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Abstract

In this paper we present an average-case anal-
ysis of the naive Bayesian classifier, a sim-
ple induction algorithm that performs well
in many domains. Our analysis assumes a
monotone ‘M of N’ target concept and train-
ing data that consists of independent Boolean
attributes. The analysis supposes a known
target concept and distribution of instances,
but includes parameters for the number of
training cases, the number of irrelevant, rel-
evant, and necessary attributes, the proba-
bility of each attribute, and the amount of
class noise. Our approach differs from most
previous average-case analyses by introduc-
ing approximations to achieve computational
tractability. This lets us explore the behav-
ioral implications for larger training and at-
tribute sets than the earlier exact analyses,
and experimental studies show that the anal-
ysis makes very accurate predictions despite
its use of approximations. In closing, we sug-
gest promising directions for future research
on the average-case analysis of induction.

1 Introduction and Motivation

Typical theoretical analyses of machine learning focus
on worst-case results, including those in the ‘probably
approximately correct’ framework (Haussler, 1990).
Although this approach lets analysts obtain quite gen-
eral, distribution-free results, it also means their pre-
dictions of learning rate are much slower than those ob-
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served in practice. As a result, the link between theory
and experiment in machine learning has become tenu-
ous, leading some researchers to explore other paths.

An alternative approach involves the average-case
analysis of specific induction algorithms on domains
with known characteristics. For example, Pazzani and
Sarrett (1992) report early results of this sort for a
conjunctive learning method, and similar studies have
been done for decision stumps (Iba & Langley, 1992),
the naive Bayesian classifier (Langley, Iba, & Thomp-
son, 1992), 1-nearest neighbor (Langley & Iba, 1992),
and k-nearest neighbor (Okamoto & Nobuhiro, 1997).
Each analysis produced predictions about the effect of
domain characteristics, averaged over different train-
ing sets, that fit experimental data very closely.

However, this theoretical accuracy came with a price.
For even simple methods like naive Bayes and nearest
neighbor, the calculations needed to predict behavior
could take drastically longer than actually running ex-
periments with synthetic data, even when the latter
averaged over many training sets. The difficulty re-
sulted from the analyses’ reliance on the exact calcu-
lation of probabilities for all possible combinations of
events. For many induction methods, the number of
such events grows exponentially with the number of at-
tributes and size of the training set. This meant that
theoretical predictions were only possible for small do-
mains and early parts of the learning curve.

In this paper, we present a more tractable approach to
the average-case analysis of induction algorithms. We
demonstrate the framework with a new treatment of
the naive Bayesian classifier, both because of the grow-
ing interest with this simple yet powerful method (e.g.,
Domingos & Pazzani, 1997) and because our earlier
results were especially problematic in computational
terms. The new analysis uses many of the same tech-
niques as the previous one, but it introduces approx-



imations based on the normal distribution that let us
calculate means and variances for the sums and dif-
ferences of quantities, rather than reasoning about the
probabilities of their explicit combinations.! The re-
sult is a tractable average-case analysis of naive Bayes
that, as experimental studies reveal, remains accurate
despite its use of approximations.

2 A Brief Review of Naive Bayes

Although it has a long history in pattern recognition
(Duda & Hart, 1973), the naive Bayesian classifier
first appeared in the machine learning literature as a
straw man against which to compare more sophisti-
cated methods (e.g., Cestnik, Konenenko, & Bratko,
1987). Only gradually did researchers become aware
of its potential, but now it is widely recognized as a
viable and robust approach to supervised induction.

Before beginning the analysis, we should review the
manner in which naive Bayes operates. The method
represents each class with a single probabilistic sum-
mary, each having an associated class probability or
base rate, p(C), which specifies the probability that
one will observe a member of class C'. Every descrip-
tion also includes an associated conditional probability
distribution for each attribute. For symbolic domains,
on which we will focus here, one typically stores a dis-
crete distribution for each attribute in a description,
with each p(v|C) term specifying the probability of
value v given an instance of class C.

To classify a new instance I, which is simply a conjunc-
tion of attribute values A v;, the naive Bayesian clas-
sifier applies Bayes’ theorem to determine the proba-
bility of each description given the instance, giving

P(C;)P(I|C;)
P(I)
P(C) TT;, P(v;]Cy)

S P(CO T, P(v;|Cr)

where K is the number of classes, .J is the number of
attributes, and P(v;|Cy) is the conditional probability
for the observed value of attribute 5 given the class Cj.
The product of conditional probabilities comes from
the assumption that attributes are independent given
the class, which greatly simplifies the computation of

P(Ci|T) =

!Golea and Marchand (1993) report an average-case
analysis of perceptron learning that also incorporates nor-
mal approximations, but their work includes other ideas
from statistical mechanics that make it inaccessible to the
machine learning community.
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the class scores and eases the induction process. After
calculating P(C;|I) for each class, the algorithm as-
signs the instance to the class with the highest overall
score or probability.

Although the above formulation of naive Bayes is the
traditional one, we can express the score for each class
in another form that is more tractable for analyti-
cal purposes. The basic idea is that, if we are con-
cerned only with predictive accuracy, we can invoke
any monotonic transformation that does not affect the
ordering on class scores. One transformation involves
removing the denominator, which is the same for each
class, and another involves taking the logarithm of the
numerator. Together, these produce a new score

Sc =logP(C) + ZlogP(vﬂC) .

atts

In fact, this form is often used in practice (e.g., Lang-
ley & Sage, 1994), since it is efficient to calculate and
reduces round-off errors due to small fractions. The
new score S¢ is no longer a probability, but is quite
sufficient to predict the most probable class.

We should also discuss the estimation of probabili-
ties in this expression. The typical implementation
of naive Bayes stores an overall count n, one count k¢
for each class, and one count c; for each attribute value
given the class. During training, the induction algo-
rithm increments the overall count on each training
instance, increments the class count for each example
of that class, and increments the class-specific count
for each attribute value that appears in the instance.
During performance, the classifier uses these counts to
estimate probabilities, giving

k(* Cj
Sc =1 — l .
() i (2)
atts
However, if the algorithm has not seen a particular

class or an attribute value for some class during learn-
ing, a slight problem arises because a count is zero.

Clark and Niblett (1988) dealt with this issue by check-
ing for zero counts and using % as the probability when
this occurred. A more common approach is to assume
‘uniform priors’ over both the classes and the values
for each attribute, which can be achieved by using the
same initial count for each attribute-value pair and
their sum for the class count.? A common decision is

2The size of these counts reflects the degree to which one
believes the prior probabilities they produce, with higher
initial counts taking more training data to overcome them.
The same approach underlies Cestnik and Bratko’s (1991)
m estimate for balancing prior beliefs and experience.
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to initialize counts to 1 for each value, which we will
also assume in our analysis. Moreover, since we as-
sume Boolean attributes, we will set the initial count
for each class to 2, and since we assume two classes,
we will use 4 as the initial total count. This results in
prior probabilities of % for both classes and for each
value given a class.

These decisions about how to initialize counts require
a slight revision of the score for each class. Moreover,
our assumption that attributes are Boolean lets us
store only one count c; for each attribute, for when it
is present in an instance (i.e., has value TRUE). When
the attribute is absent from an instance (i.e., has value
FALSE), we can simply use k¢ —c; as the count. We can
reflect this in the score by separating the contribution
for features that are present and absent, giving

ko +2 ci+1
I % log [ &2
"9<n+4>+Z Og<k0+2>

atts

kc —cj+1
+Zlog <7kc+2 >

atts

Sc =

We can also remove the denominator n + 4 in the first
term, since it is the same for both classes. This mod-
ified form of the class score will play a central role in
our average-case analysis of naive Bayes.

3 Analysis of Classification Accuracy

We will assume that the target concept C' is a mono-
tone function of r relevant Boolean attributes that re-
turns TRUE if ¢ or more of these r attributes are present
and returns FALSE otherwise. Thus, for a ‘3 of 5’ con-
cept, any instance that has three, four, or five features
present is a positive example of the concept. We fur-
ther suppose that there are i irrelevant Boolean at-
tributes that play no role in the target concept, giving
r + 1 total Boolean features, each of which occurs with
probability P(A). We further posit that attributes are
independent of each other. For now, we also assume
that both training and test data are noise free, though
we will return to this issue later.

Given this information, we want to predict the prob-
ability A(n) of classifying a test case correctly after
naive Bayes has seen n training instances. We can
partition this accuracy measure into two components,
one dealing with positive test cases and the other with
negative test cases. Both terms involve summing over
different types of test cases that differ in the number
j out of i irrelevant attributes that are present in the
case and in the number s out of r relevant attributes

that are present. This gives us the expression

i i

An) =D T Al () + )Y T A (n)

j=0 s=¢q 7j=0 s=0

where Tj ; is the probability of encountering a test case
with exactly j out of i irrelevant attributes and exactly
s out of r relevant attributes, Azs(n) is the probability
of correctly classifying such a test case, and A;s(n) is
the analogous term for a negative instance.

Let us first consider the probability of encountering a
given type of test case. Because each attribute occurs
independently with probability P(A), the number of
irrelevant attributes j that appear in a test case fol-
lows a binomial distribution with probability of success
P(A), as does the number of relevant attributes s that
it contains. Taken together, this gives

Tj75 = B(]ZP(A)) 'B(S7T7P(A)) )

where
r _
B(k,r,p) = <k>p’“(1 -p)" .

We multiply the binomial expressions B(j,i, P(A))

and B(s,r, P(A)) because these two probabilities are

independent, with the j irrelevant attributes and the s

relevant ones occurring in exactly (?) and (7) different
J s

ways, respectively.

Now we can focus on the predictive accuracy A;fs(n)
for a positive test case in which j irrelevants and s
relevants are present. For this, we must average over
the various concept descriptions that naive Bayes will
acquire from different training sets. We can decom-
pose the accuracies after n training cases into weighted
sums of accuracies A;fs(k) and A; (k) for different
numbers of positive instances, giving

Af (n) =Y Pley = k)A] (k)
k=0

and

A (n) =Y Pley = k)A; (k)
k=0

where P(cy = k) is the probability that exactly &k out
of n training instances are positive. Since each training
case is independent of the others, the number & follows
a binomial distribution, so that we have

P(ey = k) = B(k,n, P(C))

where P(C) is the probability that any given instance
will be positive.



Let us now consider the accuracy on a positive test case
with j irrelevant attributes and s relevant attributes
present, given that naive Bayes has observed k out of n
positive training cases. Recall that, for each test case,
the Bayesian classifier produces a score for the positive
class, which we will call S, and a score for the negative
class, which we will call S. For a positive test case,
the expected accuracy is precisely the probability that
S > S. We can restate this relation by defining the
difference between these two scores d = S — S, which
lets us compute the accuracy A;.':s (k) as the probability
P(d < 0), to which we now turn.

4 Analysis of Class Scores

As explained earlier, our previous average-case anal-
ysis of naive Bayes was computationally intractable
because it used the binomial distribution to compute
the exact probability for every possible combination of
counts for classes and attributes. However, one of the
key results in statistics states that, given a reasonable
number of samples, one can approximate a binomial
distribution with mean p and variance o2 using a nor-
mal distribution with the same parameters. Another
key idea is that a linear combination of normally dis-
tributed variables will also follow a normal distribu-
tion. And given a normally distributed variable, one
can convert its values into the standard normal distri-
bution ®(z), which has a mean of zero and variance
of one, and for which one can easily compute the area
for any interval.

We will take this latter approach to compute P(d < 0),
assuming that d follows a normal distribution by rea-
soning we will explain shortly. This assumption lets us
convert d’s values into the standard normal form ®(x)
by subtracting its mean and dividing by its variance,
which gives

d*/l,d
P <z|=9%(x).
(\/ﬁ_> o

If we let & be —pugq/+/03, then we have

A;s(k):P(dSO):<b<_“j> :

04

which we can compute for different values of pq and o2
by approximating the area under the standard normal
distribution for a given number of positive training
cases k. For each negative test case, we have the same
scores s (for the positive class) and s (for the negative
class), but the expected accuracy on such instances

3
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equals the probability that S > S. This occurs when
the difference d > 0, which is exactly the opposite
of the situation we considered above. Thus, we can
express the accuracy on negative test cases as

- —Hd
Ajys(k):P(d>0):1—<I>< 2) ,
Oq
which we can again calculate by approximating the
area under the standard normal distribution.

However, we have yet to characterize pg and o3, the
relevant terms for positive test cases, using more prim-
itive expressions. We can assume that the variable d
follows a normal distribution if we can express it as
the difference of two other normally distributed vari-
ables, say the negative score S and the positive score
S. We can also rewrite its mean and variance using
those for its components, which gives pg = p, —
and o2 = ai: + 0%,

S

We can treat the scores S and S as normally dis-
tributed provided we assume they are both sums of
variables that are themselves normally distributed.
Recall that earlier we expressed the score S for each
class as the sum of logarithms for observed counts,
storing only one count ¢ for each Boolean attribute to
reflect the number of times it has been present in in-
stances of that class. We can compute the other count,
for the number of times it was absent, as k — ¢. We
can also decompose the score into different terms for
irrelevant and relevant attributes, giving

S = (1—i—r)-log(k+2)

J i
+ Z log(cy +1) + Z log(k —c, + 1)
w=0

z=j+1
+ Z log(cy +1) + Z log(k —c, + 1),
y=0 z=s+1

where the first term represents influence from the
count for the class, the second from the counts for the j
irrelevant attributes present in the test case, the third
from the counts for the i — j irrelevant attributes that
are absent, and the last two terms from the analogous
counts for the s relevant attributes that are present
and the r — s ones that are absent. The added con-
stants 1 and 2 come from our earlier decisions about
how to initialize various counts.

Again, note that for attributes absent from the test
case, the score uses the count for the class minus the
count for the attribute, since this specifies the num-
ber of times it has not been observed. As mentioned
earlier, we assume that the count for each attribute
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is initialized to 1, which conveniently means the mini-
mum log will be 0, but which also agrees with common
practice about setting uniform priors. Similarly, we as-
sume that the total count is initialized to 4 and that
the count for each class is initialized to 2, since there
are two possible values for each attribute.

The counts for each attribute follow a binomial distri-
bution, which means we can approximate them with a
normal distribution for large training sets. However,
the score uses not the counts themselves but rather a
logarithmic transformation of the counts, which clearly
does not follow a binomial. Nevertheless, since each at-
tribute is independent, the central limit theorem tells
us that we can use a normal curve to approximate their
distribution. Moreover, we can reexpress the mean
and variance for this distribution using the means and
variances of the score §’s components, giving us

ps = (1 —i—=r)-log(k+2) + 7 - ps

+ (=) mxts-po+(r—s)po

and
o5 =j-oy+(i—j)-oi+s-05+(r—s)-05,

where pu, is the mean of the log counts for each ir-
relevant attribute present in the test case, ux is the
mean for each irrelevant attribute absent from the test
case, o and pus are the analogous terms for relevant
attributes, and the o2 terms specify the variances for
the various situations.

We must still calculate the means and variances for the
log counts of irrelevant and relevant attributes. We do
not know any closed-form expressions for these quan-
tities, but we can compute them from their definitions
for a given number of positive training cases k. In
particular, for any variable z we have p, = > zP(x),
and we know that the probability of each possible log
value is the same as the probability for its correspond-
ing count. Thus, we have

k
pe =y log(m +1) - B(m, k, P(A,|C)) ,
m=0
where P(A,|C) is the probability that an irrelevant
attribute will appear in a positive instance. The mean
for irrelevant attributes not present in the test case is

k
pz =Y log(k —m+1)-B(m,k,P(A,|C)) ,
m=0
since the two differ only in their contributions to the
overall score and not in their probabilities. The anal-
ogous expressions for relevant attributes, po, and us,

are identical except that they replace the conditional
probability P(A,|C) with the term P(A,|C).

Similar reasoning lets us determine the variances for
the different log counts. For any variable =, we have
o2 = D 2?P(x)] — [u.])?. Again, since we know the
probability of each possible log value from the proba-
bility for its corresponding count, we have

k
ol = <Z log(m +1)° - B<m7k,P<A*c))> i

as the variance for an irrelevant attribute that is
present in a positive instance and

k
0l = <Z log(k —m +1)? B(m,k7P<A*|c>>> y

m=0

as the variance for an irrelevant feature that is not
present in a positive instance. Again, the variances
for relevant attributes, o2 and o2, are the same except
that they replace P(A,|C) with P(A,|C).

For the negative class, we can decompose the mean
ps and variance o2 in the same manner. We will
not give details here, but note only that the means
and variances for irrelevant and relevant attributes
are identical, except that they replace k with n — k,
P(A,|C) with P(A,|C), and P(A,|C) with P(A,|C).
Combined with the expansion for ps and o2, this lets
us complete our calculation of the positive accuracy
Pd<0)= Azs(k) and the analogous calculation for

the negative accuracy A; (k).

5 Analysis of Component Terms

Our remaining unknown terms include the conditional
probability of an attribute given a class and the proba-
bilities of the classes themselves, P(C) and P(C). Re-
call that we know the distribution of instances for the
domain, which is determined by the given probability
P(A) that each attribute will occur in an arbitrary in-
stance. Since we assume these attributes are indepen-
dent, we know that the number of attributes present in
an instance follows a binomial distribution with prob-
ability of success P(A). However, we are concerned
here with ¢ of r concepts, so we care only about those
instances with ¢ or more relevant attributes present
out of the r possible. Thus, we have

P(C) =) B(u,r, P(A))



as the probability of observing a positive instance,
which takes the binomial form because there can be
different ways for u out of r relevant attributes to be
present. And since we have only two classes, we know

that P(C) =1 — P(C).

Because the naive Bayesian classifier stores counts for
each predictive attribute, we must also calculate the
probability P(A4,|C) that a relevant attribute will oc-
cur in an arbitrary positive instance for a ¢ of r target
concept. From Bayes’ rule, we have

P(A) - P(ClA)

P(A0|C) = P(C)

and since P(C|A,) assumes at least one relevant at-
tribute is present, we need only another ¢ — 1 out of
r — 1 attributes present to ensure a positive instance.
Thus, we can replace this term with a binomial sum-
mation, giving

—

P(A)  §
P0) > B(k,r—1,P(A4)) .

k=q—1

P(A.|C) =

Similarly, we can specify the probability P(A4,|C) that
a relevant attribute will occur in an arbitrary negative
instance using the analogous expression

P(4,]C) = P(A°)z$<];(>O|AO) |

The conditional term P(C|A,) also assumes at least
one relevant feature is present, so we have

P(4,]C) =

since a negative instance can occur only if we have no
more than ¢ — 2 relevants out of the r — 1 remaining,.

Finally, we must express the probabilities that an irrel-
evant attribute A, will appear in an arbitrary positive
and in a negative instance. However, the definition
of an irrelevant attribute implies that its values are
completely independent of the class. This means that
P(A,|C) = P(A,|C) = P(A,), so that we can use each
irrelevant attribute’s probability P(A) directly in our
various calculations.

We can extend the framework to handle class noise by
modifying the definitions of three basic terms: P(C),
P(A,|C), and P(4,|C). A common definition of class
noise involves the corruption of class names (i.e., re-
placing the actual class with its opposite) with a cer-
tain probability 0 < z < 1. As Iba and Langley (1992)
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have noted, the probability of the class after introduc-
ing corrupted values is

P'(C) = (1-2z)P(C)+2z(1-P(C))
= PO)Y1-2z]+2z |,

since there exists a P(C) probability that the class
was actually present and a 1 — z probability it was not
corrupted, as well as a 1 — P(C) probability that it
was not present and a z probability that corruption
has made it seem present.

For an irrelevant attribute Ay, the conditional proba-
bility P(A4|C) is unaffected by class noise and remains
equal to P(A), since the attribute is still independent
of the class. However, the situation for relevant at-
tributes is more complicated. In particular, we must
reexpress the (corrupted) conditional probability of a
relevant attribute A, given the (corrupted) class C as

P (A, NC)
P(C)
(1 —-2)P(A. AC) + 2P(A, A C)
P'(C)

P'(A|C) =

where the terms in the numerator are the pre-noise
conditional probabilities and the denominator is the
noisy class probability given above. We can use similar
reasoning to express the post-noise probability of a
relevant attribute given the negative class C as

P'(AcAC

P’(AO|C) = (77)
PI(C)
(1-2)P(A, AC) +2P(A, A C)

P(C)

where P'(C) =1 — P'(C). We then replace the origi-
nal terms for P(C), P(4,|C), and P(4,|C) with their
corrupted analogues in earlier parts of the analysis in
order to determine the effect of class noise on the naive
Bayesian classifier.

6 Implications for Learning Behavior

The equations in the previous section provide a for-
mal description of naive Bayes’ behavior, but their im-
plications are not obvious. However, we can use the
analysis to make average-case predictions about the
algorithm’s accuracy under different domain charac-
teristics. Because the analysis introduces normal ap-
proximations to the binomial and relies on the cen-
tral limit theorem, the predictions will not be perfect,
but their accuracy should increase with the number of
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Figure 1: Theoretical and experimental learning curves for naive Bayes when (a) the domain involves a ‘2 of 2’
target concept and varying numbers of irrelevant attributes, and (b) for a domain with one irrelevant attribute

and a conjunctive target concept with varying numbers of relevant features.

confidence intervals for the experimental curves.

training cases and attributes. Moreover, because the
analysis is tractable computationally, we can examine
larger training and attribute sets than in our previous
average-case treatment of the naive Bayesian classifier.

In addition to making theoretical predictions, we col-
lected experimental learning curves for naive Bayes
on 100 randomly generated training sets. Each curve
reflects the average classification accuracy over these
runs on a single noise-free test set that includes all
possible instances. In each case, we bound the mean
accuracy with 95% confidence intervals to show the
degree to which our predicted learning curves fit the
observed ones. These empirical results provide an im-
portant check on both our reasoning and the ability of
the analysis to predict behavior despite its simplifying
approximations.

Figure 1 (a) shows the effect of irrelevant attributes on
naive Bayes’ rate of learning when the training data
contains no noise. In this study, we used P(A) = 1
as the probability for each attribute and a ‘2 of 2’
target concept, while we varied both the number of
training cases and the number of irrelevant attributes.
As typical with learning curves, the accuracies begin
low and gradually improve with the size of the train-
ing set. The effect of irrelevants also agrees with our
intuitions, in that it degrades the learning rate grace-
fully and does not alter asymptotic accuracy, which
is 100 percent on conjunctive concepts (Domingos &

Pazzani, 1997). Moreover, the predicted and observed

The error bars represent 95%

learning curves are in close agreement, even for very
small training sets where we expected divergence due
to our use of approximations.

Figure 1 (b) presents the corresponding effect of rele-
vant attributes on learning rate, again in the absence
of noise. Here we used a single irrelevant attribute
in all conditions, but we varied the number of training
cases and the number of relevant features in a conjunc-
tive target concept. As before, we used P(A) = 3 for
each attribute, which causes class distributions to be-
come ever more skewed as one adds relevant features.
Intuition suggests that this should make more complex
concepts more difficult to master and, indeed, the ‘1 of
1’ concept has the highest learning rate. But the anal-
ysis predicts that, over most of their learning curves,
accuracy will be higher for a five-attribute conjunc-
tion than for one with three attributes. The empirical
results confirm this surprising phenomenon, matching
the predictions closely enough to reflect a crossover
between curves around the fifth training instance.?

Another interesting question concerns the effect of g,
the number of necessary attributes in a ¢ of r concept,
which we could not address in our earlier study be-
cause it was limited to conjunctive concepts. Figure
2 (a) shows the learning curves for target concepts with
five relevant attributes when ¢ = 3, ¢ = 4, and ¢ = 5.

3The same effect occurs if one increases the number of
both relevant and irrelevant attributes but holds constant
their ratio, though the crossover occurs at a later point.
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Figure 2: Theoretical and experimental learning curves for naive Bayes when the domain involves one irrelevant
attribute and (a) a ¢ of r target concept with different values for ¢, as well as (b) a ‘3 of 3’ concept with varying

levels of class noise.

Intuition suggests that concepts with the highest and
lowest ¢ values should be easiest to learn, since rele-
vant features will be easier to identify when they are
more nearly criterial. The analysis predicts this effect
over most of the learning curves, and again the exper-
imental curves match the analytic ones quite well. We
have not shown curves for ¢ = 1 and g = 2, since they
are identical to those for ¢ = 5 and ¢ = 4, respectively.

The presence of noise is another complicating factor
that makes induction difficult. Figure 2 (b) illustrates
the effect of class noise on the learning rate for naive
Bayes, given a ‘3 of 3’ target concept and one irrele-
vant feature. To support more direct correspondence
among different noise levels, we omitted noise from the
test set, which normalizes accuracies and eases com-
parison. Both the theoretical and experimental curves
match the intuition that learning rate should slow with
class noise, but this time the predictions do not fit the
observations quite as well as before, showing there can
be a cost to introducing approximations for the sake
of efficiency.

7 Concluding Remarks

In this paper, we have presented an improved average-
case analysis of the naive Bayesian classifier, an induc-
tion algorithm that has become increasingly popular
in recent years. The treatment generalized our earlier
analysis by extending it to arbitrary ‘M of N’ concepts.
But more important, the new analysis was much more
tractable, in computational terms, than its predeces-

sor, which let us make predictions about naive Bayes’
behavior on larger training sets and on domains with
more attributes. The price of this improved computa-
tional efficiency was a reliance on normal approxima-
tions to the binomial distribution, which meant our
ability to fit experimental results became an empirical
question.

To explore the implications of the analysis, we plotted
the predicted behavior of the algorithm as a function
of the number of training instances, the amount of
noise, and the number of irrelevant, relevant, and nec-
essary attributes, finding graceful degradation as these
parameters varied. As a check on our analysis, we
ran the algorithm on synthetic training and test sets
with the same characteristics. In general, we found
excellent fits between the theoretical predictions and
observed behavior, which lends support to our use of
approximations to make the analysis tractable.

One issue we have not addressed is the sensitivity of
our analysis to its underlying assumptions. We know
that naive Bayes often behaves well even when the
predictive attributes are not completely independent
given the class (Domingos & Pazzani, 1997), but this
does not mean that the analysis will accurately predict
its learning curve under such conditions. In our future
work, we should run experiments with domains that vi-
olate the independence assumption to varying degrees,
as Pazzani and Sarrett (1992) did for their analysis
of conjunctive learning. They reported good fits to
observed learning curves despite strong dependencies,
and we anticipate similar results for naive Bayes.
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We also hope to extend our approach to the average-
case analysis of other induction algorithms like nearest
neighbor, which Langley and Iba (1993) analyzed for
conjunctive concepts, and k-nearest neighbor, which
Okamoto and Nobuhiro (1997) analyzed for ‘M of N’
concepts. These analyses provided useful insights but
were limited to small training and attribute sets due to
computational intractability, which our approximate
approach should remedy. Techniques for the induc-
tion of determinations (Kohavi, 1994; Langley, 1996),
which rely on feature selection to construct simple ta-
bles for classification, also seem amenable to average-
case analysis. Since they select or reject features over
the entire training set, such methods should be easier
to analyze than more complex schemes for decision-
tree and rule induction.

A final direction for future research involves using
average-case analysis to better understand the behav-
ior of naive Bayes and other algorithms in natural
domains. For any natural data set, we can estimate

P(C), P(A), and P(A|C), and we know the number
of training cases and attributes. We do not know the
number of relevant attributes, the noise level, or the
exact target concept, but experimental learning curves
provide constraints that we can use to select among
alternative settings for parameters from the average-
case model. This would require extending the analysis
to handle non-Boolean attributes and a broader range
of target concepts, but the result would be a much
stronger connection between the theoretical and em-
pirical branches of machine learning, bringing the field
closer to becoming a true science of the artificial.
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