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Abstract

Research on cognitive architectures attempts to develop uni-
fied theories of the mind. This paradigm incorporates many
ideas from other parts of AI, but it differs enough in its aims
and methods that it merits separate treatment. In this paper,
we review the notion of cognitive architectures and some re-
curring themes in their study. Next we examine the substan-
tial progress made by the subfield over the past 40 years, after
which we turn to some topics that have received little atten-
tion and that pose challenges for the research community.

1 Introduction and Overview
Most research in AI is analytic, in that it selects some facet
of intelligence and attempts to understand it in detail, typi-
cally in isolation from other elements. This is balanced by
a smaller movement, synthetic in character, that aims to dis-
cover how different aspects of intelligence interact. Without
efforts of this latter sort, AI may be able to create idiot sa-
vants that outperform people in narrow arenas, but it can-
not create complete intelligent agents that show the same
breadth of abilities as seen in humans.

Theoretical physicists seek a grand unified theory that ex-
plains all known physical laws within a single consistent
framework. The analog in AI is a unified theory of cogni-
tion, which Newell (1990) linked to the notion of a cogni-
tive architecture. The mapping is imperfect in that most AI
researchers focus on creating computational artifacts rather
than explaining observations. However, if we want systems
that exhibit the full range of human intelligence, they must
reproduce all major phenomena associated with the latter.

In the sections that follow, we review the cognitive archi-
tecture paradigm and its recurring themes, then discuss the
great strides it has made in the decades since its inception.
We will argue that, despite this progress, research has fo-
cused on some topics to the near exclusion of others, and we
examine a number of areas that deserve more attention. One
open question is whether replicating these abilities requires
changes to existing architectures or simply adding new types
of knowledge. Ultimately, this is an empirical question that
can only be answered by making the attempt, but we will
take some tentative stances on the issue.
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2 Previous Work on Cognitive Architectures
The cognitive architecture movement shares many ideas
with other branches of AI, but it has sufficiently different
emphases that we should clarify them before discussing its
status. In this section, we describe its basic aims, some re-
curring themes, and some well-known examples.

2.1 The Notion of a Cognitive Architecture
A cognitive architecture (Newell 1990) is a theory of intel-
ligent behavior that specifies those facets of cognition hy-
pothesized to remain constant over time and across different
domains. This includes memory stores and the representa-
tions of elements in those memories, but not their contents,
which change as the result of external stimuli and internal
processing. In this sense, a cognitive architecture is anal-
ogous to a building architecture, which describes its fixed
structure (e.g., floors, rooms, and doors), but not its replace-
able elements (e.g., tables, chairs, and people).

However, such a framework incorporates more constraints
than the ‘software architectures’ used in mainstream com-
puter science. It makes strong assumptions about the rep-
resentations and mechanisms that underly cognition, typi-
clly incorporating ideas from psychology about the nature of
the human mind. Most cognitive architectures have distinct
modules, but these usually access and alter the same mem-
ories and representations. Moreover, they come with a pro-
gramming language for constructing intelligent agents that
adopts a high-level syntax which reflects theoretical assump-
tions. Production systems (Klahr et al. 1987) were both the
first and most common examples of the paradigm; they are
not the only variety, but many frameworks labeled as ‘cog-
nitive architectures’ do not fit the criteria we have specified.

2.2 Recurring Themes
The literature on cognitive architectures reflects a number of
common assumptions or recurring themes that give it a dis-
tinctive character, although it shares some with other areas
of artificial intelligence. These include postulates that:

• Short-term memories are distinct from long-term stores.
The former, often called working memories, include con-
tent that changes rapidly over time, such as the agent’s
beliefs and goals. The latter store stable elements that re-
main static or change slowly through learning. Short-term



elements are typically specific, while long-term content is
often general in form; the former play the role of program
variables in traditional languages, whereas the latter often
serve as program instructions.

• Memories contain modular symbolic structures. Both
short-term and long-term repositories are collections of
distinct elements that, usually, are encoded as list struc-
tures. These may include numeric information, but each
item is a relational structure that also specifies symbolic
content. Short-term elements typically share symbols so
that, jointly, they can denote large-scale relationships.

• Relational pattern matching accesses long-term content.
Before an architecture can use the ‘program’ encoded in
its long-term memories, it must find relevant structures.
This invariably revolves around matching or unifying re-
lational patterns in these elements against corresponding
elements in the short-term stores. Such patterns match
when variables in the long-term structure bind consis-
tently with constants in dynamic memories.

• Cognitive processing occurs in recognize-act cycles. The
core interpreter alternates between matching long-term
structures against short-term ones, selecting a subset of
the former to apply, and executing their associated ac-
tions to alter memory or the environment. Because many
long-term elements may be satisfied, a conflict resolution
mechanism selects among them. This reflects an abiding
concern of architectural research with cognitive control.

• Cognition dynamically composes mental structures. Se-
quential application of rules or similar knowledge ele-
ments produces working memory elements, which in turn
enable matching on the next cycle. This chaining process
essentially combines the matched elements into new enti-
ties, as in work on logical reasoning. Similarly, structural
learning involves the composition of new rules or skills
from existing cognitive material.

These assumptions are well suited to the class of phenomena
and level of analysis for which most architectures have been
designed. Research in this paradigm was influenced strongly
by studies of human thinking, with behavior taking seconds
to minutes and with basic operations on the order of 50 to
100 milliseconds. In such settings, humans appear to ac-
cess relevant content from long-term memory in parallel (or
at least very rapidly), but sequential bottlenecks keep more
than one or a few operations from applying at a time.

The importance of problem-space search has been another
recurring theme. Mechanisms to support heuristic search
have been built directly into some architectures but not oth-
ers. Nevertheless, many provide structures and processes
that support it in relatively direct ways; Young (1982) has
even noted how certain conflict-resolution schemes lead nat-
urally to specific search regimens. At the same time, these
frameworks can encode and use expert knowledge, stated
as long-term structures, to reduce search or even eliminate
it entirely. Finally, as we discuss later, there has also been
considerable work on mechanisms for learning such exper-
tise from experience, although most efforts have focused on
the acquisition of procedural content.

2.3 Example Architectures
To clarify these ideas, we should briefly review some cog-
nitive architectures that reflect these recurring themes. Here
are three examples of such frameworks:
• ACT-R (Anderson 1993) is a mature architectural theory

concerned mainly with explaining psychological data. It
combines a procedural memory of generalized produc-
tion rules with a declarative memory of specific facts,
with the former accessing the latter through activation-
based retrieval and pattern matching. Learning mecha-
nisms include rule compilation and statistical updates,
each based on use of knowledge structures.

• Soar (Laird et al. 1987) is another well-developed archi-
tecture that is organized around problem-space search.
An elaboration stage invokes production rules to draw in-
ferences and evaluate alternatives, with results used by a
decision-making stage that selects an operator to apply
mentally or in the environment. A chunking mechanism
acquires rules based on results from problem solving. Re-
cent versions include other modules that we discuss later.

• ICARUS (Langley, Choi, and Rogers 2009) is a more re-
cent architecture that includes separate modules for con-
ceptual inference, teleoreactive skill execution, means-
ends problem solving, and skill acquisition. It differs
from predecessors by positing that cognition is grounded
in perception and action, conceptual knowledge is dis-
tinct from skills, both are organized in a hierarchy, and
short-term elements are instances of long-term structures.

These architectures are important examples because they
combine mechanisms for inference, routine activity, goal-
directed problem solving, and structure learning.

We should also mention frameworks that omit some of
these elements but share the core assumptions listed earlier:

• PRODIGY (Veloso et al. 1995) uses search-control rules
to guide means-ends analysis and learns new rules from
successes and failures. The architecture supports a variety
of learning methods, but focuses on planning tasks rather
than other forms of high-level cognition.

• CAPS (Thibadeau 1983) encodes knowledge as produc-
tion rules but applies them in parallel to alter the activa-
tions of elements in working memory. This lets the ar-
chitecture model details of human reading, but it lacks
mechanisms for solving problems or learning structures.

• EPIC (Kieras and Meyer 1997) combines parallel appli-
cation of production rules with resource-limited visual,
auditory, and motor mechanisms to model performance
times in multi-task settings. Like CAPS, it includes no
processes for problem solving or learning.

• CLARION (Sun and Zhang 2004) combines condition-
action rules with neural networks to encode ‘explicit’ and
‘implicit’ knowledge, as well as complementary mech-
anisms for learning such content. The architecture in-
cludes low-level ‘drives’ that modulate behavior, but does
not support traditional problem-space search.

Langley, Laird, and Rogers (2009) discuss these and other
cognitive architectures in greater detail, including issues that
arise in their design, construction, and application.



3 Progress in Cognitive Architectures
Research on cognitive architectures has seen substantial
progress since their advent in the 1970s. In this section, we
review a number of these advances, although they are by no
means the only ones. We will not focus on topics primarily
of interest to psychologists, such as fitting models’ behav-
ior to human reaction times and error rates, as emphasized
in work on CAPS, EPIC, and CLARION, or mapping archi-
tectural modules onto regions of the brain, a focus of recent
ACT-R research (Anderson 2007). Instead, we will examine
progress relevant to the construction of intelligent agents,
which should hold greater interest for the AI community.

3.1 Hybrid Representations and Processing
Early production-system frameworks like PSG (Newell and
McDermott 1975) and OPS2 (Forgy and McDermott 1978)
were almost entirely symbolic, incorporating only a few
numbers like the ordering of rules and recency of working
memory elements. This was consistent with the general em-
phasis on symbolic processing in both AI and cognitive psy-
chology at the time, which was still engaged in distinguish-
ing itself from the earlier, number-oriented traditions of the
associationist and behaviorist paradigms that preceded them.

However, early versions of ACT (Anderson 1982) in-
troduced strengths on productions and activations on ele-
ments in working memory, with architectures like CAPS
(Thibadeau 1983) and PRISM (Langley 1983) following
suit. These served as modulators on symbol structures dur-
ing conflict resolution and helped focus cognitive atten-
tion. Somewhat later, ACT-R (Anderson 1993) reinterpreted
numeric annotations in probabilistic and decision-theoretic
terms, and early versions of ICARUS (Choi et al. 2004) asso-
ciated values with cognitive skills. Even Soar (Laird 2012)
now attaches quantitative scores to production rules that it
uses in decision making and control. Many modern archi-
tectures are hybrid in character rather than purely symbolic.

3.2 Learning Procedural Knowledge
Cognitive architectures had their roots in accounts of prob-
lem solving and heuristic search (Newell and Simon 1972),
and the first production systems relied on a fixed knowl-
edge base to perform sequential tasks. However, they also
proved quite useful for modeling successive stages in chil-
dren’s cognitive development, which in turn led to research
on adaptive production systems that learned by adding new
condition-action rules, or by modifying existing structures,
based on their experience (Klahr et al. 1987).

Early versions of ACT (Anderson 1982) introduced pro-
cesses for rule generalizaton, discrimination, proceduraliza-
tion, and composition, with frameworks like PRISM (Lan-
gley 1983) adopting similar ideas. Soar and PRODIGY de-
veloped analytic methods for acquiring search-control from
success and failure during problem solving, and many oth-
ers pursued related approaches. ICARUS contributed mech-
anisms for learning hierarchical skills from problem solv-
ing, while CLARION relied on quite different techniques for
statistical learning. Incorporation of procedural learning has
been one of the clear success stories of the architectural
paradigm, and it has influenced AI’s other subfields.

3.3 Large-Scale Structures
Most cognitive architectures encode long-term knowledge,
at least the procedural variety, as condition-action rules.
Such production systems have many attractive features, in-
cluding modularity that supports automated composition,
flexibility of use, and ease of acquisition. The success of
frameworks like Soar, ACT-R, and EPIC, as well as their use
in constructing many expert systems, suggest that the ben-
efits of this formalism are real. Nevertheless, other frame-
works for intelligent systems, such as frames (Minsky 1975)
and scripts (Schank and Abelson 1977), instead propose
larger-scale structures that encode more content per element.
For example, each ‘method’ in the SHOP2 formalism (Nau
et al. 2003) for hierarchical task network maps onto a num-
ber of separate rules in ACT-R and Soar.

Some architectures have incorporated large-scale struc-
tures into their framework and syntax. Veloso et al. (1995)
reported an extension to PRODIGY that stores justified solu-
tions to problems and uses them analogically to guide search
on new tasks. Similary, Langley et al.’s (2009) ICARUS
encodes its hierarchical skills in terms of subgoals they
should achieve, much as hierarchical task networks decom-
pose complex tasks into subtasks. Both appear to retain the
modularity and flexibility seen in production systems, which
suggests that adopting larger knowledge elements is a vi-
able option. Still, this approach remains uncommon in the
paradigm and deserves more attention from researchers.

3.4 Embodied Agency
Like early computational models of problem solving and
language, initial cognitive architectures focused on men-
tal capacities and were effectively disembodied. There was
no denial that human intelligence arises in a physical body
that operates in an external environment, but both AI and
cognitive psychology were concerned mainly with internal
phenomena, and researchers were inclined to abstract away
from sensorimotor issues. Both fields had made great strides
by ignoring such matters, but it remained clear that, eventu-
ally, a unified theory of cognition must address them.

Laird et al.’s (1991) Robo-Soar was an early example of
providing a cognitive architecture with external sensors and
effectors to let it control a robot. More recently, Trafton et al.
(2013) reported a version of ACT-R with similar capabil-
ities. However, both endowed their frameworks with new
modules that, arguably, were not part of their core theories.
The same holds for Soar and ACT-R systems that controlled
the bodies of synthetic characters in virtual environments,
which operated in similar but simulated settings. In contrast,
ICARUS has controlled virtual agents (Choi et al. 2007) us-
ing an approach that grounds all structures in perceptions
and actions, although it still lacks a theory of peripheral per-
ceptual and motor processing. Each effort successfully ex-
tended the notion of cognitive architecture beyond purely
mental processing, although more work remains to be done.

A related line of research has used cognitive architec-
tures to handle situations that involve interaction with other
agents. Examples include TacAir-Soar (Jones et al. 1999),
which modeled expert fighter pilots in simulated air battles,



and ACT-R/E (Trafton et al. 2013), which interacted with
humans to carry out joint tasks. Both systems incorporated
not only an ability to communicate with others, but also to
construct at least limited models of their beliefs and goals.
This raises issues somewhat different from sensing and con-
trol, but interaction with other agents is an important class
of behaviors that goes beyond purely internal processing.

3.5 Declarative and Episodic Memories
Initial cognitive architectures encoded all long-term knowl-
edge as production rules. This reflected an emphasis on pro-
cedural content that supports activity over time, rather than
on declarative information about static facts. Some early
work attempted to represent the latter as condition-action
rules, but the results were awkward. However, even the
first versions of ACT (Anderson 1982) included a separate
declarative respository in addition to production memory.
Elements had the same form as those in working memory,
which was viewed as the active part of the declarative store.
ACT complemented this notion with a spreading activation
mechanism that retrieved elements from the latter, and Soar
has adopted similar ideas in recent years.

Related research has addressed the problem of episodic
memory, which records an agent’s experiences over time.
This has included adaptations of ACT-R’s declarative reposi-
tory for this purpose, but other frameworks have also tackled
the issue. Veloso et al.’s (1995) extension of PRODIGY stored
and used episodic traces, as did Jones and Langley’s (2006)
EUREKA architecture, although both were limited to records
of successes and failures used during analogical problem
solving. More recently, Soar (Laird 2012) has expanded to
include a separate episodic memory with its own retrieval
mechanisms. Not all cognitive architectures provide support
for this capability, but the topic is important enough that it
seems likely to happen with time.

4 Open Research Issues
Despite the steady progress seen in the cognitive architecture
community, a number of important aspects of human intel-
ligence have not received the attention they deserve. In this
section, we describe some of these capabilities, along with
questions researchers should tackle when addressing them.
We will not assume that each one must be suppported at
the architecture level; they may be handled adequately by a
combination of existing mechanisms and knowledge. How-
ever, taking them seriously seems likely, at the very least, to
push current frameworks in new directions.

4.1 Understanding and Interpretation
Traditional cognitive architectures have adopted an action
metaphor. The terminology used to describe production-
system frameworks like ACT-R, Soar, and EPIC reflects this
idea: rules comprise a condition side and an action side.
This emphasis is natural given their history, in that pro-
duction systems grew out of theories of problem solving
merged with behaviorist notions of stimulus-response pairs.
One of the earliest papers in the paradigm, by Newell (1973),
presented them as accounts of cognitive control. Naturally,

this has made them well suited for modeling both novice
problem solving and expert behavior. They can even handle
sentence processing, as evidenced by shift-reduce parsers,
which are a variety of production systems.

However, the problem of understanding sequences of con-
nected events, whether they arrive through language, vision,
or some other medium, has received little attention from
cognitive-architecture researchers. Consider a typical exam-
ple from story understanding: John wanted a raise. He told
his boss that he knew where she went when she told her hus-
band she was working late. Interpreting this story requires
reasoning not only about domain content, such as decision-
making authority, but also John’s inferences about his boss’s
beliefs and goals. There has certainly been work on this topic
(e.g., Schank and Abelson 1977), but little of it has been as-
sociated with cognitive architectures.

The problem is not representational. Traditional archi-
tectures can encode content like that involved in our story.
However, they would have difficulty reasoning over the par-
tial information it provides, as they assume that all a rule’s
conditions must match before it applies. In contast, con-
nected understanding appears to be abductive and relies on
introduction of plausible assumptions. This has clear im-
plications for architectural design, suggesting the need for
some form of partial matching. One option is to incorporate
analogical reasoning, like that in Forbus’ (2016) Compan-
ions framework, which typically operates over large-scale
structures and which is inherently abductive in character.

4.2 Dynamic Memory
As noted earlier, learning has been a central concern for cog-
nitive architectures almost since their inception. An early
argument for production systems was that the modular en-
coding of content should ease acquisition of knowledge,
and repeated successes have supported this idea. However,
the bulk of research on this topic focused on learning rou-
tine procedural skills or heuristics for problem-space search.
Such knowledge is essential for intelligent agents that pur-
sue goals over time, but, again, it is primarily about actions,
whether they are physical or mental.

Another crucial form of knowledge concerns categories
that the agent encounters and relations among them, and
acquisition of such long-term content – precisely the type
needed for complex understanding – has rarely been exam-
ined in the cognitive architecture paradigm. Schank (1982)
referred to both the structures and mechanisms for learning
them as dynamic memory. One can argue that the framework
he proposed, and those descending from it, were themselves
cognitive architectures, although they were seldom cast in
these terms and they lacked standard features, such as a well-
specified interpreter or a programming language.

Traditional architectures have had difficulty in this area
because their long-term knowledge is oriented around ac-
tion. Dynamic memory depends on the ability to create and
organize new conceptual symbols that have associated de-
scriptions; in contrast, action-oriented architectures like pro-
duction systems typically combine existing symbols to cre-
ate new conditional responses. Langley et al. (1991) pre-
sented an architectural design based on a variety of dynamic



memory, but it was never fully implemented. More recently,
Li et al. (2012) have reported a refinement of ICARUS that
extends its conceptual memory by defining new terms, but it
seems clear we need more work on this important topic.

4.3 Creativity
One distinctive feature of human cognition is the ability to
solve novel problems in unexpected and surprising ways,
something often referred to as creativity. As already noted,
the initial development of cognitive architectures was influ-
enced strongly by results on human problem solving, and
most frameworks have supported this process. Moreover,
Weisberg (1993) has argued that scientific discovery, artistic
composition, and other invention can be explained in terms
of problem-space search guided by heuristics. Despite the
intriguing nature of creativity, there has been remarkably lit-
tle work on it within the cognitive architecture paradigm.

A few exceptions have used traditional architectures for
heuristic search in arenas associated with creative endeavors
such as scientific discovery (e.g., Langley et al. 1987). How-
ever, there has long been evidence for architecture-level op-
erations in creative inquiry, especially ones related to storage
and recall. Jones and Langley’s (2005) EUREKA architec-
ture combined problem-space search with retrieval through
spreading activation to explain insight effects, but the com-
munity has not built on their results. More recently, Helie
and Sun (2010) have adapted CLARION to model insight
effects using another activation-based mechanism that sup-
ports soft constraint satisfaction. Both results suggest that
cognitive architectures may require new elements to provide
a complete explanation of creative thought.

One promising topic concerns humans’ ability to refor-
mulate problems in new terms. Insight puzzles like the mu-
tilated checkerboard illustrate this idea most clearly, but
changes in formulation have also led to important break-
throughs in science. These are often linked to shifts in repre-
sentations and ontologies that make problems easier to solve
or that suggest new theories to explain phenomena. Some
aspects of reformulation, such as abstraction that ignores as-
pects of states or operators, fit well within existing archi-
tectures, but other forms, such as conceptual reorganization,
offer more challenges to current theories.

4.4 Emotions and Metacognition
One bias that architecture research has shared with most
of AI is an emphasis on intellectual abilities such as plan-
ning, reasoning, and language processing. As noted earlier,
the movement grew originally from models of human prob-
lem solving, which focused on puzzles, game playing, and
mathematical domains. There is no question that such ab-
stract processing is a critical way in which humans differ
other mammals, like dogs and cats, at least in the degree to
which we exhibit this capability.

However, people also experience emotions when working
on a difficult puzzle or playing a challenging opponent in
chess. A common assumption, exacerbated by the popular
media, is that emotions are irrational holdovers from an ear-
lier stage of evolution. In contrast, Simon (1967) argued that
they play an important role in controlling cognitive atten-

tion, and more recent empirical analyses support this view.
This has obvious implications for the design of cognitive
architectures, which require some form of conflict resolu-
tion to select among mental actions. Recent years have seen
clear progress on computational models of emotion, some
of it building directly on existing architectural frameworks
(Marsella et al. 2010). But there have been few efforts to
incorporate them directly into such architectures and to ex-
plain how they modulate other cognitive activities.1

This omission may be related to another important area
that the paradigm has long overlooked – metacognition or
‘thinking about thinking’ (Cox 2007). Soar has some meta-
cognitive aspects, but it does not include specific structures
and processes – such as recording traces of mental opera-
tions for later inspection – at the architecture level, and re-
search that does address them has not adopted many of the
core assumptions described earlier. Note that many common
emotions, such as relief and disappointment, arise when an
agent experiences certain combinations of goals, expecta-
tions, and beliefs with respect to an object or event. In other
words, the process of emotion elicitation appears to inspect
traces of regular cognition, which suggests it is metacogni-
tive in nature. This idea has interesting archtitectural impli-
cations that deserve further exploration.

4.5 Personality and Goal Reasoning
Another topic that has received substantial attention in psy-
chology is personality. This is a broad area that we cannot
review in detail here, but there is general agreement about
high-level features of human personalities, specifically that
they vary across people to produce distinct behavioral styles,
they remain reasonably stable over time, they influence be-
havior globally across many situations, and they affect both
coarse-gained and fine-grained behavior. Natural language
includes many words to describe them, such as persistent,
confident, and dogmatic. Personality differences are part of
our everyday experience and they deserve a computational
account, yet the cognitive architecture community has made
few attempts to address them.

Some psychological theories attempt to explain these phe-
nomena in behaviorist terms, treating personality as a collec-
tion of stimulus-response pairs; others instead posit a set of
fixed personality ‘traits’ that influence behavior. The latter
have been adopted in AI work on synthetic characters, which
typically encode personality as a point in N-dimensional
space. As usually presented, neither is consistent with the
cognitive architecture paradigm, but variations offer poten-
tial. For example, one can imagine architectural parame-
ters – such as persistence in pursuing goals and readiness
to revise beliefs – that map onto everyday personality terms.
Similarly, one might include knowledge about the conditions
under which to pursue different goals – say helping those in
need or acquiring wealth – and their priorities.

The second scheme is far from behaviorist in character,
but it offers an account in terms of conditional responses

1Marinier and Laird’s (2007) work in Soar is a rare exception.
We do not include dimensional theories of emotion used in some
synthetic characters, which are essentially noncognitive accounts.



that could, in princple, change over time. Rizzo et al. (1999)
report an initial extension of PRODIGY that explores this
idea, but, to our knowledge, no one has built on their promis-
ing work. This approach also relates to recent work on goal
reasoning (Aha, Cox, and Muñoz-Avila 2013), which stud-
ies the origin and management of agents’ goals over time.
In this view, personalities are simply collections of goal-
generating rules and the associated priorities. If so, then we
can view personalities, like emotions, as playing metacog-
nitive roles in the architecture. This hypothesis may or may
not be fruitful, but it suggests one way to incorporate an im-
portant class of phenomena into unified theories of the mind.

5 Some Peripheral Topics
Our agenda for research on cognitive architectures has omit-
ted a number of topics that may concern some readers. We
should explain the reasons for bypassing them, especially
given the attention they have received recently in the AI and
cognitive science communities.

One such area concerns sensorimotor processing, which
an embodied agent needs to interact with the external envi-
ronment. We have noted that the central processes in EPIC
and ICARUS accept perceptual inputs and produce effector
outputs, but they do not model these peripheral mechanisms.
We have also reviewed research on Soar and ACT-R that in-
corporates modules for sensor interpretation and motor con-
trol, but these are not part of their core theories. The reason
is that cognitive architectures are concerned with the nature
of intelligence, and sensorimotor processing is not central
to this phenomenon. Rats, pigeons, and cockroaches exhibit
sophisticated perceptual and effector abilities, but they are
not intelligent. Cognitive psychology is distinct from per-
ceptual psychology and kinesiolgy for good reasons.

We have also downplayed discussion of statistical learn-
ing that occurs gradually over time. Most versions of the
ACT architecture have included a mechanism for produc-
tion strengthening, PRODIGY collected statistics to deter-
mine which control rules to retain, and both CLARION and
recent versions of Soar incorporate varieties of reinforce-
ment learning. However, these are mainly background pro-
cesses that serve to evaluate cognitive structures which are
created from very few experiences, so that improvements in
statistical techniques are unlikely extend the coverage and
ability of architectures. Humans share such learning with
rats, pigeons, and insects, which suggests only a minor role
in intelligence. Moreover, they distract one from the central
insight of AI, which is that computers are not mere number
crunchers, but rather general symbol processors.

Finally, we have not examined connections to neuro-
science, despite interest in ‘biologically inspired’ architec-
tures2 (Stocco, Lebiere, and Samsonovich 2010). Some re-
searchers identify the mind with the brain and assume we
cannot understand the former without the latter. But theo-
ries of intelligence can be independent of the hardware or
wetware on which they operate, just as the same computer
program can run on entirely different architectures and op-

2We should note that many ‘cognitive architectures’ reported in
this literature do not satisfy the definition presented earlier.

erating systems. Neuroscience has made great strides in re-
cent years, but most results have focused on perception and
action. They have little to say about how to represent be-
liefs, goals, or knowledge, use such structures for reasoning,
problem solving, and language processing, or acquire this
content at human learning rates. Functional studies of hu-
man thinking have revealed deep insights about intelligence,
but neuroscience has not, because the mind and the brain
involve different levels of scientific description.

6 Concluding Remarks
In this paper, we reviewed the notion of a cognitive architec-
ture and some common themes in research on the topic. We
found that the subfield shares key ideas with other branches
of AI, such as the use of symbolic structures and relational
pattern matching, but that it also has distinctive features,
such as a central concern with unified accounts of mental
capacities. We also recounted areas in which the paradigm
has made impressive progress since it was launched four
decades ago. These included the development of hybrid rep-
resentations that combine symbolic and numeric content,
mechanisms for learning procedural and control knowledge,
incorporation of large-scale knowledge structures, construc-
tion of embodied and interactive agents, and support for both
declarative and episodic memories.

However, we also examined other important topics that
have received little attention from the community. They
included accounts for abductive understanding, dynamic
memories that acquire new conceptual structures, creative
aspects of problem solving, emotional processing, and
agent personality, along with the plausibly related topics of
metacognition and goal reasoning. One way to address these
phenomena is to introduce high-level knowledge structures
into an existing architecture, but it seems likely that at least
some of them will require revisions to established theories.
We believe that serious efforts at responding to these chal-
lenges will drive the cognitive architecture paradigm in new
directions that extend its coverage and bring it closer to com-
prehensive theories of the mind. This in turn will lead to
more general and effective methods for constructing systems
that exhibit human levels of intelligence.
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