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Abstract

Much of the work on execution assumes that the agent
constantly senses the environment, which lets it respond
immediately to errors or unexpected events. In this pa-
per, we argue that this purely reactive strategy is only
optimal if sensing is inexpensive, and we formulate a sim-
ple model of execution that incorporates the cost of sens-
ing. We present an average-case analysis of this model,
which shows that in domains with high sensing cost or
low probability of error, a more ‘automatic’ strategy —
one with long intervals between sensing — can lead to
less expensive execution. The analysis also shows that
the distance to the goal has no effect on the optimal sens-
ing interval. These results run counter to the prevailing
wisdom in the planning community, but they promise a
more balanced approach to the interleaving of execution
and sensing.

Reactive and Automatic Execution

Much of the recent research on plan execution and
control has focused on reactive systems. Omne central
characteristic of such approaches is that the agent senses
the environment on each time step, thus ensuring that
it can react promptly to any errors or other unexpected
events. This holds whether the agent draws on large-
scale knowledge structures, such as plans (Howe & Co-
hen, 1991) or cases (Hammond, Converse, & Marks,
1988), or bases its decisions on localized structures, such
as control rules (Bresina, Drummond, & Kedar, 1993;
Grefenstette, Ramsey, & Schultz, 1990) or neural net-
works (Sutton, 1988; Kaelbling, 1993).

However, human beings still provide the best exam-
ples of robust physical agents, and the psychological lit-
erature reveals that humans do not always behave in a
reactive manner. People can certainly operate in reac-
tive or ‘closed-loop” mode, which closely couples execu-
tion with sensing (Adams, 1971). But at least in some
domains, humans instead operate in automatic or ‘open-
loop’ mode, in which execution proceeds in the absence
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of sensory feedback (Schmidt, 1982). Thus, at least in
some contexts, successful agents appear to prefer nonre-
active strategies to reactive ones.!

One explanation for this phenomenon is that there ex-
ists a tradeoff between the cost of sensing, which models
of reactive agents typically ignore, and the cost of errors
that occur during execution. For some situations, the
optimal sensing strategy is completely reactive behavior,
in which the agent observes the environment after each
execution step. For other situations, the best strategy is
completely automatic behavior, in which execution oc-
curs without sensing. In most cases, the optimum will
presumably fall somewhere between these two extremes,
with the agent sensing the world during execution, but
not after every step.

There exist other reasons for preferring automatic to
reactive behavior in some situations. At least for hu-
mans, the former appears to require fewer attentional re-
sources, which lets them execute multiple automatic pro-
cedures in parallel. Humans also exhibit a well-known
tradeoff between speed and accuracy, and in some cases
one may desire an automated, rapid response to a re-
active, accurate one. However, our goal here is not to
provide a detailed account of human execution strate-
gies, but to better understand the range of such strate-
gies and the conditions under which they are appropri-
ate. Thus, we will focus on the first explanation above,
which assigns an explicit cost to the sensing process.

In the following pages, we attempt to formalize the
tradeoff between the cost of sensing and the cost of er-
rors, and to identify the optimal position for an agent
to take along the continuum from closed-loop, reactive
behavior to open-loop, automatic behavior. In the next
section, we present an idealized model of execution that
takes both factors into account, followed by an analysis

! Note that the distinction between reactive and auntomatic
behavior is entirely different from the more common distinc-
tion between reaction and deliberation. The former deals
exclusively with sensing strategies during execution, whereas
the latter contrasts execution with plan generation.
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of this model. After this, we present some theoretical
curves that illustrate the behavioral implications of the
analysis. Finally, we discuss related work on sensing and
execution, along with some prospects for future research.

A Model of Execution Cost

We would like some model of execution that lets us
understand the tradeoff between the cost of sensing and
the cost of errors. Of course, any model is necessarily
an idealization of some actual situation, and from the
many possible models, we must select one that 1s simul-
taneously plausible and analytically tractable. Thus, we
will begin with a realistic scenario and introduce some
simplifying assumptions that we hope retain the essen-
tial characteristics.

One common problem that involves physical agents
is robot navigation. In some approaches; the agent re-
trieves or generates a plan for moving through an envi-
ronment, then executes this plan in the physical world.
Unfortunately, the plan does not always operate as de-
sired. One source of divergence from the planned path
comes from actuator error: a command to turn 35 de-
grees or to move 5.2 meters ahead may not execute ex-
actly as specified. Another source of divergence comes
from external forces: another agent may bump into the
robot or an unexpected slope may alter its direction.
Similar issues arise in the control of planes and boats,
where malfunctioning effectors or unpredictable forces
like wind can take the craft off the planned course.

In the standard reactive control regimen, the agent
senses the environment on every time step, detects errors
or divergences as soon as they occur, and takes action to
put the agent back on the desired path.? The quality of
the resulting plan execution takes into account the num-
ber of steps required to reach the goal or some similar
measure. In a more general framework, execution qual-
ity also takes into account the cost ¢ of sensing, which
discourages a rational agent from unnecessary sensing
and leads it to sample the environment only after every
s time steps. This sensing cost may actually add to the
execution time, or it may draw on other resources; here
we care only that it somehow contributes to the overall
cost of execution.

For such navigation contexts, we would like to deter-
mine the optimal sensing interval s for the execution of
a given plan; in other words, we would like the sensing
interval s that produces the most desirable compromise
between purely reactive and purely automatic control.
Naturally, the best value for s will be partly determined
by the sensing cost ¢, which we assume includes the cost
of matching the result against the expected situation.
Two characteristics of the plan’s interaction with the
environment also come into play: the probability p that,
on a given time step, an error will occur that takes the

2In some work (e.g., Simmons, 1990), the results of sensing
instead determine the path followed in a conditional plan, but
here we assume the aim is to follow a single desired path.

agent away from the desired path, and the distance d (or
the number of time steps) to the goal if no such errors
occur during execution.

There exist a variety of ways to ground these terms.
We might model the situation geometrically, assuming
that each error introduces some angular divergence from
the current path, and that error recovery involves chang-
ing the angle of motion back toward the goal. We could
then determine the expected distance added to the ex-
ecuted path as a function of the error-free distance, the
probability and amount of error, and the sensing inter-
val. Combining this with the sensing cost, we could de-
rive the expected cost of execution. Note that this model
assumes that errors have persistence; that is, the cost of
an error increases with the time it goes undetected.

Although such a geometric model has attractions, a
considerable amount of Al research (including much work
on navigation) has relied instead on a state-space formal-
ism. For example, one can divide any two-dimensional
region into a grid, with the typical location having four
neighbors (up, down, left, and right). One can represent
these locations as states in a problem space, and the ac-
tions connecting them as operators for moving from one
state to another. A particular path through this space
corresponds to a navigation plan that the agent intends
to carry out, and if the operators along the path are un-
certain, then the agent may diverge from the planned
path during execution. Such models of agent behavior
are commonly used in work on reinforcement learning

(e.g., Sutton, 1988; Kaelbling, 1993).

We could directly analyze the tradeoff between sensing
and execution costs within this two-dimensional frame-
work. However, Shrager, Hogg, and Huberman (1988)
have noted that, for sparsely connected state spaces and
accurate control decisions, one can approximate search
through the space as a one-dimensional random walk,
with each step taking one either closer to the goal (with
probability 1 — p) or further away (with probability p).
We can adapt this idea to the execution of a state-space
plan, giving the model that we will use in the remainder
of the paper.

Figure 1 depicts this idealized situation. The agent,
located at the current state, is moving toward the goal
state, which is d steps to the right. With probability
1 — p, the agent’s next action will take it one step closer
to the goal. However, with probability p, the action will
instead introduce an error that not only takes it one
step further from the goal, but reverses the agent’s di-
rection, so that future steps (unless again reversed) will
lead away from the goal. (This persistent effect of errors
distinguishes the model from a simple random walk, in
which the probability of moving in a given direction is
independent of past events.) The agent can correct this
situation, but it can only detect the problem through
sensing, which has cost ¢, leading it to sample the envi-
ronment only after every s time steps.

Although this model is remarkably simple, we believe
that it provides a viable approximation for much of the
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Figure 1. Modeling execution as a ‘persistent’ random walk in which the agent is distance d from the goal state, an execution
error that inverts the direction of movement occurs with probability p, and sensing occurs every s time steps with cost c.

work on reactive behavior. The framework seems espe-
cially appropriate for navigation in a discretized two-
dimensional space, as assumed by Sutton (1988) and
Kaelbling (1993). Here each node in the state space has
no more than four neighbors, provided one allows only
moves to adjacent locations or changes in orientation. A
large set of states produces a sparsely connected space;
thus, unless errors are very likely, the situation can be
approximated by the random walk in our model.

Analysis of the Execution Model

Within the above framework, we would like to deter-
mine O(c, s, p,d), the expected overall cost of executing
a plan given agent parameters for the sensing cost ¢ and
sensing frequency s, and given domain parameters for
the error rate p and distance d. This quantity is

O(c,s,p,d) = (1—1—5) E(s,p,d)

where the first term in the product corresponds to the
cost per execution step (assuming unitary cost for each
movement) and the second gives the expected number of
steps during execution. We can further decompose the
latter term into

d

G(s,p)

where the ratio on the right expresses the expected num-
ber of times the agent will have to sense during the ex-
ecution process. This is simply the initial distance to
the goal, d, divided by the expected number of steps
taken toward the goal during the intra-sensing interval
s, denoted as G(s,p). We can expand this last term to

5,p) = ZS:R(J}&P) QU s)

where R(j,s,p) is the probability that exactly j errors
will occur during the sensing interval s and Q(j, s) is the
expected number of steps taken toward the goal during
that interval given that exactly j errors have occurred
within it.

E(s,p,d) = s-

The first of these terms follows a simple binomial dis-
tribution, giving the expression

R(j,s,p) = (j)p?’u —p)*i

The second term is more complex, but the basic idea
is that the j errors can occur during the s time steps
in any one of (]s) ways, with equal probability. We can
determine the expected progress toward (or away from)
the goal resulting from any one of the errors, then com-
pute a weighted average. As a special case, if the agent
makes zero errors, we have Q(0, s) = s, since each of the
s steps takes it toward the goal. Another special case oc-
curs when the agent makes exactly one error. We start
with the expression

—_

o

s—1
— E 7 — S—Z s
i=0

since the error can occur before any one of the s time
steps, and the resulting progress in each case is the num-
ber of time steps prior to the error (¢ up to s — 1), mi-
nus the negative progress occurring during the remaining
time steps (s — ). If we simplify this expression, we see
that @Q(1,s) = —1.

When the agent makes two or more errors, the ex-
pected progress between the two errors (subsequent to
the first) are additive inverses and therefore tend to can-
cel each other. Thus, whenever the number of errors
is even, they cancel completely and the overall expected
progress is simply the expected progress prior to the first
error. We can express this quantity as

, 1S (s—(i+1
Q(]as):621< (_1 ) ;
Jj/ i=0 J
which averages, with respect to the total number of ways
the j errors can occur, the progress prior to the first error

weighted by the number of ways that subsequent errors
can occur.

For the case in which the number of errors is odd, all
but one of the subsequent errors cancel; thus, we must
include the expected progress between the first and sec-
ond errors. Since we assume the agent starts in the right
direction, the first error results in negative progress and
we must subtract this term from the previous expression.

Thus, for this situation Q(j, s) becomes
(i+1) k)]

plo (8- R
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Figure 2. Effect of the sensing interval s and the sensing cost
¢ on the overall execution cost O, when the error probability
p1s 0.06 and the distance d to the goal is ten.

Given the above expressions and settings for the four
parameters, we can predict the expected overall cost
O(c, s,p,d) of executing a plan. Clearly, we would like
to select a sensing interval s that minimizes this cost.
For particular values of sensing cost ¢, error probabil-
ity p, and distance d, we could in principle determine
this optimal value by taking the partial derivative of O
with respect to s, setting this expression to zero, and
solving for s. We are currently working on this step of
the analysis, but we have not yet obtained a closed-form
solution.

Behavioral Implications of the Analysis

Although the equations in the previous section pro-
vide an analytic model of execution and sensing, their
implications are not obvious. In order to better under-
stand the interactions among the agent and environment
parameters, and their effects on the overall execution
cost, we carried out three ‘thought experiments’.® In
each case, we varied the sensing interval s and one other
parameter, with the aim of illuminating the tradeoff be-
tween the costs of sensing and action. Our intent was
not to show that one method is universally better than
another, but to show exactly the opposite: that there are
some situations in which reactive behavior outperforms
automatic processing, but that there also exist cases in
which automatic behavior is superior.

Figure 2 shows the joint effects of s and the sensing
cost ¢ on the overall cost O(e, s, p, d), when the proba-
bility of error p 1s held constant at 0.06 and the distance
d to the goal is ten. Here we see that, when the sensing
cost c¢ is zero, a purely reactive strategy produces the

?We also ran actual experiments, using the same assump-
tions, as a check on our mathematical analysis. Since the re-
sults of these studies agreed closely with the predicted ones,
we have not reported them here.

sensing interval (s)

Figure 3. Effect of the sensing interval s and the error prob-
ability p on the overall execution cost O, when the sensing
cost ¢ is three and the distance d to the goal is seven.

least expensive execution, with the cost monotonically
increasing with higher values of s. This 1s the situation
that most papers on reactive behavior assume. However,
as the sensing cost increases, an intermediate strategy
becomes optimal; for instance, when ¢ is three, the best
setting for s i1s six. Moreover, when ¢ reaches ten, we
find that the original effect is completely reversed, with
an almost completely automatic strategy being most de-
sirable, and with the cost monotonically increasing as s
decreases.

A similar interaction emerges in Figure 3, which plots
O as a function of the sensing interval s and the proba-
bility of error p when the sensing cost ¢ i1s three and the
distance d is seven. In this case, we see that, when the
chances of an error during an execution step is very high
(0.4), a purely reactive strategy proves least expensive.
Yet when the planned course of action becomes more
reliable (i.e., when p decreases), sensing on every time
step ceases to be optimal and an intermediate strategy
emerges as most desirable. For example, when p = 0.2,
the optimal value for s is three. Finally, when the exe-
cution of a plan is sufficiently reliable (when p = 0.05),
a completely automatic execution scheme becomes the
strategy of choice.

However, the sensing interval does not interact with
the final parameter, the distance d to the goal. Figure 4
maps the values of O against these two variables when
the sensing cost is five and the error probability is 0.1.
The graph reveals that the optimal setting for s is five,
independent of the distance d, and similar results hold
for other values of ¢ and p. Thus, in our model an agent
need not be concerned about its distance from the goal
when selecting a sensing interval.

The behavioral implications of the model should now
be clear. As the graphs show, there exist situations in
which a purely reactive strategy leads to the lowest ex-
ecution costs, but when one takes the sensing cost into
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Figure 4. Effect of the sensing interval s and the distance d
to the goal on the overall execution cost O, when the sensing
cost ¢ is five and there exists a 0.1 probability of error.

account, there also exist many cases in which a rational
agent should sense only occasionally or even use a purely
automatic strategy that involves no sensing at all. The
literature’s emphasis on reactive behavior has come from
an oversimplified model that assumes the cost of sens-
ing is negligible. This assumption is clearly violated for
humans, and we believe that robust artificial agents will
also be forced to take sensing costs into account.

Related and Future Work

As we noted earlier, the majority of research on ex-
ecution has assumed a purely reactive strategy. Most
examples of this approach rely on local decision knowl-
edge (e.g., Sutton, 1988; Bresina et al., 1993), but even
work that involves the generation or retrieval of entire
plans (e.g., Howe & Cohen, 1991; Hammond et al., 1988)
has often assumed that the agent senses the environment
on every time step, giving it the ability to react imme-
diately when behavior diverges from the desired path.
Research in this tradition almost invariably ignores the
cost of sensing.

A few researchers have incorporated decisions about
sensing into the process of plan generation, viewing these
as a form of action (Simmons, 1990; Kresbach et al.,
1991; Schoppers, 1991). However, this work has focused
on the construction of conditional plans that are guar-
anteed to achieve the goal, rather than explicitly tak-
ing into account the sensing cost. Tan’s (1991) work
on the induction of sensing strategies does address the
cost of sensing, but here the goal is to determine the
most efficient sequence of sensing actions, not the trade-
off between sensing costs and error costs. Chrisman and
Simmons (1991) assign clear costs to both sensing and
action, but they emphasize selection of the best sensing
decision on each time step, rather than the decision of
whether to sense at all.

Our work does have much in common with the ap-
proach taken by Iba (1991), who studied the continuum
from closed-loop to open-loop behavior in the execution
of retrieved motor schemas. However, Iba’s aim was to
minimize divergence of the execution trace from the de-
sired behavior, and he ignored the cost of sensing. Yang
(1992) has also dealt with the continuum in his work on
macro-operators, showing that some environments sup-
port long sequences of actions without sensing, whereas
others do not. But again, his work assumed sensing
should be minimized but did not model its cost.

The research most closely related to our own comes
from Hansen and Cohen (1993), who have reformulated
the standard Markov decision framework to incorporate
the cost of sensing. Their analysis shows that, in some
domains, selective sensing can produce less expensive ex-
ecution strategies than purely reactive schemes, and that
one can use dynamic programming to determine the op-
timal monitoring interval. Moreover, they show that the
desired interval decreases as the agent approaches the
final state, an intuitively plausible result that our anal-
ysis does not provide. However, their framework differs
from our own in assuming a cyclical domain, so that we
cannot directly carry over their results.

Although our model moves beyond most others in its
explicit treatment of sensing costs, considerable work re-
mains to be done. We should connect our theoretical
ideas to more traditional decision-theoretic analyses, and
we should test the framework’s ability to model the be-
havior of physical robots using actual navigation plans
and using reasonable estimates of sensing cost. We have
also made the implausible assumption that one sensing
interval is optimal for an entire plan, and we should ex-
tend the model to handle plans with a number of sequen-
tial components, each with their own values for the p, d,
¢, and s parameters.

Moreover, we should generalize the framework to han-
dle situations that involve many different sensors, each
with its own characteristics. On every time step, the
decision about whether to invoke a given sensor should
take into account not only that sensor’s expense, but
also the information it is expected to provide, which is
directly related to the probability that the sensor will re-
veal an execution error. In this framework, the optimal
strategy would sample inexpensive, informative sensors
frequently but sample costly, uninformative ones seldom
or not at all; giving behavior that is reactive with respect
to some sensors and automatic with respect to others.

Finally, we would like the agent to determine the op-
timal sensing interval for a given situation by taking the
derivative of O(c, s, p, d) with respect to s. However, for
this it must know the values for the sensing cost ¢, the
error probability p, and distance d, and we cannot ex-
pect an oracle to provide this information on request.
Fortunately, the agent should be able to estimate these
parameter settings from execution of the given plan, sim-
ply by collecting statistics over a number of trials. Such
alearning agent would begin with a purely reactive strat-
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egy but, if the parameter estimates recommend it, would
move toward a more automatic execution scheme as it
gains experience.

An extended model of this sort makes clear predictions
about human learning. In particular, it indicates that,
in the early stages of skill acquisition, people will operate
in reactive mode to the extent their attentional resources
allow, letting them estimate the domain characteristics.
In uncertain domains where sensing is expensive, they
will continue to execute skills in this manner even af-
ter long practice. But in domains where sensing costs
less and errors are unlikely, they will gradually move to
an automatic execution strategy. Unfortunately, most
existing studies of human motor behavior have forced
subjects into either closed-loop processing (e.g., Adams,
1971) or open-loop mode (e.g., Schmidt, 1982), and they
have not systematically varied the domain characteris-
tics with an eye toward the transition from the former
to the latter. A clear test of our model would include
different types of motor tasks and would give subjects
the ability to range from automatic processing to purely
reactive behavior.

We began this paper with an intuition that ran counter
to the prevailing wisdom that purely reactive strategies
are always preferable. In order to formalize our ideas, we
presented an idealized model of plan execution, followed
by a tractable analysis that predicts the overall cost of
execution in terms of the sensing interval s, the sensing
cost ¢, the probability of error p, and the distance d to
the goal. Our analysis, which we argued is applicable to
much of the work in the literature, revealed that it 1s not
always desirable to sense on every time step, and that
the parameters ¢ and p (but not d) influence the optimal
setting for s. In future work, we plan to elaborate on
the start we have made here, and we hope that other
researchers will join us by taking a more balanced view
of the spectrum from reactive to automatic execution.
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