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A b s t r a c t .  In this paper, we review the induction of simple Bayesian classifiers, 
note some of their drawbacks, and describe a recursive algorithm that constructs 
a hierarchy of probabilistic concept descriptions. We posit that this approach 
should outperform the simpler scheme in domains that involve disjunctive con- 
cepts, since they violate the independence assumption on which the latter relies. 
To test this hypothesis, we report experimental studies with both natural and 
artificial domains. The results are mixed, but they are encouraging enough to 
recommend closer examination of recursive Bayesian classifiers in future work. 

1. I n t r o d u c t i o n  

In recent years, there has been growing interest in probabilistic methods for 
induction. Although much of the recent work in this area [e.g., 6] has focused 
on unsupervised learning, the approach applies equally well to supervised tasks. 
Such methods have long been used within the field of pattern recognition [4], 
but they have only recently received attention within the machine learning com- 
munity [3, 7, 8, 9]. 

In this paper we review the most straightforward probabilistic approach to 
supervised learning - the induction of simple Bayesian classifiers. We also ex- 
amine this method's apparent drawbacks and propose a revised algorithm that 
constructs a hierarchy of probabilistic summaries. We present an illustrative 
domain that this approach can handle but that the simpler scheme cannot, and 
we report experimental studies of the two algorithms on both natural and arti- 
ficial induction tasks. Finally, we discuss work on related approaches and some 
directions for future research. 

2. T h e  induction of s i m p l e  B a y e s i a n  c l a s s i f i e r s  

The most straightforward and widely tested method for probabilistic induction 
is known as the simple Bayesian classifier. This scheme represents each concept 
with a single probabilistic summary. In particular, each description has an asso- 
ciated class probability or base rate, p(Ck), which specifies the prior probability 
that one will observe a member of class Ck. Each description also has an asso- 
ciated set of conditional probabilities, specifying a probability distribution for 
each attribute. In nominal domains, one typically stores a discrete distribution 
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for each attribute in a description. Each p(vj IC~) term specifies the probability 
of value vj, given an instance of concept Ck. In numeric domains, one must 
represent a continuous probability distribution for each attribute. This requires 
that one assume some general form or model, and one usually selects the normal 
distribution. Conveniently, a given normal curve can be represented entirely 
in terms of its mean # and variance ~2. Moreover, the probability for a given 
numeric value v can be determined from the normal probability density function. 

2.1 P red i c t i on  in Bayesian classifiers 

To classify a new instance I, a Bayesian classifier applies Bayes' theorem to 
determine the probability of each description given the instance, 

v(c JI)- p(I) 
However, since I is a conjunction of j values, one can expand this expression to 

I2 v(A  lc )p(c ) ' 

where the denominator sums over all classes and where p(A v~ ]ci) is the prob- 
ability of the instance I given the class Ci. After calculating these probabilities 
for each description, the algorithm assigns the instance to the class with the 
highest overall probability. 

In order to make the above expression operational, one must still specify 
how to compute the term p(A vj ICk). Typically, one assumes independence of 
attributes, so that the classifier can calculate it using the equality 

v(A"  IC,,) = 
i 

where the values p(vj[Ck) represent the conditional probabilities stored with 
each class. 

In some cases, the training data may produce a zero for some base rate or 
conditional probability. Since the classification decision involves multiplication, 
this overwhelms the effects of other factors. Clark and Niblett [3] avoid this 
problem by replacing zero entries with p(Ci)/N, where N is the number of 
training examples. The factor 1IN represents the belief that this entry has a 
near-zero value as a function of the size of the training set. 

2.2 Learning in Bayesian classifiers 

Learning in a Bayesian classifier is an almost trivial matter. The simplest im- 
plementation increments a count each time it encounters a new instance, along 
with a separate count for a class each time it observes an instance of that class. 
Together, these counts let the classifier estimate p(C~) for each class Ck. In ad- 
dition, for each instance of a class that has a given nominal value, the algorithm 
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updates a count for that class-value pair. Together with the second count, this 
lets the classifier estimate p(vj [Ck). For each numeric attribute, the method 
retains and revises two quantities, the sum and the sum of squares, which let it 
compute the mean and variance for a normal curve that it uses to find p(vj [Ck). 
In domains that can have missing attributes, it must include a fourth count for 
each class-attribute pair. 

In contrast to many induction methods, which learn only when they make 
some error, a Bayesian classifier incorporates information from every instance 
that it encounters. Thus, the action taken by the learning component is entirely 
independent of whether the performance element makes the correct classification. 
The basic process can operate either incrementally or nonincrementally, since the 
order of training instances has no effect on learning. However, one can usefully 
view the Bayesian classifier as carrying out a hill-climbing search through the 
space of probabilistic concepts, in that it retains a single summary description at 
each point during processing. This makes the learning algorithm quite efficient. 

2.3 Strengths and limitations of simple Bayesian classifiers 

Bayesian classifiers should have advantages over many induction algorithms. For 
example, they should be inherently robust with respect to noise, due to their 
collection of class and conditional probabilities. Similarly, their statistical basis 
should also let them handle large numbers of irrelevant attributes. Langley, Iba, 
and Thompson [9] present an average-case analysis of these factors' effect on the 
algorithm's behavior for a specific class of target concepts. 

However, the basic approach relies on an important assumption: that the in- 
stances in each class can be summarized by a single probabilistic description, 
and that these are sufficient to distinguish the classes from each other. If we 
represent each attribute value as a feature that may be present or absent, this 
is closely related to the assumption of linear separability in early work on neu- 
ral networks. Other encodings lead to a more complex story, but the effect is 
nearly the same. Nevertheless, like perceptrons, Bayesian classifiers are typically 
limited to learning classes that occupy contiguous regions of the instance space. 

Figure 1 shows an idealized, noise-free training set that illustrates this diffi- 
culty. The domain involves three classes of cells - one from hea l thy  patients, 
another from patients with l e t h a r g i a ,  and a third from patients with the disease 
burporaa. Four attributes describe the observed cells - the number of nuc le i ,  
the number of t a i l s ,  the color  of the cell body, and the th ickness  of the 
cell walls; each such attribute takes on one of two possible values. Running 
the 12 training cases in the figure through a simple Bayesian classifier produces 
one probabilistic summary for each class and, combined with Bayes' rule, these 
descriptions correctly classify all training instances from the l e t h a r g i a  and 
burpoma classes. However, it misclassifies two of the hea l thy  cells as instances 
of l e t h a r g i a .  The basic problem is a representational one; the hea l thy  cases 
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Figure 1. Training instances from an idealized cell domain, involving four attributes 
and three classes, that cannot be discriminated by a simple Bayesian classifier. 

occupy two noncontiguous regions of the instance space, and one cannot rep- 
resent such disjunctive situations with a single probabilistic summary for each 
class. In the remainder of the paper, we explore another extension that moves 
beyond the above representational limitation. 

3. T h e  f o r m a t i o n  o f  r e c u r s i v e  B a y e s i a n  c l a s s i f i e r s  

The assumptions that underlie simple Bayesian classifiers are similar to those 
commonly made in curve fitting. The technique of linear regression posits that 
one can approximate the function in question by a single straight line, and this 
approach fares remarkably well on many tasks. However, in some domains one 
must resort to piecewise linear methods, which fit straight lines only to local 
portions of the overall curve. 

One can apply a similar idea to supervised induction, identifying regions of 
the instance space in which the independence assumption holds and constructing 
a simple Bayesian classifier for each such region. One approach to determining 
such regions, which we will refer to as the RBC algorithm, groups instances by 
their associated class names, then uses probabilistic averaging to generate inten- 
sional descriptions for each cluster. Next, it uses these descriptions to reassign 
instances, producing a revised partition and summaries. In most situations, the 
resulting descriptions will not completely discriminate among the classes, so the 
revised partition and descriptions will differ from the original ones. 
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If a cluster contains instances from more than one class, this suggests that 
some refinement is necessary. Thus, the algorithm calls on itself recursively 
to further subdivide the data and form more specific concept descriptions for 
each subclass. This approach to partitioning makes less sense if one's goal is a 
monothetic hierarchy, in which case splitting on one of the predictive attributes is 
much more direct. Nor can one easily adapt this scheme to handle unsupervised 
training data, since it relies on class information to form partitions. On the 
other hand, it provides an elegant approach to generating polythetic hierarchies 
from supervised data. 

Recall that, when used in isolation, a Bayesian classifier is severely limited in 
its representational ability, and thus in its ability to learn. The current approach 
should not suffer from such limitations because the hierarchy stores knowledge 
at multiple levels of abstraction. Subdivisions at lower levels overcome the repre- 
sentational drawbacks at a given level, letting the hierarchy as a whole represent 
complex concepts even though each level only describes simple ones. 

Figure 2 depicts the concept hierarchy generated by RBC for the training 
data in Figure 1. As in a simple classifier, each node includes a base rate and a 
conditional probability for each attribute-value pair. In generating this tree, the 
algorithm first partitions the training instances into three clusters, one for each 
class, and then uses a Bayesian classifier to produce a probabilistic summary 
for each set. The resulting descriptions predict the correct class names for all 
instances of l e t h a r g i a  and burpoma, as well as for the second two hea l thy  
cases. However, it assigns the first two hea l thy  cells to the l e t h a r g i a  class. 

In response, RBC generates a revised partition based on these three groups of 
instances, then computes a revised probabilistic summary for each one. Because 
one of the clusters contains instances from two classes, it calls itself recursively 
on this subset of instances. Thus, the algorithm creates one partition for the 
five l e t h a r g i a  cases and another for the two hea l thy  instances, after which it 
invokes the Bayesian classifier a second time to produce descriptions for each 
such cluster. This time the probabilistic summaries correctly predict the class 
associated with each instance, so RBC halts its construction process. 

4. C o m p a r a t i v e  s t u d i e s  o f  B a y e s i a n  c l a s s i f i e r s  

We have presented intuitive arguments for the superiority of recursive Bayesian 
classifiers over their simpler cousins, and we have given an illustrative example 
in which the former outperforms the latter. However, it remains an empirical 
question whether the RBC algorithm fares better than a simple Bayesian clas- 
sifier in general. To answer this question, we carried out experiments with both 
natural domains from the UCI repository and artificial ones designed to test 
specific hypotheses. For each study, we generated 20 training and test sets, ran- 
domly drawn from the domain in question; in each case, we report the average 
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Figure 2. A probabilistic concept hierarchy generated by the RBC algorithm from 
the training instances in Figure 1. Each node contains a probabilistic summary, which 
the recursive classifier uses to sort instances and to make predictions. 

accuracy of each algorithm on the test set after different numbers of training 
cases, along with 95% error bars for each point. 

Figure 3 (a) presents the results of a comparative study on a domain that 
involves only nominal attributes. This data set [6] indicates votes ('yea' or 'nea') 
of the 435 members of the U.S. House of Representatives on 16 issues. The class 
name corresponds to the member's party, Democrat (267) or Republican (168). 
By the time they have seen 15 training cases, both algorithms have acquired 
probabilistic summaries that can predict a member's party with 90% accuracy, 
though the recursive method does noticeably worse early in the run. However, 
many induction algorithms produce similar results on this domain, making it 
useful mainly as an adequacy check. The most interesting result is that the 
simple Bayesian classifier performs as well as many more sophisticated methods. 
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Figure 3. Learning curves for the simple Bayesian classifier and the recursive Bayesian 
classifier on (a) Congressional voting records and (b) splice junction data. 

However, we find very similar effects in Figure 3 (b), which shows learning 
curves for a more complex domain, this one involving data on "splice junctions" 
in DNA sequences [12]. The domain includes three classes and some 60 nominal 
attributes, which specify the nucleotides that precede and follow the position to 
be classified. The rate of learning in this domain is much slower than for the 
voting records, but the asymptotic accuracy is slightly higher (95%). As before, 
the two algorithms reach the same level, but RBC requires more training cases 
than the simple classifier. 

The pattern repeats in Figure 4 (a), which summarizes results on a domain 
that involves determining, based on nine numeric measures, whether or not a 
glass fragment came from a window. Again the asymptotic accuracy for both 
techniques hovers around 90%, with the recursive Bayesian classifier appearing 
to take slightly more training to reach this level, though the error bars overlap in 
this case. Analogous learning curves even emerge on the data for heart diseases 
(originally collected by R. Detrano), which involve two classes and 13 attributes, 
some numeric and some nominal. In this case the curves are statistically indis- 
tinguishable, though RBC's mean accuracy is consistently below that for the 
simple Bayesian classifier. 

Naturally, these results are disappointing and deserve some explanation. In- 
spection of the induced knowledge structures for these domains reveal that RBC 
constructs probabilistic decision trees that are quite shallow, in many cases only 
two levels deep. This suggests that the domains used in our studies closely ap- 
proximate the independence assumption, making the simple Bayesian classifier 
appropriate for them, and that other factors (such as noise) are responsible for 
both methods' imperfect asymptotic accuracies. This does not explain the de- 
pression in RBC's learning curve on the splice junction data, but it accounts for 
most of the observed phenomena. 
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Figure 4. Learning curves for the simple Bayesian classifier and the recursive Bayesian 
classifier on (a) glass classification and (b) heart disease records. 

This theory suggests that we should turn to artificial or synthetic domains 
to reveal the difference between the two learning algorithms. In response, we 
ran further comparative studies on a set of noise-free domains that involved two 
classes, three relevant Boolean attributes (A, B, and C), and three irrelevant 
Boolean attributes (D, E, and F). We varied the number of disjunctive terms in 
the target concept from one to four. In particular, we used the target concepts 

(A A B A C) 

(AABAC) V(AABAC)  
(AAB A C) V (AA[~ A C) V (JiAB A C) 
(AAB A C) V (AAB A C) V (.AAB A C) V (AAB A C) 

which include increasing numbers of nonadjecent vertices of the cube defined 
by the three relevant features. In each case, adding a new disjunctive term 
introduces another noncontiguous region to the instance space. 

Figure 5 presents the learning curves for both learning algorithms on the first 
two of these concepts. Each curve is averaged over 20 randomly selected training 
sets, with the test set including the entire space of 64 instances. As before, 
the error bars indicate 95% confidence intervals. As expected, the asymptotic 
accuracies of the simple and recursive Bayesian classifiers approach 100% on 
the first (conjunctive) domain, as shown in Figure 5 (a), but the more complex 
algorithm takes more training cases to reach this level, as we found in the natural 
domains. However, the results for the second (disjunctive) target concept in 
Figure 5 (b) are quite different. Again, the recursive algorithm starts off worse 
than its simpler caunterpart, but at ten training instances, the learning curves 
cross over, with the asymptotic accuracy of RBC being significantly higher than 
that for the simple Bayesian classifier. 
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F i g u r e  5. Learning curves for the simple Bayesian classifier and the recursive Bayesian 
classifier on artificial domains involving (a) a conjunctive target concept and (b) a two- 
disjunct concept. 

The learning curves in Figure 6 provide additional evidence of the recursive 
scheme's superiority in disjunctive domains. Here we see the same pattern for 
the three-disjunct and four-disjunct concepts as we found in Figure 5 (b). The 
RBC algorithm's initial accuracy is lower than that for the simple Bayesian 
classifier, but crossovers occur between the fifth and tenth training instances, 
with the more sophisticated method outperforming its simpler counterpart after 
that point. These results support our original intuitions about the conditions 
under which RBC will outperform a scheme that relies on the independence 
assumption. However, the results of the simple Bayesian classifier on the four 
natural domains remains impressive, and one should by no means abandon it as 
a useful tool for inductive learning. 

5. Related approaches to induction 

The idea of organizing knowledge in a tree or hierarchy is far from new, going 
back to Feigenbaum's [5] EPAM. However, such early algorithms and their de- 
scendents, including Quinlan's C4.5 [11] and its relatives, use a single attribute to 
partition the instance space at each level of the tree. As others have noted, this 
'monothetic' approach encounters difficulties when the decision boundaries for 
the target concept are not parallel to the axes of the instance space. In contrast, 
'polythetic' approaches like perceptrons and simple Bayesian classifiers, which 
consider multiple attributes during a decision, are unaffected by this situation. 

On the other hand, the recursive partitioning of the instance space into regions 
lets decision-tree algorithms deal with disjunctive concepts, which cause prob- 
lems for perceptrons and simple Bayesian classifiers. A natural response is to 
combine the recursive structure of decision trees with the discriminating power 
of polythetic classifiers. Brieman, Friedman, Olshen, and Stone [1] have done 
some work along these lines, using linear threshold units at each node in the tree. 
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Figure 6. Learning curves for the simple Bayesian classifier and the recursive Bayesian 
classifier on artificiM domains involving (a) a three-disjunct target concept and (b) a 
four-disjunct concept. 

More recently, Utgoff and Brodley [13] have developed LMDT, an incremental 
method for inducing decision trees ill which each nonterminal node specifies a 
linear machine. As in threshold units, such knowledge structures specify a set of 
weights for each class-attribute pair, but they operate competitively. The LMDT 
algorithm requires many passes through the training set, but otherwise it has 
many similarities to our approach. Sahami (personal communication, 1992) has 
developed a similar algorithm for inducing polythetic trees. 

Fisher [6] has also dealt extensively with methods for organizing probabilistic 
concepts in a hierarchy. His CoBwEB algorithm uses an identical representation 
and organization of knowledge, but there are also some important differences. 
COBWEB is unsupervised, attempting to maximize predictive accuracy across all 
attributes even if class names are present. Also, Fisher's incremental algorithm 
constructs complex trees that can be strongly affected by training order, which 
can produce knowledge structures that are difficult to understand. 

In contrast, the lZBC method is not subject to order effects and recurses 
only enough to discriminate the class names; thus, we predict that its trees 
will be more comprehensible than COBWEB'S, though we have not tested this 
hypothesis. Moreover, Kononenko [7] has shown that a simple Bayesian classifier 
can explain its decisions as the sum of information gain over all attributes, and 
that physicians prefer such explanations to monothetic decision trees. Given 
that, in our experience, the RBC algorithm tends to build shallow trees, we 
expect that at least some domain experts will prefer them to normal monothetic 
decision trees as well. 

Some researchers have explored other approaches to adapting Bayesian clas- 
sifters to disjunctive domains that violate the independence assumption. For 
example, Michie and A1 Attar [10] describe a 'sequential Bayesian classifter' that 



163 

inspects one attribute at a time during performance, selecting the most infor- 
mative one at each step and halting when the probability of a class exceeds a 
maximum threshold or falls below a minimum. However, this method's behav- 
ior is equivalent to constructing a monothetic decision tree using a probabilistic 
evaluation function, thus losing the ability to consider evidence from multiple 
attributes simultaneously. 

Kononenko [8] describes a quite different approach that explicitly tests for 
dependencies among attributes, creating new features based on the conjunctions 
of correlated values. This 'semi-naive Bayesian classifier' then uses the training 
data to compute conditional probabilities for these higher-order features, using 
them to classify test cases rather than the original ones. However, in an experi- 
mental comparasion of his algorithm and a simple Bayesian classifier, Kononenko 
found no differences on two medical domains and only very slight improvement 
on two others. These findings are consistent with our results on the robustness 
of the naive method in natural domains. 

6.  Directions for future research 

Despite the promise of recursive Bayesian classifiers, much work remains before 
we can claim that they constitute a robust approach to induction. We have 
yet to identify any natural domains on which the method outperforms a simple 
Bayesian classifier, despite our intuitions about the former's superiority. More- 
over, we must still examine the effect of other domain characteristics on the 
method's behavior. For instance, we should study the influence of both the 
number of relevant and irrelevant attributes, as well as the effect of class and 
attribute noise. We should also study the behavior of an incremental version 
developed by Schlimmer and IIermens (personal communication, 1992). 

Some extensions will also be necessary. Like any hierarchical induction algo- 
rithm, RBC can overfit the data by constructing an overly detailed tree, and 
we should install a pruning scheme to counter this tendency. One simple tech- 
nique would recurse only if the classifier at a given level exceeds a certain error 
rate. The current version also has difficulty with parity concepts, in which all 
attributes appear independent of the class name. In such cases, a revised system 
might resort to an arbitrary monothetic partition to overcome the bottleneck. 
Finally, future versions should use Cestnik's [2] m estimate, which he has shown 
improves accuracy over the relative frequencies currently used. 

Despite these limitations, we believe that the RBC algorithm constitutes a 
promising extension to simple Bayesian classifiers which should be less sensitive 
to domains that violate the assumption of independence. We anticipate that 
further comparative studies, combined with theoretical analyses, will reveal the 
conditions under which this method outperforms both the simpler probabilistic 
algorithm from which it evolved and other techniques that rely on the induction 
of traditional decision trees. 
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