation as lin-ear ausal models, whih relate ontinuous variables through a set of linear equa-tions. Suh systems evaluate andidate models in terms of their ability to preditonstraints among partial orrelations, rather than their ability to predit thedata diretly. Within this framework, some methods (e.g., Saavedra et al., 2001)onstrut a linear ausal model from the ground up, whereas others (e.g., Lang-ley et al., 2002) instead revise an initial model, as in the approah we report here.One advantage of this onstraint-based paradigm is that it an infer qualitativemodels diretly, without the need to disretize or �t ontinuous parameters. Inontrast, our tehnique ombines searh through a parameter spae with weightdeay to ahieve a similar end.We should also mention approahes that, although not onerned with generegulation, also onstrut ausal models in sienti� domains. One exampleomes from Koza et al. (2001), whose method formulates a quantitative modelof metaboli proesses from syntheti time series about hemial onentrations.Another involves Zupan et al.'s (2001) GenePath, whih infers a qualitativegeneti network to explain phenotypi results from gene knokout experiments.Mahidadia and Compton (2001) report an interative system for revising quali-tative models from experimental results in neuroendorinology. Finally, our ap-proah to revising sienti� models borrows ideas from Saito et al. (2001), whotransform an initial quantitative model into a neural network and utilize weightlearning to improve its �t to observations.7 ConlusionsIn this paper, we haraterized the task of disovering a qualitative ausal modelof gene regulation based on data from DNA miroarrays. Rather than attemptingto onstrut the model from srath, we instead assume an existing model hasbeen provided biologists who want to improve its �t to the data. These modelsrequire a ausal ordering on variables, links between variables, and signs onthese links. We presented an approah to this revision task that ombines a hill-limbing searh through the spae of variable orderings and a gradient desentsearh for weights on links, with the latter using a weight deay method guidedby minimum desription length to drive weights to integer values.We illustrated the method's behavior on a model of photosynthesis regulationin Cyanobateria, using miroarray data from biologial experiments. However,our experimental evaluation also relied on syntheti data, whih let us varysystematially the distane between the initial and target models, the amount of4 Imoto et al. (2002) report one way to indue quantitative models of gene regulationwithin the framework of Bayesian networks.
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