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Tractable Average-Case Analysis of Naive Bayesian Classi�ers

Pat Langley�(langley@isle.org)Stephanie Sage (sage@isle.org)Institute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306 USAAbstractIn this paper we present an average-case anal-ysis of the naive Bayesian classi�er, a sim-ple induction algorithm that performs wellin many domains. Our analysis assumes amonotone `M of N' target concept and train-ing data that consists of independent Booleanattributes. The analysis supposes a knowntarget concept and distribution of instances,but includes parameters for the number oftraining cases, the number of irrelevant, rel-evant, and necessary attributes, the proba-bility of each attribute, and the amount ofclass noise. Our approach di�ers from mostprevious average-case analyses by introduc-ing approximations to achieve computationaltractability. This lets us explore the behav-ioral implications for larger training and at-tribute sets than the earlier exact analyses,and experimental studies show that the anal-ysis makes very accurate predictions despiteits use of approximations. In closing, we sug-gest promising directions for future researchon the average-case analysis of induction.1 Introduction and MotivationTypical theoretical analyses of machine learning focuson worst-case results, including those in the `probablyapproximately correct' framework (Haussler, 1990).Although this approach lets analysts obtain quite gen-eral, distribution-free results, it also means their pre-dictions of learning rate are much slower than those ob-�Also a�liated with the DaimlerChrysler Research &Technology Center, Palo Alto, and the Center for the Studyof Language and Information at Stanford University.

served in practice. As a result, the link between theoryand experiment in machine learning has become tenu-ous, leading some researchers to explore other paths.An alternative approach involves the average-caseanalysis of speci�c induction algorithms on domainswith known characteristics. For example, Pazzani andSarrett (1992) report early results of this sort for aconjunctive learning method, and similar studies havebeen done for decision stumps (Iba & Langley, 1992),the naive Bayesian classi�er (Langley, Iba, & Thomp-son, 1992), 1-nearest neighbor (Langley & Iba, 1992),and k-nearest neighbor (Okamoto & Nobuhiro, 1997).Each analysis produced predictions about the e�ect ofdomain characteristics, averaged over di�erent train-ing sets, that �t experimental data very closely.However, this theoretical accuracy came with a price.For even simple methods like naive Bayes and nearestneighbor, the calculations needed to predict behaviorcould take drastically longer than actually running ex-periments with synthetic data, even when the latteraveraged over many training sets. The di�culty re-sulted from the analyses' reliance on the exact calcu-lation of probabilities for all possible combinations ofevents. For many induction methods, the number ofsuch events grows exponentially with the number of at-tributes and size of the training set. This meant thattheoretical predictions were only possible for small do-mains and early parts of the learning curve.In this paper, we present a more tractable approach tothe average-case analysis of induction algorithms. Wedemonstrate the framework with a new treatment ofthe naive Bayesian classi�er, both because of the grow-ing interest with this simple yet powerful method (e.g.,Domingos & Pazzani, 1997) and because our earlierresults were especially problematic in computationalterms. The new analysis uses many of the same tech-niques as the previous one, but it introduces approx-



2 Average-Case Analysis of Naive Bayesimations based on the normal distribution that let uscalculate means and variances for the sums and dif-ferences of quantities, rather than reasoning about theprobabilities of their explicit combinations.1 The re-sult is a tractable average-case analysis of naive Bayesthat, as experimental studies reveal, remains accuratedespite its use of approximations.2 A Brief Review of Naive BayesAlthough it has a long history in pattern recognition(Duda & Hart, 1973), the naive Bayesian classi�er�rst appeared in the machine learning literature as astraw man against which to compare more sophisti-cated methods (e.g., Cestnik, Konenenko, & Bratko,1987). Only gradually did researchers become awareof its potential, but now it is widely recognized as aviable and robust approach to supervised induction.Before beginning the analysis, we should review themanner in which naive Bayes operates. The methodrepresents each class with a single probabilistic sum-mary, each having an associated class probability orbase rate, p(C), which speci�es the probability thatone will observe a member of class C. Every descrip-tion also includes an associated conditional probabilitydistribution for each attribute. For symbolic domains,on which we will focus here, one typically stores a dis-crete distribution for each attribute in a description,with each p(vjC) term specifying the probability ofvalue v given an instance of class C.To classify a new instance I , which is simply a conjunc-tion of attribute values V vj , the naive Bayesian clas-si�er applies Bayes' theorem to determine the proba-bility of each description given the instance, givingP (CijI) = P (Ci)P (I jCi)P (I)= P (Ci)QJj=1 P (vj jCi)PKk=1 P (Ck)QJj=1 P (vj jCk) ;where K is the number of classes, J is the number ofattributes, and P (vj jCk) is the conditional probabilityfor the observed value of attribute j given the class Ck.The product of conditional probabilities comes fromthe assumption that attributes are independent giventhe class, which greatly simpli�es the computation of1Golea and Marchand (1993) report an average-caseanalysis of perceptron learning that also incorporates nor-mal approximations, but their work includes other ideasfrom statistical mechanics that make it inaccessible to themachine learning community.

the class scores and eases the induction process. Aftercalculating P (CijI) for each class, the algorithm as-signs the instance to the class with the highest overallscore or probability.Although the above formulation of naive Bayes is thetraditional one, we can express the score for each classin another form that is more tractable for analyti-cal purposes. The basic idea is that, if we are con-cerned only with predictive accuracy, we can invokeany monotonic transformation that does not a�ect theordering on class scores. One transformation involvesremoving the denominator, which is the same for eachclass, and another involves taking the logarithm of thenumerator. Together, these produce a new scoreSC = logP (C) +Xatts logP (vj jC) :In fact, this form is often used in practice (e.g., Lang-ley & Sage, 1994), since it is e�cient to calculate andreduces round-o� errors due to small fractions. Thenew score SC is no longer a probability, but is quitesu�cient to predict the most probable class.We should also discuss the estimation of probabili-ties in this expression. The typical implementationof naive Bayes stores an overall count n, one count kCfor each class, and one count cj for each attribute valuegiven the class. During training, the induction algo-rithm increments the overall count on each traininginstance, increments the class count for each exampleof that class, and increments the class-speci�c countfor each attribute value that appears in the instance.During performance, the classi�er uses these counts toestimate probabilities, givingSC = log�kCn �+Xatts log� cjkC� :However, if the algorithm has not seen a particularclass or an attribute value for some class during learn-ing, a slight problem arises because a count is zero.Clark and Niblett (1988) dealt with this issue by check-ing for zero counts and using 1n as the probability whenthis occurred. A more common approach is to assume`uniform priors' over both the classes and the valuesfor each attribute, which can be achieved by using thesame initial count for each attribute-value pair andtheir sum for the class count.2 A common decision is2The size of these counts re
ects the degree to which onebelieves the prior probabilities they produce, with higherinitial counts taking more training data to overcome them.The same approach underlies Cestnik and Bratko's (1991)m estimate for balancing prior beliefs and experience.



Average-Case Analysis of Naive Bayes 3to initialize counts to 1 for each value, which we willalso assume in our analysis. Moreover, since we as-sume Boolean attributes, we will set the initial countfor each class to 2, and since we assume two classes,we will use 4 as the initial total count. This results inprior probabilities of 12 for both classes and for eachvalue given a class.These decisions about how to initialize counts requirea slight revision of the score for each class. Moreover,our assumption that attributes are Boolean lets usstore only one count cj for each attribute, for when itis present in an instance (i.e., has value true). Whenthe attribute is absent from an instance (i.e., has valuefalse), we can simply use kC�cj as the count. We canre
ect this in the score by separating the contributionfor features that are present and absent, givingSC = log�kC + 2n+ 4 �+Xatts log� cj + 1kC + 2�+Xatts log�kC � cj + 1kC + 2 � :We can also remove the denominator n+4 in the �rstterm, since it is the same for both classes. This mod-i�ed form of the class score will play a central role inour average-case analysis of naive Bayes.3 Analysis of Classi�cation AccuracyWe will assume that the target concept C is a mono-tone function of r relevant Boolean attributes that re-turns true if q or more of these r attributes are presentand returns false otherwise. Thus, for a `3 of 5' con-cept, any instance that has three, four, or �ve featurespresent is a positive example of the concept. We fur-ther suppose that there are i irrelevant Boolean at-tributes that play no role in the target concept, givingr+ i total Boolean features, each of which occurs withprobability P (A). We further posit that attributes areindependent of each other. For now, we also assumethat both training and test data are noise free, thoughwe will return to this issue later.Given this information, we want to predict the prob-ability A(n) of classifying a test case correctly afternaive Bayes has seen n training instances. We canpartition this accuracy measure into two components,one dealing with positive test cases and the other withnegative test cases. Both terms involve summing overdi�erent types of test cases that di�er in the numberj out of i irrelevant attributes that are present in thecase and in the number s out of r relevant attributes

that are present. This gives us the expressionA(n) = iXj=0 rXs=q Tj;sA+j;s(n) + iXj=0 q�1Xs=0 Tj;sA�j;s(n) ;where Tj;s is the probability of encountering a test casewith exactly j out of i irrelevant attributes and exactlys out of r relevant attributes, A+j;s(n) is the probabilityof correctly classifying such a test case, and A�j;s(n) isthe analogous term for a negative instance.Let us �rst consider the probability of encountering agiven type of test case. Because each attribute occursindependently with probability P (A), the number ofirrelevant attributes j that appear in a test case fol-lows a binomial distribution with probability of successP (A), as does the number of relevant attributes s thatit contains. Taken together, this givesTj;s = B(j; i; P (A)) �B(s; r; P (A)) ;where B(k; r; p) = �rk�pk(1� p)r�k :We multiply the binomial expressions B(j; i; P (A))and B(s; r; P (A)) because these two probabilities areindependent, with the j irrelevant attributes and the srelevant ones occurring in exactly �ij� and �rs� di�erentways, respectively.Now we can focus on the predictive accuracy A+j;s(n)for a positive test case in which j irrelevants and srelevants are present. For this, we must average overthe various concept descriptions that naive Bayes willacquire from di�erent training sets. We can decom-pose the accuracies after n training cases into weightedsums of accuracies A+j;s(k) and A�j;s(k) for di�erentnumbers of positive instances, givingA+j;s(n) = nXk=0P (c+ = k)A+j;s(k)and A�j;s(n) = nXk=0P (c+ = k)A�j;s(k) ;where P (c+ = k) is the probability that exactly k outof n training instances are positive. Since each trainingcase is independent of the others, the number k followsa binomial distribution, so that we haveP (c+ = k) = B(k; n; P (C)) ;where P (C) is the probability that any given instancewill be positive.



4 Average-Case Analysis of Naive BayesLet us now consider the accuracy on a positive test casewith j irrelevant attributes and s relevant attributespresent, given that naive Bayes has observed k out of npositive training cases. Recall that, for each test case,the Bayesian classi�er produces a score for the positiveclass, which we will call S, and a score for the negativeclass, which we will call �S . For a positive test case,the expected accuracy is precisely the probability thatS > �S. We can restate this relation by de�ning thedi�erence between these two scores d = �S � S, whichlets us compute the accuracyA+j;s(k) as the probabilityP (d � 0), to which we now turn.4 Analysis of Class ScoresAs explained earlier, our previous average-case anal-ysis of naive Bayes was computationally intractablebecause it used the binomial distribution to computethe exact probability for every possible combination ofcounts for classes and attributes. However, one of thekey results in statistics states that, given a reasonablenumber of samples, one can approximate a binomialdistribution with mean � and variance �2 using a nor-mal distribution with the same parameters. Anotherkey idea is that a linear combination of normally dis-tributed variables will also follow a normal distribu-tion. And given a normally distributed variable, onecan convert its values into the standard normal distri-bution �(x), which has a mean of zero and varianceof one, and for which one can easily compute the areafor any interval.We will take this latter approach to compute P (d � 0),assuming that d follows a normal distribution by rea-soning we will explain shortly. This assumption lets usconvert d's values into the standard normal form �(x)by subtracting its mean and dividing by its variance,which gives P  d� �dp�2d � x! = �(x) :If we let x be ��d=p�2d, then we haveA+j;s(k) = P (d � 0) = � ��dp�2d! ;which we can compute for di�erent values of �d and �2dby approximating the area under the standard normaldistribution for a given number of positive trainingcases k. For each negative test case, we have the samescores s (for the positive class) and �s (for the negativeclass), but the expected accuracy on such instances

equals the probability that �S > S. This occurs whenthe di�erence d > 0, which is exactly the oppositeof the situation we considered above. Thus, we canexpress the accuracy on negative test cases asA�j;s(k) = P (d > 0) = 1�� ��dp�2d! ;which we can again calculate by approximating thearea under the standard normal distribution.However, we have yet to characterize �d and �2d, therelevant terms for positive test cases, using more prim-itive expressions. We can assume that the variable dfollows a normal distribution if we can express it asthe di�erence of two other normally distributed vari-ables, say the negative score �S and the positive scoreS. We can also rewrite its mean and variance usingthose for its components, which gives �d = � �S � �Sand �2d = �2�S + �2S .We can treat the scores S and �S as normally dis-tributed provided we assume they are both sums ofvariables that are themselves normally distributed.Recall that earlier we expressed the score S for eachclass as the sum of logarithms for observed counts,storing only one count c for each Boolean attribute tore
ect the number of times it has been present in in-stances of that class. We can compute the other count,for the number of times it was absent, as k � c. Wecan also decompose the score into di�erent terms forirrelevant and relevant attributes, givingS = (1� i� r) � log(k + 2)+ jXw=0 log(cw + 1) + iXx=j+1 log(k � cx + 1)+ sXy=0 log(cy + 1) + rXz=s+1 log(k � cz + 1) ;where the �rst term represents in
uence from thecount for the class, the second from the counts for the jirrelevant attributes present in the test case, the thirdfrom the counts for the i� j irrelevant attributes thatare absent, and the last two terms from the analogouscounts for the s relevant attributes that are presentand the r � s ones that are absent. The added con-stants 1 and 2 come from our earlier decisions abouthow to initialize various counts.Again, note that for attributes absent from the testcase, the score uses the count for the class minus thecount for the attribute, since this speci�es the num-ber of times it has not been observed. As mentionedearlier, we assume that the count for each attribute



Average-Case Analysis of Naive Bayes 5is initialized to 1, which conveniently means the mini-mum log will be 0, but which also agrees with commonpractice about setting uniform priors. Similarly, we as-sume that the total count is initialized to 4 and thatthe count for each class is initialized to 2, since thereare two possible values for each attribute.The counts for each attribute follow a binomial distri-bution, which means we can approximate them with anormal distribution for large training sets. However,the score uses not the counts themselves but rather alogarithmic transformation of the counts, which clearlydoes not follow a binomial. Nevertheless, since each at-tribute is independent, the central limit theorem tellsus that we can use a normal curve to approximate theirdistribution. Moreover, we can reexpress the meanand variance for this distribution using the means andvariances of the score S's components, giving us�S = (1� i� r) � log(k + 2) + j � �?+ (i� j) � ��? + s � �� + (r � s) � ���and�2S = j � �2? + (i� j) � �2�? + s � �2� + (r � s) � �2�� ;where �? is the mean of the log counts for each ir-relevant attribute present in the test case, ��? is themean for each irrelevant attribute absent from the testcase, �� and ��� are the analogous terms for relevantattributes, and the �2 terms specify the variances forthe various situations.We must still calculate the means and variances for thelog counts of irrelevant and relevant attributes. We donot know any closed-form expressions for these quan-tities, but we can compute them from their de�nitionsfor a given number of positive training cases k. Inparticular, for any variable x we have �x =PxP (x),and we know that the probability of each possible logvalue is the same as the probability for its correspond-ing count. Thus, we have�? = kXm=0 log(m+ 1) � B(m; k; P (A?jC)) ;where P (A?jC) is the probability that an irrelevantattribute will appear in a positive instance. The meanfor irrelevant attributes not present in the test case is��? = kXm=0 log(k �m+ 1) �B(m; k; P (A?jC)) ;since the two di�er only in their contributions to theoverall score and not in their probabilities. The anal-ogous expressions for relevant attributes, �� and ���,

are identical except that they replace the conditionalprobability P (A?jC) with the term P (A�jC).Similar reasoning lets us determine the variances forthe di�erent log counts. For any variable x, we have�2x = [Px2P (x)] � [�x]2. Again, since we know theprobability of each possible log value from the proba-bility for its corresponding count, we have�2? =  kXm=0 log(m+ 1)2 � B(m; k; P (A?jC))!� �2?as the variance for an irrelevant attribute that ispresent in a positive instance and�2�? =  kXm=0 log(k �m+ 1)2 � B(m; k; P (A?jC))!��2�?as the variance for an irrelevant feature that is notpresent in a positive instance. Again, the variancesfor relevant attributes, �2� and �2�� , are the same exceptthat they replace P (A?jC) with P (A�jC).For the negative class, we can decompose the mean��s and variance �2�s in the same manner. We willnot give details here, but note only that the meansand variances for irrelevant and relevant attributesare identical, except that they replace k with n � k,P (A?jC) with P (A?j �C), and P (A�jC) with P (A�j �C).Combined with the expansion for �s and �2s , this letsus complete our calculation of the positive accuracyP (d � 0) = A+j;s(k) and the analogous calculation forthe negative accuracy A�j;s(k).5 Analysis of Component TermsOur remaining unknown terms include the conditionalprobability of an attribute given a class and the proba-bilities of the classes themselves, P (C) and P ( �C). Re-call that we know the distribution of instances for thedomain, which is determined by the given probabilityP (A) that each attribute will occur in an arbitrary in-stance. Since we assume these attributes are indepen-dent, we know that the number of attributes present inan instance follows a binomial distribution with prob-ability of success P (A). However, we are concernedhere with q of r concepts, so we care only about thoseinstances with q or more relevant attributes presentout of the r possible. Thus, we haveP (C) = rXu=qB(u; r; P (A))



6 Average-Case Analysis of Naive Bayesas the probability of observing a positive instance,which takes the binomial form because there can bedi�erent ways for u out of r relevant attributes to bepresent. And since we have only two classes, we knowthat P ( �C) = 1� P (C).Because the naive Bayesian classi�er stores counts foreach predictive attribute, we must also calculate theprobability P (A�jC) that a relevant attribute will oc-cur in an arbitrary positive instance for a q of r targetconcept. From Bayes' rule, we haveP (A�jC) = P (A�) � P (CjA�)P (C) ;and since P (CjA�) assumes at least one relevant at-tribute is present, we need only another q � 1 out ofr � 1 attributes present to ensure a positive instance.Thus, we can replace this term with a binomial sum-mation, givingP (A�jC) = P (A�)P (C) � r�1Xk=q�1B(k; r � 1; P (A)) :Similarly, we can specify the probability P (A�j �C) thata relevant attribute will occur in an arbitrary negativeinstance using the analogous expressionP (A�j �C) = P (A�) � P ( �C jA�)P ( �C) :The conditional term P ( �CjA�) also assumes at leastone relevant feature is present, so we haveP (A�j �C) = P (A�)P ( �C) � q�2Xk=0B(k; r � 1; P (A)) :since a negative instance can occur only if we have nomore than q � 2 relevants out of the r � 1 remaining.Finally, we must express the probabilities that an irrel-evant attribute A? will appear in an arbitrary positiveand in a negative instance. However, the de�nitionof an irrelevant attribute implies that its values arecompletely independent of the class. This means thatP (A?jC) = P (A?j �C) = P (A?), so that we can use eachirrelevant attribute's probability P (A) directly in ourvarious calculations.We can extend the framework to handle class noise bymodifying the de�nitions of three basic terms: P (C),P (A�jC), and P (A�j �C). A common de�nition of classnoise involves the corruption of class names (i.e., re-placing the actual class with its opposite) with a cer-tain probability 0 � z � 1. As Iba and Langley (1992)

have noted, the probability of the class after introduc-ing corrupted values isP 0(C) = (1� z)P (C) + z(1� P (C))= P (C)[1� 2z] + z ;since there exists a P (C) probability that the classwas actually present and a 1� z probability it was notcorrupted, as well as a 1 � P (C) probability that itwas not present and a z probability that corruptionhas made it seem present.For an irrelevant attribute A?, the conditional proba-bility P (A?jC) is una�ected by class noise and remainsequal to P (A), since the attribute is still independentof the class. However, the situation for relevant at-tributes is more complicated. In particular, we mustreexpress the (corrupted) conditional probability of arelevant attribute A� given the (corrupted) class C asP 0(A�jC) = P 0(A� ^ C)P 0(C)= (1� z)P (A� ^ C) + zP (A� ^ �C)P 0(C) ;where the terms in the numerator are the pre-noiseconditional probabilities and the denominator is thenoisy class probability given above. We can use similarreasoning to express the post-noise probability of arelevant attribute given the negative class �C asP 0(A�jC) = P 0(A� ^ �C)P 0( �C)= (1� z)P (A� ^ �C) + zP (A� ^ C)P 0( �C) ;where P 0( �C) = 1� P 0(C). We then replace the origi-nal terms for P (C), P (A�jC), and P (A�j �C) with theircorrupted analogues in earlier parts of the analysis inorder to determine the e�ect of class noise on the naiveBayesian classi�er.6 Implications for Learning BehaviorThe equations in the previous section provide a for-mal description of naive Bayes' behavior, but their im-plications are not obvious. However, we can use theanalysis to make average-case predictions about thealgorithm's accuracy under di�erent domain charac-teristics. Because the analysis introduces normal ap-proximations to the binomial and relies on the cen-tral limit theorem, the predictions will not be perfect,but their accuracy should increase with the number of
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Figure 1: Theoretical and experimental learning curves for naive Bayes when (a) the domain involves a `2 of 2'target concept and varying numbers of irrelevant attributes, and (b) for a domain with one irrelevant attributeand a conjunctive target concept with varying numbers of relevant features. The error bars represent 95%con�dence intervals for the experimental curves.training cases and attributes. Moreover, because theanalysis is tractable computationally, we can examinelarger training and attribute sets than in our previousaverage-case treatment of the naive Bayesian classi�er.In addition to making theoretical predictions, we col-lected experimental learning curves for naive Bayeson 100 randomly generated training sets. Each curvere
ects the average classi�cation accuracy over theseruns on a single noise-free test set that includes allpossible instances. In each case, we bound the meanaccuracy with 95% con�dence intervals to show thedegree to which our predicted learning curves �t theobserved ones. These empirical results provide an im-portant check on both our reasoning and the ability ofthe analysis to predict behavior despite its simplifyingapproximations.Figure 1 (a) shows the e�ect of irrelevant attributes onnaive Bayes' rate of learning when the training datacontains no noise. In this study, we used P (A) = 12as the probability for each attribute and a `2 of 2'target concept, while we varied both the number oftraining cases and the number of irrelevant attributes.As typical with learning curves, the accuracies beginlow and gradually improve with the size of the train-ing set. The e�ect of irrelevants also agrees with ourintuitions, in that it degrades the learning rate grace-fully and does not alter asymptotic accuracy, whichis 100 percent on conjunctive concepts (Domingos &Pazzani, 1997). Moreover, the predicted and observed

learning curves are in close agreement, even for verysmall training sets where we expected divergence dueto our use of approximations.Figure 1 (b) presents the corresponding e�ect of rele-vant attributes on learning rate, again in the absenceof noise. Here we used a single irrelevant attributein all conditions, but we varied the number of trainingcases and the number of relevant features in a conjunc-tive target concept. As before, we used P (A) = 12 foreach attribute, which causes class distributions to be-come ever more skewed as one adds relevant features.Intuition suggests that this should make more complexconcepts more di�cult to master and, indeed, the `1 of1' concept has the highest learning rate. But the anal-ysis predicts that, over most of their learning curves,accuracy will be higher for a �ve-attribute conjunc-tion than for one with three attributes. The empiricalresults con�rm this surprising phenomenon, matchingthe predictions closely enough to re
ect a crossoverbetween curves around the �fth training instance.3Another interesting question concerns the e�ect of q,the number of necessary attributes in a q of r concept,which we could not address in our earlier study be-cause it was limited to conjunctive concepts. Figure2 (a) shows the learning curves for target concepts with�ve relevant attributes when q = 3, q = 4, and q = 5.3The same e�ect occurs if one increases the number ofboth relevant and irrelevant attributes but holds constanttheir ratio, though the crossover occurs at a later point.
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Figure 2: Theoretical and experimental learning curves for naive Bayes when the domain involves one irrelevantattribute and (a) a q of r target concept with di�erent values for q, as well as (b) a `3 of 3' concept with varyinglevels of class noise.Intuition suggests that concepts with the highest andlowest q values should be easiest to learn, since rele-vant features will be easier to identify when they aremore nearly criterial. The analysis predicts this e�ectover most of the learning curves, and again the exper-imental curves match the analytic ones quite well. Wehave not shown curves for q = 1 and q = 2, since theyare identical to those for q = 5 and q = 4, respectively.The presence of noise is another complicating factorthat makes induction di�cult. Figure 2 (b) illustratesthe e�ect of class noise on the learning rate for naiveBayes, given a `3 of 3' target concept and one irrele-vant feature. To support more direct correspondenceamong di�erent noise levels, we omitted noise from thetest set, which normalizes accuracies and eases com-parison. Both the theoretical and experimental curvesmatch the intuition that learning rate should slow withclass noise, but this time the predictions do not �t theobservations quite as well as before, showing there canbe a cost to introducing approximations for the sakeof e�ciency.7 Concluding RemarksIn this paper, we have presented an improved average-case analysis of the naive Bayesian classi�er, an induc-tion algorithm that has become increasingly popularin recent years. The treatment generalized our earlieranalysis by extending it to arbitrary `M of N' concepts.But more important, the new analysis was much moretractable, in computational terms, than its predeces-

sor, which let us make predictions about naive Bayes'behavior on larger training sets and on domains withmore attributes. The price of this improved computa-tional e�ciency was a reliance on normal approxima-tions to the binomial distribution, which meant ourability to �t experimental results became an empiricalquestion.To explore the implications of the analysis, we plottedthe predicted behavior of the algorithm as a functionof the number of training instances, the amount ofnoise, and the number of irrelevant, relevant, and nec-essary attributes, �nding graceful degradation as theseparameters varied. As a check on our analysis, weran the algorithm on synthetic training and test setswith the same characteristics. In general, we foundexcellent �ts between the theoretical predictions andobserved behavior, which lends support to our use ofapproximations to make the analysis tractable.One issue we have not addressed is the sensitivity ofour analysis to its underlying assumptions. We knowthat naive Bayes often behaves well even when thepredictive attributes are not completely independentgiven the class (Domingos & Pazzani, 1997), but thisdoes not mean that the analysis will accurately predictits learning curve under such conditions. In our futurework, we should run experiments with domains that vi-olate the independence assumption to varying degrees,as Pazzani and Sarrett (1992) did for their analysisof conjunctive learning. They reported good �ts toobserved learning curves despite strong dependencies,and we anticipate similar results for naive Bayes.



Average-Case Analysis of Naive Bayes 9We also hope to extend our approach to the average-case analysis of other induction algorithms like nearestneighbor, which Langley and Iba (1993) analyzed forconjunctive concepts, and k-nearest neighbor, whichOkamoto and Nobuhiro (1997) analyzed for `M of N'concepts. These analyses provided useful insights butwere limited to small training and attribute sets due tocomputational intractability, which our approximateapproach should remedy. Techniques for the induc-tion of determinations (Kohavi, 1994; Langley, 1996),which rely on feature selection to construct simple ta-bles for classi�cation, also seem amenable to average-case analysis. Since they select or reject features overthe entire training set, such methods should be easierto analyze than more complex schemes for decision-tree and rule induction.A �nal direction for future research involves usingaverage-case analysis to better understand the behav-ior of naive Bayes and other algorithms in naturaldomains. For any natural data set, we can estimateP (C), P (A), and P (AjC), and we know the numberof training cases and attributes. We do not know thenumber of relevant attributes, the noise level, or theexact target concept, but experimental learning curvesprovide constraints that we can use to select amongalternative settings for parameters from the average-case model. This would require extending the analysisto handle non-Boolean attributes and a broader rangeof target concepts, but the result would be a muchstronger connection between the theoretical and em-pirical branches of machine learning, bringing the �eldcloser to becoming a true science of the arti�cial.AcknowledgementsThanks to Mostefa Golea for showing us that tractableaverage-case analyses of induction were possible, toSeishi Okamoto and Nobuhiro Yugami for discussionsthat rekindled our excitement in the topic, and toClaude-Nicolas Fiechter for advice about the standardnormal and for crucial checks on our reasoning.ReferencesCestnik, B., & Bratko, I. (1991). On estimating prob-abilities in decision-tree pruning. Proceedings of the1991 European Working Session on Learning (pp.138{150). Porto, Portugal: Springer-Verlag.Cestnik, G., Konenenko, I, & Bratko, I. (1987).Assistant-86: A knowledge-elicitation tool for so-phisticated users. In I. Bratko & N. Lavrac (Eds.)Progress in machine learning. Sigma Press.
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