
In Proceedings of the Tenth National Conference on Arti�cial Intelligence (1992). San Jose: AAAI Press.An Analysis of Bayesian Classi�ersPat Langley Wayne Iba� Kevin ThompsonyfLangley, Iba, KThompsog@ptolemy.arc.nasa.govAI Research Branch (M/S 269-2)NASA Ames Research CenterMo�ett Field, CA 94035 USAAbstractIn this paper we present an average-case analysisof the Bayesian classi�er, a simple induction algo-rithm that fares remarkably well on many learningtasks. Our analysis assumes a monotone conjunc-tive target concept, and independent, noise-freeBoolean attributes. We calculate the probabilitythat the algorithm will induce an arbitrary pair ofconcept descriptions and then use this to computethe probability of correct classi�cation over the in-stance space. The analysis takes into account thenumber of training instances, the number of at-tributes, the distribution of these attributes, andthe level of class noise. We also explore the be-havioral implications of the analysis by presentingpredicted learning curves for arti�cial domains,and give experimental results on these domainsas a check on our reasoning.Probabilistic Approaches to InductionOne goal of research in machine learning is to discoverprinciples that relate algorithms and domain character-istics to behavior. To this end, many researchers havecarried out systematic experimentation with naturaland arti�cial domains in search of empirical regularities(e.g., Kibler & Langley, 1988). Others have focusedon theoretical analyses, often within the paradigm ofprobably approximately correct learning (e.g., Haus-sler, 1990). However, most experimental studies arebased only on informal analyses of the learning task,whereas most formal analyses address the worst case,and thus bear little relation to empirical results.A third approach, proposed by Cohen and Howe(1988), involves the formulation of average-case mod-els for speci�c algorithms and testing them throughexperimentation. Pazzani and Sarrett's (1990) studyof conjunctive learning provides an excellent exampleof this technique, as does Hirschberg and Pazzani's(1991) work on inducing k-CNF concepts. By assum-ing information about the target concept, the num-�Also a�liated with RECOM TechnologiesyAlso a�liated with Sterling Software.

ber of attributes, and the class and attribute frequen-cies, they obtain predictions about the behavior ofinduction algorithms and used experiments to checktheir analyses.1 However, their research does not fo-cus on algorithms typically used by the experimentaland practical sides of machine learning, and it is im-portant that average-case analyses be extended to suchmethods.Recently, there has been growing interest in proba-bilistic approaches to inductive learning. For example,Fisher (1987) has described Cobweb, an incrementalalgorithm for conceptual clustering that draws heavilyon Bayesian ideas, and the literature reports a numberof systems that build on this work (e.g., Allen & Lang-ley, 1990; Iba & Gennari, 1991; Thompson & Langley,1991). Cheeseman et al. (1988) have outlined Auto-Class, a nonincremental system that uses Bayesianmethods to cluster instances into groups, and otherresearchers have focused on the induction of Bayesianinference networks (e.g., Cooper & Kerskovits, 1991).These recent Bayesian learning algorithms are com-plex and not easily amenable to analysis, but theyshare a common ancestor that is simpler and moretractable. This supervised algorithm, which we re-fer to simply as a Bayesian classi�er, comes originallyfrom work in pattern recognition (Duda & Hart, 1973).The method stores a probabilistic summary for eachclass; this summary contains the conditional probabil-ity of each attribute value given the class, as well asthe probability (or base rate) of the class. This datastructure approximates the representational power ofa perceptron; it describes a single decision boundarythrough the instance space. When the algorithm en-counters a new instance, it updates the probabilitiesstored with the speci�ed class. Neither the order oftraining instances nor the occurrence of classi�cationerrors have any e�ect on this process. When given atest instance, the classi�er uses an evaluation function(which we describe in detail later) to rank the alter-1A related approach involves deriving the optimal learn-ing algorithm under certain assumptions, and then imple-menting an approximation of that algorithm (e.g., Opper& Haussler, 1991).



Analysis of Bayesian Classifiers 224Domain Bayes IND/C4 Freq.Soybean 100.0 � 0.0 93.8 � 3.4 36.2Chess 87.5 � 0.4 99.3 � 0.1 52.2Lympho 81.1 � 1.8 74.8 � 2.2 56.7Splice 94.6 � 0.4 89.2 � 0.5 53.2Promoters 87.4 � 2.2 74.5 � 1.9 50.0Table 1: Percentage accuracies for two induction al-gorithms on �ve classi�cation domains, along with theaccuracy of predicting the most frequent class.native classes based on their probabilistic summaries,and assigns the instance to the highest scoring class.Both the evaluation function and the summary de-scriptions used in Bayesian classi�ers assume that at-tributes are statistically independent. Since this seemsunrealistic for many natural domains, researchers haveoften concluded that the algorithm will behave poorlyin comparison to other induction methods. However,no studies have examined the extent to which violationof this assumption leads to performance degradation,and the probabilistic approach should be quite robustwith respect to both noise and irrelevant attributes.Moreover, earlier studies (e.g., Clark & Niblett, 1987)present evidence of the practicality of the algorithm.Table 1 presents additional experimental evidencefor the utility of Bayesian classi�ers. In this studywe compare the method to IND's emulation of theC4 algorithm (Buntine & Caruana, 1991) and an al-gorithm that simply predicts the modal class. The �vedomains, from the UCI database collection (Murphy &Aha, 1992), include the \small" soybean dataset, chessend games involving a king-rook-king-pawn confronta-tion, cases of lymphography diseases, and two biologi-cal datasets. For each domain, we randomly split thedata set into 80% training instances and 20% test in-stances, repeating this process to obtain 50 separatepairs of training and test sets. The table shows themean accuracy and 95% con�dence intervals on thetest sets for each domain.In four of the domains, the Bayesian classi�er is atleast as accurate as the C4 reimplementation. We willnot argue that the Bayesian classi�er is superior to thismore sophisticated method, but the results do showthat it behaves well across a variety of domains. Thus,the Bayesian classi�er is a promising induction algo-rithm that deserves closer inspection, and a carefulanalysis should give us insights into its behavior.We simplify matters by limiting our analysis to theinduction of conjunctive concepts. Furthermore, weassume that there are only two classes, that each at-tribute is Boolean, and that attributes are indepen-dent of each other. We divide our study into threeparts. We �rst determine the probability that the al-

gorithm will learn a particular pair of concept descrip-tions. After this, we derive the accuracy of an arbi-trary pair of descriptions over all instances. Taken to-gether, these expressions give us the overall accuracyof the learned concepts. We �nd that a number of fac-tors inuence behavior of the algorithm, including thenumber of training instances, the number of relevantand irrelevant attributes, the amount of class and at-tribute noise, and the class and attribute frequencies.Finally, we examine the implications of the analysis bypredicting behavior in speci�c domains, and check ourreasoning with experiments in these domains.Probability of Induced ConceptsConsider a concept C de�ned as the monotone con-junction of r relevant features A1; : : : ; Ar (i.e., in whichnone of the features are negated). Also assume thereare i irrelevant features Ar+1; : : : ; Ar+i. Let P (Aj) bethe probability of feature Aj occurring in an instance.The concept descriptions learned by a Bayesian clas-si�er are fully determined by the n training instancesit has observed. Thus, to compute the probability ofeach such concept description, we must consider di�er-ent possible combinations of n training instances.First let us consider the probability that the algo-rithm has observed exactly k out of n positive in-stances. If we let P (C) be the probability of observinga positive instance and we let x be the observed frac-tion of positive instances, then we haveP (x = kn ) = �nk�P (C)k[1� P (C)]n�k :This expression also represents the probability thatone has observed exactly n � k negative instances.Since we assume that the concept is monotone con-junctive and that the attributes are independent, wehave P (C) = Qrj=1 P (Aj); which is simply the productof the probabilities for all relevant attributes.A given number of positive instances k can producemany alternative descriptions of the positive class, de-pending on the instances that are observed. One canenvision each such concept description as a cell in anr + i dimensional matrix, with each dimension rang-ing from 0 to k, and with the count on dimension jrepresenting the number of positive instances in whichattribute Aj was present. One can envision a similarmatrix for the negative instances, again having dimen-sionality r+ i, but with each dimension ranging from 0to n� k, and with the count on each dimension j rep-resenting the number of negative instances in which Ajoccurred. Figure 1 shows a positive cell matrix withr + i = 3, k = 2. The designated cell holds the prob-ability that the algorithm has seen two instances withA1 present, 1 instance with A2 present, and 0 instanceswith A3 present.In both matrices, one can index each cell or conceptdescription by a vector of length r + i. Let P (cell~u)kbe the probability that the algorithm has produced the
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0 1 2Figure 1: A positive cell matrix for three attributesand k = 2. Values along axes represent numbers ofpositive instances for which Aj was present.cell indexed by vector ~u in the positive matrix givenk positive instances; let P (cell~v)n�k be the analogousprobability for a cell in the negative matrix. Then aweighted product of these terms gives the probabilitythat the learning algorithmwill generate any particularpair of concept descriptions, which isP (k; ~u;~v)n = P (x = kn )P (cell~u)kP (cell~v)n�k :In other words, one multiplies the probability of seeingk out of n positive instances and the probabilities ofencountering cell ~u in the positive matrix and cell ~v inthe negative matrix.However, we must still determine the probability ofa given cell from the matrix. For those in the positivematrix, this is straightforward, since the attributes re-main independent when the instance is a member of aconjunctive concept. Thus, we haveP (cell~u)k = r+iYj=1P (yj = ~ujk )as the probability for cell~u in the positive matrix,where yj represents the observed fraction of the k in-stances in which attribute Aj was present. Further-more, the probability that one will observe Aj in ex-actly ~uj out of k such instances isP (y = ~ujk ) = � k~uj�P (AjjC)~uj [1� P (AjjC)]k�~uj :In the absence of noise, we have P (AjjC) = 1 for allrelevant attributes and P (AjjC) = P (Aj) for all irrel-evant attributes.The calculation is more di�cult for cells in the neg-ative matrix. One cannot simply take the product ofthe probabilities for each index of the cell, since for aconjunctive concept, the attributes are not statisticallyindependent. However, one can compute the probabil-ity that the n � k observed negative instances will becomposed of a particular combination of instances.

If we let P (Ij j �C) be the probability of Ij given a neg-ative instance, we can use the multinomial distributionto compute the probability that exactly d1 of the n�kinstances will be instance I1, d2 will be instance I2,: : : , and dw will be instance Iw. Thus the expression(n� k)!d1!d2! : : :dw!P (I1j �C)d1P (I2j �C)d2 : : : P (Iwj �C)dwgives us the probability of a particular combinationof negative instances, and from that combination wecan compute the concept description (i.e., cell indices)that result. Of course, two or more combinations of in-stances may produce the same concept description, butone simply sums the probabilities for all such combina-tions to get the total probability for the cell. All thatwe need to make this operational is P (Ijj �C), the prob-ability of Ij given a negative instance. In the absenceof noise, this is simply P (Ij)=P ( �C), since P ( �CjIj) = 1.We can extend the framework to handle class noiseby modifying the de�nitions of three basic terms {P (C), P (AjjC), and P (Ij j �C). One common de�nitionof class noise involves the corruption of class names(i.e., replacing the actual class with its opposite) witha certain probability z between 0 and 1. The proba-bility of the class after one has corrupted values isP 0(C) = (1�z)P (C)+z(1�P (C)) = P (C)[1�2z]+z ;as we have noted elsewhere (Iba & Langley, 1992).For an irrelevant attribute Aj , the probabilityP (AjjC) is una�ected by class noise and remains equalto P (Aj), since the attribute is still independent of theclass. However, the situation for relevant attributesis more complicated. By de�nition, we can reexpressthe corrupted conditional probability of a relevant at-tribute Aj given the (possibly corrupted) class C asP 0(Aj jC) = P 0(Aj ^C)P 0(C) ;where P 0(C) is the noisy class probability given above.Also, we can rewrite the numerator to specify the situ-ations in which corruption of the class name does anddoes not occur, givingP 0(Aj jC) = (1� z)P (C)P (AjjC) + zP ( �C)P (Ajj �C)P 0(C) :Since we know that P (Aj jC) = 1 for a relevant at-tribute, and since P (Aj j �C) = [P (Aj) � P (C)]=P ( �C)for conjunctive concepts, we haveP 0(Aj jC) = (1� z)P (C) + z[P (Aj) � P (C)]P (C)[1� 2z] + z ;which involves only terms that existed before corrup-tion of the class name.We can use similar reasoning to compute the post-noise probability of any particular instance given thatit is negative. As before, we can rewrite P 0(Ijj �C) asP 0(Ij ^ �C)P 0( �C) = (1� z)P ( �C)P (Ijj �C) + zP (C)P (IjjC)1� (P (C)[1� 2z] + z) ;



Analysis of Bayesian Classifiers 226but in this case the special conditions are somewhatdi�erent. For a negative instance, we have P (Ij jC) =0, so that the second term in the numerator becomeszero. In contrast, for a positive instance, we haveP (Ijj �C) = 0, so that the �rst term disappears. Takentogether, these conditions let us generate probabilitiesfor cells in the negative matrix after one has addednoise to the class name.After replacing P (C) with P 0(C), P (AjjC) withP 0(Aj jC), and P (Ijj �C) with P 0(Ij j �C), the expressionsearlier in this section let us compute the probabilitythat a Bayesian classi�er will induce any particularpair of concept descriptions (cells in the two matri-ces). The information necessary for this calculation isthe number of training instances, the number of rele-vant and irrelevant attributes, their distributions, andthe level of class noise. This analysis holds only formonotone conjunctive concepts and in domains withindependent attributes, but many of the ideas shouldcarry over to less restricted classes of domains.Accuracy of Induced ConceptsTo calculate overall accuracy after n training instances,we must sum the expected accuracy for each possibleinstance weighted by that instance's probability of oc-currence. More formally, the expected accuracy isKn = IXj P (Ij)K(Ij )n :To compute the expected accuracy K(Ij)n for instanceIj , we must determine, for each pair of cells in the posi-tive and negative matrices, the instance's classi�cation.A test instance Ij is classi�ed by computing its scorefor each class description and selecting the class withthe highest score (choosing randomly in case of ties).We will de�ne accuracy(Ij)n;k;~u;~v for the pair of con-cept descriptions ~u and ~v to be 1 if this scheme cor-rectly predicts Ij 's class, 0 if it incorrectly predicts theclass, and 12 if a tie occurs.Following our previous notation, let n be the numberof observed instances, k be the number of observed pos-itive instances, uj be the number of positive instancesin which attribute Aj occurs, and vj be the numberof negative instances in which Aj occurs. For a giveninstance Ij , one can compute the score for the positiveclass description asscore(C)j = kn r+iYj=1� ujk if Aj is present in Ijk�ujk otherwise,and an analogous equation for the negative class, sub-stituting n� k for k and v for u. To avoid multiplyingby 0 when an attribute has never (always) been ob-served in the training instances but is (is not) presentin the test instance, we follow Clark and Niblett's(1987) suggestion of replacing 0 with a small value,such as 1=2n.

To compute the expected accuracy for instance Ij,we sum, over all possible values of k and pairs of con-cept descriptions, the product of the probability of se-lecting the particular pair of concept descriptions af-ter k positive instances and the pair's accuracy on Ij.Thus, we haveK(Ij)n = nXk=0 UX~u VX~v P (k; ~u;~v)n accuracy(Ij)n;k;~u;~v ;where the second and third summations occur over thepossible vectors that index into the positive matrix Uand the negative matrix V. To complete our calcula-tions, we need an expression for P (Ij), which is theproduct of the probabilities of features present in Ij .Implications for Learning BehaviorAlthough the equations in the previous sections give aformal description of the Bayesian classi�er's behavior,their implications are not obvious. In this section, weexamine the e�ects of various domain characteristicson the algorithm's classi�cation accuracy. However,because the number of possible concept descriptionsgrows exponentially with the number of training in-stances and the number of attributes, our predictionshave been limited to a small number of each.In addition to theoretical predictions, we reportlearning curves that summarize runs on 100 randomlygenerated training sets. Each curve reports the aver-age classi�cation accuracy over these runs on a singletest set of 200 randomly generated instances contain-ing no noise. In each case, we bound the mean accu-racy with 95% con�dence intervals to show the degreeto which our predicted learning curves �t the observedones. These experimental results provide an importantcheck on our reasoning, and they revealed a number ofproblems during development of the analysis.Figure 2 (a) shows the e�ects of concept complexityon the rate of learning in the Bayesian classi�er whenno noise is present. In this case, we hold the num-ber of irrelevant attributes i constant at one, and wehold their probability of occurrence P (A) constant at12 . We vary both the number of training instances andthe number of relevant attributes r, which determinethe complexity of the target concept. To normalize fore�ects of the base rate, we also hold P (C), the prob-ability of the concept, constant at 12 ; this means that,for each of the r relevant attributes, P (A) is P (C)1=r,and thus is varied for the di�erent conditions.2As typical with learning curves, the initial accuraciesbegin low (at 12 ) and gradually improve with increasingnumbers of training instances. The e�ect of conceptcomplexity also agrees with our intuitions; introducing2An alternative approach would hold P (A) constant forrelevant attributes, causing P (C) to become P (A)r. Thisnudges the initial accuracies upward but otherwise has littlee�ect on the learning curves.
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Class noise = 0.0Figure 2: Predictive accuracy of a Bayesian classi�er in a conjunctive concept, assuming the presence of oneirrelevant attribute, as a function of training instances and (a) number of relevant attributes and (b) amount ofclass noise. The lines represent theoretical learning curves, whereas the error bars indicate experimental results.additional features into the target concept slows thelearning rate, but does not a�ect asymptotic accuracy,which is always 1.0 for conjunctive concepts on noise-free test cases. The rate of learning appears to degradegracefully with increasing complexity. The predictedand observed learning curves are in close agreement,which lends con�dence to our average-case analysis.Theory and experiment show similar e�ects when wevary the number of irrelevant attributes; learning rateslows as we introduce misleading features, but the al-gorithm gradually converges on perfect accuracy.Figure 2 (b) presents similar results on the interac-tion between class noise and the number of traininginstances. Here we hold the number of relevant at-tributes constant at two and the number of irrelevantsconstant at one, and we examine three separate levelsof class noise. Following the analysis, we assume thetest instances are free of noise, which normalizes ac-curacies and eases comparison. As one might expect,increasing the noise level z decreases the rate of learn-ing. However, the probabilistic nature of the Bayesianclassi�er leads to graceful degradation, and asymptoticaccuracy should be una�ected. We �nd a close �t be-tween the theoretical behavior and the experimentallearning curves. Although our analysis does not in-corporate attribute noise, experiments with this factorproduce similar results. In this case, equivalent levelslead to somewhat slower learning rates, as one wouldexpect given that attribute noise can corrupt multiplevalues, whereas class noise a�ects only one.Finally, we can compare the behavior of the Bayesianclassi�er to that of Wholist (Pazzani & Sarrett,1990). One issue of interest is the number of train-ing instances required to achieve some criterion levelof accuracy. A quantitative comparison of this natureis beyond the scope of this paper, but the respectiveanalyses and experiments show that the Wholist al-gorithm is only a�ected by the number of irrelevant at-

tributes, whereas the Bayesian classi�er is sensitive toboth the number of relevant and irrelevant attributes.However, the Bayesian classi�er is robust with respectto noise, whereas the Wholist algorithm is not.DiscussionIn this paper we have presented an analysis of aBayesian classi�er. Our treatment requires that theconcept be monotone conjunctive, that instances befree of attribute noise, and that attributes be Booleanand independent. Given information about the num-ber of relevant and irrelevant attributes, their frequen-cies, and the level of class noise, our equations computethe expected classi�cation accuracy after a given num-ber of training instances.To explore the implications of the analysis, we haveplotted the predicted behavior of the algorithm asa function of the number of training instances, thenumber of relevant attributes, and the amount ofnoise, �nding graceful degradation as the latter twoincreased. As a check on our analysis, we run the al-gorithm on arti�cial domains with the same character-istics. We obtain close �ts to the predicted behavior,but only after correcting several errors in our reasoningthat the empirical studies revealed.In additional experiments, we compare the behaviorof the Bayesian classi�er to that of a reimplementationof C4, a more widely used algorithm that induces de-cision trees. In general, the probabilistic method per-forms comparably to C4, despite the latter's greatersophistication. These results suggest that such simplemethods deserve increased attention in future studies,whether theoretical or experimental.In future work, we plan to extend this analysis inseveral ways. In particular, our current equations han-dle only class noise, but as Angluin and Laird (1988)have shown, attribute noise can be even more prob-lematic for learning algorithms. We have developed



Analysis of Bayesian Classifiers 228tentative equations for the case of attribute noise, butthe expressions are more complex than for class noise,in that the possible corruption of any combination ofattributes can make any instance appear like another.We also need to relax the constraint that target con-cepts must be monotone conjunctive.Another direction in which we can extend thepresent work involves running additional experiments.Even within the assumptions of the current analysis,we could empirically study the extent to which vio-lated assumptions alter the observed behavior of thealgorithm. In addition, we could analyze the attributefrequencies in several of the domains commonly usedin experiments to determine the analytic model's abil-ity to predict behavior on these domains given theirfrequencies as input. This approach would extend theusefulness of our average-case model beyond the arti-�cial domains on which we have tested it to date.Overall, we are encouraged by the results that wehave obtained. We have demonstrated that a simpleBayesian classi�er compares favorably with a more so-phisticated induction algorithm and, more important,we have characterized its average-case behavior for arestricted class of domains. Our analysis con�rms intu-itions about the robustness of the Bayesian algorithmin the face of noise and concept complexity, and it pro-vides fertile ground for further research on this under-studied approach to induction.AcknowledgementsThanks to Stephanie Sage, Kimball Collins, and AndyPhilips for discussions that helped clarify our ideas.ReferencesAllen, J.A., & Langley, P. (1990). Integrating mem-ory and search in planning. Proceedings of the Work-shop on Innovative Approaches to Planning, Schedul-ing, and Control (pp. 301{312). San Diego: MorganKaufmann.Angluin, D., & Laird, P. (1988). Learning from noisyexamples. Machine Learning , 2 , 343{370.Buntine, W., & Caruana, R. (1991). Introduction toIND and recursive partitioning (Technical Report FIA-91-28). Mo�ett Field, CA: NASA Ames Research Cen-ter, Arti�cial Intelligence Research Branch.Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor,W., & Freeman, D. (1988). Autoclass: A Bayesianclassi�cation system. Proceedings of the Fifth Interna-tional Conference on Machine Learning (pp. 54{64).Ann Arbor, MI: Morgan Kaufmann.Clark, P., & Niblett, T. (1989). The CN2 inductionalgorithm. Machine Learning , 3 , 261{284.Cohen, P. R., & Howe, A. E. (1988). How evaluationguides AI research. AI Magazine, 9 , 35{43.
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