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Abstract

In this paper we present an average-case analysis
of the Bayesian classifier, a simple induction algo-
rithm that fares remarkably well on many learning
tasks. Our analysis assumes a monotone conjunc-
tive target concept, and independent, noise-free
Boolean attributes. We calculate the probability
that the algorithm will induce an arbitrary pair of
concept descriptions and then use this to compute
the probability of correct classification over the in-
stance space. The analysis takes into account the
number of training instances, the number of at-
tributes, the distribution of these attributes, and
the level of class noise. We also explore the be-
havioral implications of the analysis by presenting
predicted learning curves for artificial domains,
and give experimental results on these domains
as a check on our reasoning.

Probabilistic Approaches to Induction

One goal of research in machine learning is to discover
principles that relate algorithms and domain character-
istics to behavior. To this end, many researchers have
carried out systematic experimentation with natural
and artificial domainsin search of empirical regularities
(e.g., Kibler & Langley, 1988). Others have focused
on theoretical analyses, often within the paradigm of
probably approximately correct learning (e.g., Haus-
sler, 1990). However, most experimental studies are
based only on informal analyses of the learning task,
whereas most formal analyses address the worst case,
and thus bear little relation to empirical results.

A third approach, proposed by Cohen and Howe
(1988), involves the formulation of average-case mod-
els for specific algorithms and testing them through
experimentation. Pazzani and Sarrett’s (1990) study
of conjunctive learning provides an excellent example
of this technique, as does Hirschberg and Pazzani’s
(1991) work on inducing k-CNF concepts. By assum-
ing information about the target concept, the num-
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ber of attributes, and the class and attribute frequen-
cies, they obtain predictions about the behavior of
induction algorithms and used experiments to check
their analyses.! However, their research does not fo-
cus on algorithms typically used by the experimental
and practical sides of machine learning, and 1t is im-
portant that average-case analyses be extended to such
methods.

Recently, there has been growing interest in proba-
bilistic approaches to inductive learning. For example,
Fisher (1987) has described COBWEB, an incremental
algorithm for conceptual clustering that draws heavily
on Bayesian 1deas, and the literature reports a number
of systems that build on this work (e.g., Allen & Lang-
ley, 1990; Tbha & Gennari, 1991; Thompson & Langley,
1991). Cheeseman et al. (1988) have outlined AuTo-
CLaAss, a nonincremental system that uses Bayesian
methods to cluster instances into groups, and other
researchers have focused on the induction of Bayesian
inference networks (e.g., Cooper & Kerskovits, 1991).

These recent Bayesian learning algorithms are com-
plex and not easily amenable to analysis, but they
share a common ancestor that is simpler and more
tractable. This supervised algorithm, which we re-
fer to simply as a Bayesian classifier, comes originally
from work in pattern recognition (Duda & Hart, 1973).
The method stores a probabilistic summary for each
class; this summary contains the conditional probabil-
ity of each attribute value given the class, as well as
the probability (or base rate) of the class. This data
structure approximates the representational power of
a perceptron; 1t describes a single decision boundary
through the instance space. When the algorithm en-
counters a new instance, it updates the probabilities
stored with the specified class. Neither the order of
training instances nor the occurrence of classification
errors have any effect on this process. When given a
test instance, the classifier uses an evaluation function
(which we describe in detail later) to rank the alter-

! A related approach involves deriving the optimal learn-
ing algorithm under certain assumptions, and then imple-
menting an approximation of that algorithm (e.g., Opper
& Haussler, 1991).
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DoMAIN BaYyEs IND/C4  FrEQ.
SOYBEAN 1000 £ 0.0 938 £ 3.4 36.2
CHESS 875+ 04 9934+ 0.1 52.2
LyMPHO 81.1 1.8 748 £ 2.2 56.7
SPLICE 94.6 £ 0.4 89.2 £ 0.5 53.2
PROMOTERS 874 22 745 +£1.9 50.0

Table 1: Percentage accuracies for two induction al-
gorithms on five classification domains, along with the
accuracy of predicting the most frequent class.

native classes based on their probabilistic summaries,
and assigns the instance to the highest scoring class.

Both the evaluation function and the summary de-
scriptions used in Bayesian classifiers assume that at-
tributes are statistically independent. Since this seems
unrealistic for many natural domains, researchers have
often concluded that the algorithm will behave poorly
in comparison to other induction methods. However,
no studies have examined the extent to which violation
of this assumption leads to performance degradation,
and the probabilistic approach should be quite robust
with respect to both noise and irrelevant attributes.
Moreover, earlier studies (e.g., Clark & Niblett, 1987)
present evidence of the practicality of the algorithm.

Table 1 presents additional experimental evidence
for the utility of Bayesian classifiers. In this study
we compare the method to IND’s emulation of the
C4 algorithm (Buntine & Caruana, 1991) and an al-
gorithm that simply predicts the modal class. The five
domains, from the UCT database collection (Murphy &
Aha, 1992), include the “small” soybean dataset, chess
end games involving a king-rook-king-pawn confronta-
tion, cases of lymphography diseases, and two biologi-
cal datasets. For each domain, we randomly split the
data set into 80% training instances and 20% test in-
stances, repeating this process to obtain 50 separate
pairs of training and test sets. The table shows the
mean accuracy and 95% confidence intervals on the
test sets for each domain.

In four of the domains, the Bayesian classifier is at
least as accurate as the C4 reimplementation. We will
not argue that the Bayesian classifier is superior to this
more sophisticated method, but the results do show
that it behaves well across a variety of domains. Thus,
the Bayesian classifier 1s a promising induction algo-
rithm that deserves closer inspection, and a careful
analysis should give us insights into its behavior.

We simplify matters by limiting our analysis to the
induction of conjunctive concepts. Furthermore, we
assume that there are only two classes, that each at-
tribute is Boolean, and that attributes are indepen-
dent of each other. We divide our study into three
parts. We first determine the probability that the al-

gorithm will learn a particular pair of concept descrip-
tions. After this, we derive the accuracy of an arbi-
trary pair of descriptions over all instances. Taken to-
gether, these expressions give us the overall accuracy
of the learned concepts. We find that a number of fac-
tors influence behavior of the algorithm, including the
number of training instances, the number of relevant
and 1irrelevant attributes, the amount of class and at-
tribute noise, and the class and attribute frequencies.
Finally, we examine the implications of the analysis by
predicting behavior in specific domains, and check our
reasoning with experiments in these domains.

Probability of Induced Concepts

Consider a concept (' defined as the monotone con-
junction of r relevant features Ay, ..., A, (i.e.,in which
none of the features are negated). Also assume there
are { irrelevant features A,41,..., A,4;. Let P(A4;) be
the probability of feature A; occurring in an instance.
The concept descriptions learned by a Bayesian clas-
sifier are fully determined by the n training instances
it has observed. Thus, to compute the probability of
each such concept description, we must consider differ-
ent possible combinations of n training instances.

First let us consider the probability that the algo-
rithm has observed exactly k& out of n positive in-
stances. If we let P(C') be the probability of observing
a positive instance and we let x be the observed frac-
tion of positive instances, then we have

Pz = é) = (Z)P(C)ku — pO)*F

This expression also represents the probability that
one has observed exactly n — k negative instances.
Since we assume that the concept is monotone con-
junctive and that the attributes are independent, we
have P(C) = H;Il P(A;), which is simply the product
of the probabilities for all relevant attributes.

A given number of positive instances k£ can produce
many alternative descriptions of the positive class, de-
pending on the instances that are observed. One can
envision each such concept description as a cell in an
r 4+ ¢ dimensional matrix, with each dimension rang-
ing from 0 to k, and with the count on dimension j
representing the number of positive instances in which
attribute A; was present. One can envision a similar
matrix for the negative instances, again having dimen-
sionality r+¢, but with each dimension ranging from 0
to n — k, and with the count on each dimension j rep-
resenting the number of negative instances in which A;
occurred. Figure 1 shows a positive cell matrix with
r—+1 =23, k = 2. The designated cell holds the prob-
ability that the algorithm has seen two instances with
Aj present, 1 instance with A, present, and 0 instances
with As present.

In both matrices, one can index each cell or concept
description by a vector of length r 4+ 4. Let P(cellz)
be the probability that the algorithm has produced the
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Figure 1: A positive cell matrix for three attributes
and k = 2. Values along axes represent numbers of
positive instances for which A; was present.

cell indexed by vector @ in the positive matrix given
k positive instances; let P(cellz)p—p be the analogous
probability for a cell in the negative matrix. Then a
weighted product of these terms gives the probability
that the learning algorithm will generate any particular
pair of concept descriptions, which is

k
P(k,@,0), = P(x = —)P(cellg)r P(cellz)p_p
n

In other words, one multiplies the probability of seeing
k out of n positive instances and the probabilities of
encountering cell 4 in the positive matrix and cell ¢ in
the negative matrix.

However, we must still determine the probability of
a given cell from the matrix. For those in the positive
matrix, this is straightforward, since the attributes re-
main independent when the instance is a member of a
conjunctive concept. Thus, we have

r4i -
i
P(celly)r = [[ Ply; = ?f)
ji=1

as the probability for cell; in the positive matrix,
where y; represents the observed fraction of the & in-
stances in which attribute A; was present. Further-
more, the probability that one will observe A4; in ex-
actly @; out of k such instances is

i k . i

Pu="0= (1) reasio®n - pusiop-

k Uj
In the absence of noise, we have P(A4;|C) = 1 for all
relevant attributes and P(A4;|C) = P(A;) for all irrel-
evant attributes.

The calculation is more difficult for cells in the neg-
ative matrix. One cannot simply take the product of
the probabilities for each index of the cell, since for a
conjunctive concept, the attributes are not statistically
independent. However, one can compute the probabil-
ity that the n — k observed negative instances will be
composed of a particular combination of instances.

If we let P(I;|C) be the probability of I; given a neg-
ative instance, we can use the multinomial distribution
to compute the probability that exactly d; of the n —k
instances will be instance I, do will be instance Is,

.., and dy, will be instance I,. Thus the expression

(n—k)!
dilds! .. dy!

gives us the probability of a particular combination
of negative instances, and from that combination we
can compute the concept description (i.e., cell indices)
that result. Of course, two or more combinations of in-
stances may produce the same concept description, but
one simply sums the probabilities for all such combina-
tions to get the total probability for the cell. All that
we need to make this operational is P(I;|C), the prob-
ability of I; given a negative instance. In the absence
of noise, this is simply P(I;)/P(C), since P(C|I;) = 1.
We can extend the framework to handle class noise
by modifying the definitions of three basic terms —
P(C), P(4;]C), and P(I;|C). One common definition
of class noise involves the corruption of class names
(i.e., replacing the actual class with its opposite) with
a certain probability z between 0 and 1. The proba-
bility of the class after one has corrupted values is

P'(C) = (1-2)P(C)+2(1-P(C)) = P(C)[1-22]+% |

as we have noted elsewhere (Iba & Langley, 1992).
For an irrelevant attribute A;, the probability
P(A;]C) is unaffected by class noise and remains equal
to P(A;), since the attribute is still independent of the
class. However, the situation for relevant attributes
1s more complicated. By definition, we can reexpress
the corrupted conditional probability of a relevant at-
tribute A; given the (possibly corrupted) class C' as

P'(4; ANC)

Py
where P’(C') is the noisy class probability given above.
Also, we can rewrite the numerator to specify the situ-
ations in which corruption of the class name does and
does not occur, giving
— 2)P(C)P(4]C) + 2P(C)P(4|C)

PI(C)
Since we know that P(A4;|C) = 1 for a relevant at-
tribute, and since P(4;|C) = [P(4;) — P(C)]/P(C)
for conjunctive concepts, we have
— 2)P(C) + 2[P(4;) — P(C)]
POl =2z]4 = ’

which involves only terms that existed before corrup-
tion of the class name.

We can use similar reasoning to compute the post-

noise probability of any particular instance given that
it is negative. As before, we can rewrite P'(I;|C') as

P AC) _ (1= 2)P(C)P(L]C) + = P(C)P(L]C)

P(C) 1— (P(O)[1—22] + 2) ’

P(LL|C)" P(I5|C)% ... P(1,|C)%

P'(44|C) =

Piagley =4

Plaley =4
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but in this case the special conditions are somewhat
different. For a negative instance, we have P([;|C) =
0, so that the second term in the numerator becomes
zero. In contrast, for a positive instance, we have
P(I;|C) = 0, so that the first term disappears. Taken
together, these conditions let us generate probabilities
for cells in the negative matrix after one has added
noise to the class name.

After replacing P(C) with P/(C), P(4;|C) with
P'(A;]C), and P(I;|C) with P'(I;|C'), the expressions
earlier in this section let us compute the probability
that a Bayesian classifier will induce any particular
pair of concept descriptions (cells in the two matri-
ces). The information necessary for this calculation is
the number of training instances, the number of rele-
vant and irrelevant attributes, their distributions, and
the level of class noise. This analysis holds only for
monotone conjunctive concepts and in domains with
independent attributes, but many of the ideas should
carry over to less restricted classes of domains.

Accuracy of Induced Concepts

To calculate overall accuracy after n training instances,
we must sum the expected accuracy for each possible
instance weighted by that instance’s probability of oc-
currence. More formally, the expected accuracy is

K, = ZI: P(I)K (),

To compute the expected accuracy K(I;), for instance
1;, we must determine, for each pair of cells in the posi-
tive and negative matrices, the instance’s classification.

A test instance I; is classified by computing its score
for each class description and selecting the class with
the highest score (choosing randomly in case of ties).
We will define accuracy(l;), x a7 for the pair of con-
cept descriptions @ and ¥ to be 1 if this scheme cor-
rectly predicts I;’s class, 0 if it incorrectly predicts the
class, and % if a tie occurs.

Following our previous notation, let n be the number
of observed instances, k& be the number of observed pos-
itive instances, u; be the number of positive instances
in which attribute A; occurs, and v; be the number
of negative instances in which A; occurs. For a given
instance [;, one can compute the score for the positive
class description as

g 1;6—3 if A; is present in I;
score(C); = nH{ % otherwise,

and an analogous equation for the negative class, sub-
stituting n — k for k& and v for u. To avoid multiplying
by 0 when an attribute has never (always) been ob-
served in the training instances but is (is not) present
in the test instance, we follow Clark and Niblett’s
(1987) suggestion of replacing 0 with a small value,
such as 1/2n.

To compute the expected accuracy for instance I,
we sum, over all possible values of k& and pairs of con-
cept descriptions, the product of the probability of se-
lecting the particular pair of concept descriptions af-
ter k positive instances and the pair’s accuracy on ;.
Thus, we have

n U

v
K(I), = ZZZP(/C,U, V) accuracy(l)n kav

k=0 T

where the second and third summations occur over the
possible vectors that index into the positive matrix U
and the negative matrix V. To complete our calcula-
tions, we need an expression for P(I;), which is the
product of the probabilities of features present in I;.

Implications for Learning Behavior

Although the equations in the previous sections give a
formal description of the Bayesian classifier’s behavior,
their implications are not obvious. In this section, we
examine the effects of various domain characteristics
on the algorithm’s classification accuracy. However,
because the number of possible concept descriptions
grows exponentially with the number of training in-
stances and the number of attributes, our predictions
have been limited to a small number of each.

In addition to theoretical predictions, we report
learning curves that summarize runs on 100 randomly
generated training sets. Each curve reports the aver-
age classification accuracy over these runs on a single
test set of 200 randomly generated instances contain-
ing no noise. In each case, we bound the mean accu-
racy with 95% confidence intervals to show the degree
to which our predicted learning curves fit the observed
ones. These experimental results provide an important
check on our reasoning, and they revealed a number of
problems during development of the analysis.

Figure 2 (a) shows the effects of concept complexity
on the rate of learning in the Bayesian classifier when
no noise is present. In this case, we hold the num-
ber of irrelevant attributes ¢ constant at one, and we
hold their probability of occurrence P(A) constant at
%. We vary both the number of training instances and
the number of relevant attributes r, which determine
the complexity of the target concept. To normalize for
effects of the base rate, we also hold P(C'), the prob-
ability of the concept, constant at %; this means that,

for each of the r relevant attributes, P(A) is P(C)Y/",
and thus is varied for the different conditions.?

As typical with learning curves, the initial accuracies
begin low (at %) and gradually improve with increasing
numbers of training instances. The effect of concept
complexity also agrees with our intuitions; introducing

2An alternative approach would hold P(A) constant for
relevant attributes, causing P(C') to become P(A)". This
nudges the initial accuracies upward but otherwise has little
effect on the learning curves.
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Figure 2: Predictive accuracy of a Bayesian classifier in a conjunctive concept, assuming the presence of one
irrelevant attribute, as a function of training instances and (a) number of relevant attributes and (b) amount of
class noise. The lines represent theoretical learning curves, whereas the error bars indicate experimental results.

additional features into the target concept slows the
learning rate, but does not affect asymptotic accuracy,
which is always 1.0 for conjunctive concepts on noise-
free test cases. The rate of learning appears to degrade
gracefully with increasing complexity. The predicted
and observed learning curves are in close agreement,
which lends confidence to our average-case analysis.
Theory and experiment show similar effects when we
vary the number of irrelevant attributes; learning rate
slows as we introduce misleading features, but the al-
gorithm gradually converges on perfect accuracy.

Figure 2 (b) presents similar results on the interac-
tion between class noise and the number of training
instances. Here we hold the number of relevant at-
tributes constant at two and the number of irrelevants
constant at one, and we examine three separate levels
of class noise. Following the analysis, we assume the
test instances are free of noise, which normalizes ac-
curacies and eases comparison. As one might expect,
increasing the noise level z decreases the rate of learn-
ing. However, the probabilistic nature of the Bayesian
classifier leads to graceful degradation, and asymptotic
accuracy should be unaffected. We find a close fit be-
tween the theoretical behavior and the experimental
learning curves. Although our analysis does not in-
corporate attribute noise, experiments with this factor
produce similar results. In this case, equivalent levels
lead to somewhat slower learning rates, as one would
expect given that attribute noise can corrupt multiple
values, whereas class noise affects only one.

Finally, we can compare the behavior of the Bayesian
classifier to that of WHoLIsT (Pazzani & Sarrett,
1990). One issue of interest is the number of train-
ing instances required to achieve some criterion level
of accuracy. A quantitative comparison of this nature
is beyond the scope of this paper, but the respective
analyses and experiments show that the WHoLIST al-
gorithm is only affected by the number of irrelevant at-

tributes, whereas the Bayesian classifier is sensitive to
both the number of relevant and irrelevant attributes.
However, the Bayesian classifier 1s robust with respect
to noise, whereas the WHOLIST algorithm is not.

Discussion

In this paper we have presented an analysis of a
Bayesian classifier. Qur treatment requires that the
concept be monotone conjunctive, that instances be
free of attribute noise, and that attributes be Boolean
and independent. Given information about the num-
ber of relevant and irrelevant attributes, their frequen-
cies, and the level of class noise, our equations compute
the expected classification accuracy after a given num-
ber of training instances.

To explore the implications of the analysis, we have
plotted the predicted behavior of the algorithm as
a function of the number of training instances, the
number of relevant attributes, and the amount of
noise, finding graceful degradation as the latter two
increased. As a check on our analysis, we run the al-
gorithm on artificial domains with the same character-
istics. We obtain close fits to the predicted behavior,
but only after correcting several errors in our reasoning
that the empirical studies revealed.

In additional experiments, we compare the behavior
of the Bayesian classifier to that of a reimplementation
of C4, a more widely used algorithm that induces de-
cision trees. In general, the probabilistic method per-
forms comparably to C4, despite the latter’s greater
sophistication. These results suggest that such simple
methods deserve increased attention in future studies,
whether theoretical or experimental.

In future work, we plan to extend this analysis in
several ways. In particular, our current equations han-
dle only class noise, but as Angluin and Laird (1988)
have shown, attribute noise can be even more prob-
lematic for learning algorithms. We have developed
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tentative equations for the case of attribute noise, but
the expressions are more complex than for class noise,
in that the possible corruption of any combination of
attributes can make any instance appear like another.
We also need to relax the constraint that target con-
cepts must be monotone conjunctive.

Another direction in which we can extend the
present work involves running additional experiments.
Even within the assumptions of the current analysis,
we could empirically study the extent to which vio-
lated assumptions alter the observed behavior of the
algorithm. In addition, we could analyze the attribute
frequencies in several of the domains commonly used
in experiments to determine the analytic model’s abil-
ity to predict behavior on these domains given their
frequencies as input. This approach would extend the
usefulness of our average-case model beyond the arti-
ficial domains on which we have tested it to date.

Overall, we are encouraged by the results that we
have obtained. We have demonstrated that a simple
Bayesian classifier compares favorably with a more so-
phisticated induction algorithm and, more important,
we have characterized its average-case behavior for a
restricted class of domains. Our analysis confirms intu-
itions about the robustness of the Bayesian algorithm
in the face of noise and concept complexity, and it pro-
vides fertile ground for further research on this under-
studied approach to induction.
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