Revising Qualitative Models of Gene Regulation
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Abstract. We present an approach to revising qualitative causal mod-
els of gene regulation with DNA microarray data. The method combines
search through a space of variable orderings with search through a space
of parameters on causal links, with weight decay driving the model to-
ward integer values. We illustrate the technique on a model of photo-
synthesis regulation and associated microarray data. Experiments with
synthetic data that varied distance from the target model, noise, and
number of training cases suggest the method is robust with respect to
these factors. In closing, we consider related work on inducing causal
regulatory models and suggest directions for future research.

1 Introduction and Motivation

Like other sciences, biology requires that its models fit available data. However,
as the field moves from a focus on isolated processes to system-level behaviors,
developing and evaluating models has become increasingly difficult. This chal-
lenge has become especially clear with respect to models of gene regulation,
which attempt to explain complex interactions in which the expression levels of
some genes influence the expression levels of others. A related challenge concerns
a shift in the nature of biological data collection from focused experiments, which
involve only a few variables, to cDNA microarrays, which measure thousands of
expression levels at the same time.

In this paper, we describe an approach that takes advantage of such nonex-
perimental data to revise existing models of gene regulation. Our method uses
these data, combined with knowledge about the domain, to direct search for a
model that better explains the observations. We emphasize qualitative causal ac-
counts because biologists typically cast their regulatory models in this form. We
focus on model revision, rather than constructing models from scratch, because
biologists often have partial models for the systems they study.

We begin with a brief review of molecular biology and biochemistry, including
the central notion of gene regulation, then present an existing regulatory model
of photosynthesis. After this, we describe our method for using microarray data
to improve such models, which combines ideas from learning in neural networks
and the notion of minimum description length. Next we report experimental



studies of the method that draws on both biological and synthetic data, along
with the results of these experiments. In closing, we consider related work on
inducing causal models of gene regulation and directions for future research on
this topic.

2 Qualitative Causal Models of Gene Regulation

A gene is a fundamental unit of heredity that determines an organism’s physical
traits. It is an ordered sequence of nucleotides in deoxyribonucleic acid (DNA)
located at at specific position on a chromosome. Genes encode functional prod-
ucts, called proteins, that determine the structure, function, and regulation of
an organism’s cells and tissues.

The gene’s nucleotide sequence is used to construct proteins through a mul-
tiple stage process. In brief, the enyzme RNA polymerase transcribes each gene
into a complementary strand of messenger ribonucleic acid (mRNA) using the
DNA as a template. Ribosomes then translate the mRNA into a specific se-
quence of amino acids forming a protein. Transcription is controlled through
the RNA polymerase by transcription factors that let it target specific points
on the DNA. The transcription factors may themselves be controlled through
signalling cascades that relay signals from cellular or extra-cellular events. Typ-
ically, a signalling cascade phosphorylates (or dephosphorylates) a transcription
factor, changing its conformation (i.e., physical structure) and its ability to bind
to the transcription site. Translation is controlled by many different mechanisms,
including repressors binding to mRNA that prevents translation into proteins.

In our work, we focus on revising biological models that relate external cell
signals to changes in gene transcription (as measured by mRNA) and, ultimately,
phenotype. Specifically, we look at a model of photosynthesis regulation that is
intended to explain why Cyanobacteria bleaches when exposed to high light con-
ditions and how this protects the organism. This model, shown in Figure 1, was
adapted from a model provided by a microbiologist (Grossman et al., 2001)!.
Each node in the model corresponds to an observable or theoretical variable that
denotes a measurable stimulus, gene expression level, or physical characteristic.
Each link stands for a causal biological process through which one variable in-
fluences another. Solid lines in the figure denote internal processes, while dashes
indicate processes connected to the environment.

The model states that changes in light level modulate the expression of dspA,
a protein hypothesized to serve as a sensor. This in turn regulates NBLR and
NBLA expression, which then reduces the number of phycobilisome (PBS) rods
that absorb light. The level of PBS is measured photometrically as the organism’s
greenness. The reduction in PBS protects the organism’s health by reducing
absorption of light, which can be damaging at high levels. The organism’s health

! The paper describes an initial model for high light response in the cyanobacterium
Synechococcus. This model was modified slightly for the cyanobacterium used in
our experiments, Synechocystis PCC6803, by actions such as replacing nblS with its
homolog dspA.
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Figure 1. Initial model for photosynthesis regulation of wild type Cyanobacteria.

under high light conditions can be measured in terms of the culture density.
The sensor dspA impacts health through a second pathway by influencing an
unknown response regulator RR, which in turn down regulates expression of
the gene products psbA1l, pshA2, and cpcB. The first two positively influence
the level of photosynthetic activity (Photo) by altering the structure of the
photosystem. If left unregulated, this second pathway would also damage the
organism in high light conditions.

Although the model incorporates quantitative variables, it is qualitative in
that it specifies cause and effect but not the exact numerical form of the re-
lationship. For example, one causal link indicates that increases in NBLR will
increase NBLA, but it does not specify the form of the relationship, nor does it
specify any parameters.

The model is both partial and abstract. The biologist who proposed the
model made no claim about its completeness and clearly viewed it as a working
hypothesis to which additional genes and processes should be added as indicated
by new data. Some links are abstract in the sense that they denote entire chains
of subprocesses. For example, the link from dspA to NBLR stands for a signaling
pathway, the details of which are not relevant at this level of analysis. The model
also includes a theoretical variable RR, an unspecified gene (or possibly a set of
genes) that acts as an intermediary controller.

3 An Approach to Revising Qualitative Causal Models

In this paper, we represent causal relationships between variables with a linear
model. That is, each quantitative variable z (i) is represented with an equation
in the following form:

i-1
w(i) =Y A(i, j)=(j) + b(i) (1)
j=1
where A(i, j) is the causal effect of variable z(j) on x(i), and b(i) is an additive
constant. The variables are ordered and variable z(i) can only be influenced by
those variables that come before it.



In matrix form we can represent the equations for all x(i), i = 1..N, as
x = Ax + b. In this formulation A(i,5) = 0 if i < j, where A(i,j) denotes the
element in row 7 and column j of A. This constraint enforces a causal ordering
on the variables. A model is completely specified by an ordering of variables in
x and an assignment of values to all elements of A and b that satisfy the above
constraints.

Let A and bg represent the initial model. We transform qualitative models,
such as Figure 1, into a matrix Ag by setting A(i,j) = 1 if there is a positive
link from variable j to i in the model, A(i,j) = —1 if the link is negative, and
A(i, 7) = 0 otherwise. The vector by is set to the zero for all its elements. Given
Ay, by and observations on x, we learn new values for A and b as follows:

1. Pick an initial ordering for variables in x.

2. Learn the best real valued matrix A according to a score function that
penalizes for differences from Ay, and is subject to the ordering constraints.

3. Swap variables in the ordering and go to step 2 (i.e., perform hill-climbing
search in the space of variable orderings). Continue until the score obtained
no longer improves.

4. Transform the real matrix A with the best score into a discrete version with
A(i,j) € —1,0,1 by thresholding.

Step 1 determines the starting state of the search. Our approach selects a
random ordering that is consistent with the partial ordering implied by the initial
model.

During Step 2, our method relies on an approach to equation revision that
involves transforming the equation x = Ax + b into a neural network, revising
weights in that network, and then transforming the network back into equations
in a similar fashion to Saito et al. (2001).

This neural network approach uses a knowledge-based MDL criterion during
training to penalize models that differ from the initial model. Specifically, let wy
be the parameter vector of the neural network that corresponds to the initial
model. Our revision task is defined as a problem to find w fitting to observed
data, but it must be reasonably close to wqg. To this end, we consider a commu-
nication problem where a sender wishes to transmit a data set to a receiver using
a message of the shortest possible length, which is known as the MDL principle
proposed by Rissanen (1989). However, unlike the standard MDL criterion, we
can naturally assume that the initial model with wq is known to the receiver
in our revision task. Namely, we try to send message length with respect to
wo — w, rather than those of w. Since we can avoid encoding parameter values
equal to initial ones, the initial model is preferred. The new parameters wg — w
are regarded as weights of the neural network, and their initial values are set
to 0. Then, in order to obtain a learning result that is reasonably close to the
initial model, the network is trained with weight decay, using a method called
the MDL regularizer (Saito & Nakano, 1997).

When there exist some unobserved variables, such as RR in Figure 1, we
cannot directly revise links associated with unobserved variables. To cope with



such situations, our method adopts a simple forward-backward estimation based
on the initial model. Let x(i) be an unobserved variable, then its value can be
forwardly estimated by using an equation, 2(i)(®) = > AL )z(5) +b(j). On
the other hand, let S be a set of observed variables directly linked from z(i), i.e.,
S ={z(k): k> iNA(k,i) # 0}. For z(k) € S, we can obtain an equation for the
backward estimation, z(i) = A(k,4) ! (z(k) =2 Ak, 7)z(j) —b(k)). Thus, let
M be the number of elements in S, then we have a set of backwardly estimated
values, say {#(i)("), ..., #(i)(™)}. Finally, our method estimates the value of z(i)
as their average, by using an equation, (i) = (M + 1)~} Z%ZO #(i)™ . There-
fore, we can revise all the parameters using these estimated values. Clearly, we
can iterate the above pair of procedures, estimation of the unobserved variables
and revision of the parameters, although the current implementation makes only
one pass.

As stated above, our method performs gradient search through a space of
parameters on causal links with weight decay driving the model toward integer
values. However, the resulting values are not strictly integers. To overcome this
problem, in step 4 we employ a simple thresholding method. After sorting the
resulting parameter values to predict one variable z(i), our method divides this
sorted list into three portions by using two thresholds, 7"; and T%;. Namely,
parameter value A(i, j) is set to —1if A(i,j) < T_q1; +1if A(i,5) > T41; 0 oth-
erwise. Note that 7y < T41, and we can obtain all possible integer lists within
computational complexity of O(N?), where N denotes the number of parame-
ters. Finally, among these integer lists, our method select the best result which
minimizes the MDL cost function defined by {0.5 x (#samples) x log(M SE)} +
{(#revised parameters) x log(N)}. Here MSE stands for the mean squared
error on the samples. The first term of the cost function is a code length for
transmitting data, derived by assuming Gaussian noise for variables, while the
second term is a code length for revision information, i.e., multiplication of the
number of revised parameters and the code length for an integer to indicate
which parameter is revised.

4 Experimental Studies of the Revision Method

In this section, we describe experimental studies of our revision method. We take
a dual approach of evaluating the system using both natural data obtained from
microarrays of Cyanobacteria cultures and synthetic data generated from known
mathematical models. Natural data lets us evaluate the biological plausibility
of changes suggested by our algorithm. However, because we have an extremely
limited number of microarrays, it can be difficult to evaluate the reliability of the
suggested revisions even if they appear biologically plausible. Therefore, we also
used synthetic data to evaluate the robustness and reliability of our approach.
Because we can generate synthetic data from a known model, we can measure
the sensitivity and reliability of our algorithm in the presence of complicating
factors such as errors in the initial model, small sample sizes, and noise.



4.1 Revising the Model of Photosynthesis Regulation

We applied our method to revise the regulatory model of photosynthesis for
wild type Cyanobacteria. We have microarray data which includes measurements
for approximately 300 genes believed to play a role in photosynthesis. For this
analysis, we focus on the genes in the model and do not consider links to other
genes. The array data were collected at 0, 30, 60, 120, and 360 minutes after
high light conditions were introduced, with four replicated measurements at
each time point. We treat both RR and Photo, which represents the structure
of the photosystem, as unmeasured variables. We currently treat the data as
independent samples and ignore their temporal aspect, along with dependencies
among the four replicates.

We implemented our method in the C programming language and conducted
all experiments on a 1.3 Ghz Pentium running Linux. Revising the photosynthe-
sis model took 0.02 seconds of CPU time. For each variable, the observed values
were normalized to a mean of zero and a standard deviation of one. Figure 2
shows the revised model, which reflects the three changes:

1. dropping the link from dspA to RR;
2. connecting Photo to RR instead of psbA1 and psbA2; and
3. changing the sign of the link from PBS to Health from negative to positive.

The first two changes are difficult to explain from a biological perspective. Be-
cause dspA is a light sensor, there should be either a direct or indirect path
linking it with the genes cpcB, psbA1l, or pshA2. Dropping the link disconnects
dspA from those genes and removes it as possible cause. Also, the structure
of the photosystem (Photo) is believed to depend on at least one of psbAl or
psbA2, and connecting Photo only to RR removes psbA1l and psbA2 as parents
2

Changing the sign of the link from PBS to Health is more plausible. The ini-
tial model was specified for high light conditions in which excessive light levels
damage the organism. However, at lower light levels, increased PBS should aid
the organism because it is vital component in energy production. One expla-
nation suggested by the microbiologist is that light levels during the biological
experiment may not have been set correctly and were not high enough to reduce
health.

4.2 Robustness of the Revision Approach

We evaluated the robustness of our approach by generating synthetic data from
a known model and varying factors of interest. Specifically, we varied the number
of training samples, the number of errors in the initial model, the observability
of variables, and the noise level. We expected each of these factors to influence
the behavior of the revision algorithm.

2 The genes psbA1 and psbA2 encode variants of the D1 protein, a necessary and
central component of the Photosystem II reaction center (Wiklund et al., 2001).
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Figure 2. Revised model of photosynthesis regulation in Cyanobacteria.

We generated data sets with 25, 50, and 100 examples by treating the struc-
ture of the model in Figure 1 as the true model. We assumed that each variable
was a linear function of its parents with noise added from a random normal dis-
tribution (o = 0.1 unless otherwise specified). The root causal variable, Light,
has no parents and was assigned a random uniform value between 0 and 1. We
generated initial models to serve as starting points for revision by randomly
adding links to, or deleting links from, the true model in Figure 1.

Figure 3 shows the experimental results with the z axis representing the
number of errors in the initial model and the y axis representing the average
number of corrections (i.e., correct changes minus incorrect changes) suggested
by the revision process. Each point represents the average of 20 trials. Part (a)
shows the ability of our system to correct errors in the model when all variables
are observable. In general, there was good performance and even with as few as
25 samples, our system can consistently correct almost all of the errors in the
initial model. More training samples tended to improve performance. Part (b)
shows the results when a variable, specifically RR, is unobserved. Overall, the
performance decreases substantially compared to full observability. However, our
system still has enough power to suggest correct revisions improving the model.
Parts (c) and (d) show the performance with RR unobserved at greater noise
levels with ¢ = 0.2 and ¢ = 0.4 respectively. The number of corrections is
comparable to ¢ = 0.1 and suggests that our approach is robust to this type of
noise. Note that ¢ = 0.4 represents a large noise level in comparison with the
range of the variables (e.g., light varies from 0 to 1). Finally, we observe that
when the initial model was correct (zero errors), our system never suggested
changes to the model.

5 Future Research

The results from our experiments on Cyanobacteria data were disappointing, as
they were difficult to explain from a biological perspective. However, on synthetic
data our system was able to improve incorrect initial models even when there
were few training samples, unobserved variables, and noise.
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This suggests that our general approach is feasible, but that we may need to
address some of the limitations, chosen by design, in our approach. For instance,
we modeled the relationships between genes as a linear function. Although linear
models are desirable because they have few parameters, they cannot model com-
binatorial effects among genes or thresholds in which a gene’s expression must
be above a certain level before it can affect other genes. The neural network
approach to revision is not limited to linear models and we could use a more
general form to represent relationships between genes.

We also restricted the genes that could appear in the model to a small subset
of those measured by the microarray chips. The complete set of data contains
about 300 variables from which we used the 11 variables present in the initial
model. Restricting the number of variables is a tradeoff. Including too many
variables for the number of samples makes estimating relationships unreliable
because of the multiple hypothesis testing problem (Shaffer, 1995). However,
using too few variables increases the likelihood that we may have ignored an im-
portant variable from the analysis. Future implementations could minimize this
problem by including an operator for adding new genes during the revision pro-
cess and using domain knowledge to select only the most promising candidates
for incorporation into the model.

In addition, we should extend our approach to model revision in various
other ways. Since transcriptional gene regulation takes time to occur, a succeed-
ing system should search through an expanded space of models that include
time delays on links®and feedback cycles. To handle more complex biological
processes, it should also be able to represent and revise models with subsystems
that have little interaction with each other. Finally, each of these extensions
would benefit from incorporation of additional biological knowledge, cast as tax-
onomies over both genes and regulatory processes, to constrain the search for
improved models.

Finally we must test our approach on both more regulatory models and more
microarray data before we can judge its practical value. Our biologist collabora-
tors are collecting additional data on Cyanobacteria under more variable condi-
tions, which we predict will provide additional power to our revision method. We
also plan to evaluate the technique on additional data sets that we have acquired
from other biologists, including ones that involve yeast development and lung
cancer.

6 Related Work

Although most computational analyses of microarray data rely on clustering
to group related genes, we are not the first to focus on inducing causal mod-
els of gene regulation. Most research on this topic encodes regulatory mod-
els as Bayesian networks with discrete variables (e.g., Friedman et al., 2000;
Hartemink, 2002; Ong et al., 2002). Because microarray data are quantitative,

% An alternative is to model the regulation between genes with differential equations,
possibly with explicit time delays.
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this approach often includes a discretization step that may lose important in-
formation, whereas our approach deals directly with the observed continuous
values.* These researchers also report methods that construct causal models
from scratch, rather than revising an initial model, though some incorporate
background knowledge to constrain the search process.

An alternative approach represents hypotheses about gene regulation as lin-
ear causal models, which relate continuous variables through a set of linear equa-
tions. Such systems evaluate candidate models in terms of their ability to predict
constraints among partial correlations, rather than their ability to predict the
data directly. Within this framework, some methods (e.g., Saavedra et al., 2001)
construct a linear causal model from the ground up, whereas others (e.g., Lang-
ley et al., 2002) instead revise an initial model, as in the approach we report here.
One advantage of this constraint-based paradigm is that it can infer qualitative
models directly, without the need to discretize or fit continuous parameters. In
contrast, our technique combines search through a parameter space with weight
decay to achieve a similar end.

We should also mention approaches that, although not concerned with gene
regulation, also construct causal models in scientific domains. One example
comes from Koza et al. (2001), whose method formulates a quantitative model
of metabolic processes from synthetic time series about chemical concentrations.
Another involves Zupan et al.’s (2001) GENEPATH, which infers a qualitative
genetic network to explain phenotypic results from gene knockout experiments.
Mahidadia and Compton (2001) report an interactive system for revising quali-
tative models from experimental results in neuroendocrinology. Finally, our ap-
proach to revising scientific models borrows ideas from Saito et al. (2001), who
transform an initial quantitative model into a neural network and utilize weight
learning to improve its fit to observations.

7 Conclusions

In this paper, we characterized the task of discovering a qualitative causal model
of gene regulation based on data from DNA microarrays. Rather than attempting
to construct the model from scratch, we instead assume an existing model has
been provided biologists who want to improve its fit to the data. These models
require a causal ordering on variables, links between variables, and signs on
these links. We presented an approach to this revision task that combines a hill-
climbing search through the space of variable orderings and a gradient descent
search for weights on links, with the latter using a weight decay method guided
by minimum description length to drive weights to integer values.

We illustrated the method’s behavior on a model of photosynthesis regulation
in Cyanobacteria, using microarray data from biological experiments. However,
our experimental evaluation also relied on synthetic data, which let us vary
systematically the distance between the initial and target models, the amount of

* Tmoto et al. (2002) report one way to induce quantitative models of gene regulation
within the framework of Bayesian networks.
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training data available, and the noise in these data. We found that the method
scaled well on each of these dimensions, which suggests that it may prove a useful
tool for revising models based on biological data. We noted that our approach has
both similarities to, and differences from, other recent techniques for inducing
causal models of gene regulation. We must still evaluate the method on other
data sets and extend it on various fronts, but our initial experiments on synthetic
data have been encouraging.
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