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Abstract. In this paper we examine the notion of adaptive user integfainteractive sys-
tems that invoke machine learning to improve their intécactvith humans. We review
some previous work in this emerging area, ranging from safénthat filters information
to systems that support more complex tasks like schedudifigr this, we describe three
ongoing research efforts that extend this framework in neections. Finally, we review
previous work that has addressed similar issues and corsidee challenges that are pre-
sented by the design of adaptive user interfaces.

1 TheNeed for Automated User Modeling

As computers have become more widespread, the software that runs ohalseatso become
more interactive and responsive. Only a few early users remember the daysgsdmming
on punch cards and submitting overnight jobs, and even the era of tiaxarg systems and text
editors has become a dim memory. Modern operating systems suppos eange of interactive
software, from WYSIWYG editors to spreadsheets to computer games, mbsteled in some
form of graphical user interface. Such packages have become an essential paimes$aad
academic life, with millions of people depending on them to accomplish dadly goals.

Naturally, the increased emphasis on interactive software has led to greatestrin the
study of human-computer interaction. However, most research in this asebbused on the
manner in which computer interfaces present information and choices to thendehus tells
only part of the story. An equally important issue, yet one that has redeiwch less attention,
concerns theontenthat the interface offers to the user. And a concern with content leads directl
to a focus oruser modelssince it seems likely that people will differ in the content they prefer
to encounter during their interactions with computers.

Developers of software for the Internet are quite aware of the needfeppalized content,
and many established portals on the World Wide Web provide simple fodfiltering informa-
tion. But these tools typically focus on a narrow class of applicatiodsequire manual setting
of parameters, a process that users are likely to find tedious. Moreoves, faoets of users’
preferences may be reflected in their behavior but not subject to introspeCtearly, there is
a need for increased personalization in many areas of interactive softwarenisapgorting a
greater variety of tasks and in ways to automate this process. This sutygesig to techniques
from machine learning in order to personalize computer interfaces.

* Also affiliated with the Institute for the Study of LearningdhExpertise and the Center for the Study of
Language and Information at Stanford University.
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In the rest of this paper, we examine the notioadéptive user interfacessystems that learn
a user model from traces of interaction with that user. We start by definiaptiad interfaces
more precisely, drawing a close analogy with algorithms for machinailegrNext, we consider
some examples of such software artifacts that have appeared in the lgewter which we
report on three research efforts that attempt to extend the basic framewnekv directions.
Finally, we discuss kinships between adaptive user interfaces and soitag pamadigms, then
close with some challenges they pose for researchers and software deseloper

2 Adaptive User Interfaces and Machine L earning

For most readers, the basic idea of an adaptive user interface will alreadgdyelmit for the
sake of discussion, we should define this notion somewhat moresphgci

An adaptive user interface is a software artifact that improves its abdlityteract with
a user by constructing a user model based on partial experience with that user

This definition makes clear that an adaptive interface does not exist inigsplaut rather is
designed to interact with a human user. Moreover, for the system to bevej@pnhust improve
its interaction with that user, and simple memorization of such intemastimes not suffice.
Rather, improvement should result from generalization over past experiandesarry over to
new user interactions.

The above definition will seem familiar to some readers, and for good reasme it takes
the same form as common definitions of machine learning (e.g., Lan@i@y) 1The main differ-
ences are that the user plays the role of the environment in which leartingspthe user model
takes the place of the learned knowledge base, and interaction with the wssraethe perfor-
mance task on which learning should lead to improvement. In this viewtisdaser interfaces
constitute a special class of learning systems that are designed to aid himmaogtrast with
much of the early applied work on machine learning, which aimed to develowlkdge-based
systems that would replace domain experts.

Despite this novel emphasis, many lessons acquired from these earliexatipp of ma-
chine learning should prove relevant in the design of adaptive interfatesmost important
has been the realization that we are still far from entirely automating theifegprocess, and
that some essential steps must still be done manually (Brodley anthSt®97; Langley and
Simon, 1995; Rudstrom, 1995). Briefly, to solve an applied mwhlising established induction
methods, the developer must typically:

¢ reformulate the problem in some form that these methods can directlgssidr
e engineer a set of features that describe the training cases adequately; and
e devise some approach to collecting and preparing the training instances.

Only after the developer has addressed these issues can he run some leathiod) oner the
data to produce the desired domain knowledge or, in the case of an adagsri@ce, the desired
user model.

Moreover, there is an emerging consensus within the applied learning coityrthat these
steps of problem formulation, representation engineering, and data amilceparation play a
role at least as important as the induction stage itself. Indeed, theoeimmaon belief that, once
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they are handled well, the particular induction method one uses haslitidct on the outcome
(Langley and Simon, 1995). In contrast, most academic work on machimergastill focuses
on refining induction techniques and downplays the steps that must oefareland after their
invocation. Indeed, some research groups still emphasize differences betwadrclasses of
learning methods, despite evidence that decision-tree induction, camiscalgorithms, case-
based methods, and probabilistic schemes often produce very simildsresul

We will adopt the former viewpoint in our discussion of adaptiveniaterfaces. As a result,
we will have little to say about the particular learning methods usecotwstruct and refine
user models, but we will have comments about the formulation ofabie the features used to
describe behavior, the source of data about user preferences, and ssnia: iShis bias reflects
our belief that strategies which have proved successful in other applisatfanachine learning
will also serve us well in the design of adaptive interfaces.

3 Examplesof Adaptive User | nterfaces

We can clarify the notion of an adaptive user interface by considering spames that have
appeared in the literature during recent years. Many of these systems foitiesgameric task of
information filtering which involves directing a user’s attention toward items from a lagg&hst
he is likely to find interesting or useful. Naturally, the most p@p@pplications revolve around
the World Wide Web, which provides both a wealth of information ttefiland a convenient
mechanism for interacting with users. However, the same basic techniqués eattended to
broaderecommendatiotasks, such as suggesting products a consumer might want to buy.

One example comes from Pazzani, Muramatsu, and Billsus (1996), wholieSeaKILL
& W EBERT, an adaptive interface which recommends web pages on a given topic that a user
should find interesting. Much like typical search engines, this systesepts the user with a list
of web pages, but it also labels those candidates it predicts the user witlialbplike or dislike.
Moreover, it lets the user mark pages as desirable or undesirable, and thm sgsords the
marked pages as training data for learning the user’s preferenessil® & W EBERTencodes
each user model in terms of the probabilities that certain words will oceenghat the person
likes (or dislikes) the document. The system invokes the naive Bayelsissifier to learn these
probabilities and to predict whether the user will find a particular pageatds.

This general approach to selection and learning is often referrectimndsnt-based filtering
Briefly, this scheme represents each item with a set of descriptors, uhealords that occur in
a document, and the filtering system uses these descriptors as prediativees when deciding
whether to recommend a document to the user. This biases the selection poweassdocu-
ments that are similar to ones the user has previously ranked higtlgr &amples of adaptive
user interfaces that embody the content-based approach include Lang’s NIED8SYWEEDER
which recommends news stories, and Boone’s (1998) Re:Agent, whicksisgirtions for han-
dling electronic mail. Of course, content-based methods are also widelyirusedrch engines
for the World Wide Web, and they predominate in the literature onrmftion retrieval, but
these typically do not employ learning algorithms to construct usedetso

Another example of an adaptive interface is Shardanand and Maes’ (1995pRan inter-
active system that recommends movies a person might enjoy. To this enslystem requires
the user to rate a series of sample movies, from which it constructs f@esjpnofile. RNGO
then finds other people who have similar profiles to the current useremodrmmends films that
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they liked but that the current user has not yet rated. This general approashaby called
socialor collaborative filtering since it makes predictions about items based on feedback from
many different users. Unlike content-based methods, collaborativeagis require no explicit
descriptions of the objects or products being recommended, which appeagkéthem well
suited for subjective domains like art, where users base their decmiangangible features that
are difficult to measure. Collaborative filtering is used by a number ad@eon the World Wide
Web, including AMAzON.coMm, to sell books and other items.

Although researchers typically contrast content-based and collaboratvmfiltthe two ap-
proaches are not mutually exclusive. For example, Balabanovic (1998)lbesExB, a system
that retains profiles both for individual users and for topics, and thaibdoes their predictions
to give both content-based and collaborative behavior. Basu, HirshCahen (1998) report a
different approach that uses rule induction over both user preferences andegemiptions to
give combined recommendations. Such work builds on the intuitiattkie two approaches have
different inductive biases, so that taking both content and social faatora¢count will produce
better filtering systems.

Systems for information filtering and recommendation are probably thet common exam-
ples of adaptive user interfaces, but they are certainly not the only tyyssitye. Some problems
involve more than just selecting from among a large set of document®dugts; they require
generative systems that actually create new knowledge structures to gaisfer's goals. Hin-
kle and Toomey (1994) describe one such advisory systemyIER, that proposes loads and
layouts for aircraft parts to be cured in a convection oven. The systensdnawrevious layouts
stored in a case library, preferring candidates that include currently neededand ones that
have cured well in the past. A graphical interface presents a suggested loéayandto the
user, who can then replace parts or rearrange their positions, produciagoteer case for the
library. CLAVIER has been in continuous use since 1990, generating two to three loads per day
and nearly eliminating problems caused by incompatible léads.

Another intriguing adaptive interface comes from Hermens and Schlimr8d{lwho de-
veloped an interactive aide for filling out repetitive vacation forms. Thgstem uses rules to
predict likely values for various fields in the form based on the values tieeéields, but these
are defaults that the user can always override. Once the user completes théhfoprogram
treats the new entries as training data and invokes an induction algdatherise its existing
rules. Three administrative staff used the system during an academic yearspaction of user
traces showed that it reduced keystrokes by 87 percent over this periodugtitihis work did
not focus on user modeling per se, Schlimmer and Hermens (1993) took siméligr approach
in another adaptive interface for note taking. This system learns a grathatgredicts the or-
der and content of a user’s notes, aiming to reduce keystrokes and helpgtienobganize their
thoughts on a topic.

The Calendar Apprentice (Dent et al., 1992) also directly addresses isquersonalization,
in this case aiding a secretary who must schedule meetings for a profEss@ystem proposes
default values for the day, time, duration, and location of a meeting, whieluser can either
accept or replace with her own choices. Again, each such decision provides datarfond) a
user model, although the induction process occurs every night ratheinttraie online fashion.

1 Although the @AvIER work did not emphasize issues of personalization, one dhmistv the system
as developing a user model from feedback.



USERMODELING AND ADAPTIVE INTERFACES 361

The system learns a distinct set of rules for each of the four attribuae# #ims to predict; thus,
it recasts the scheduling task as a set of separate classification decisiorssieato iwhich we
will return later. A departmental secretary used the Calendar Apprentice ayutardasis for
some years to schedule a faculty member's meetings.

This sample certainly does not exhaust the list of adaptive user intenfmesent in the
literature. The most popular topics remain information-filtering $diée sorting electronic mail
and finding interesting web pages, but the number of applications is cestgiow as people
become increasingly reliant on the World Wide Web and as developers reaipothntial of
machine learning to construct accurate user models.

4 New Directionsin Adaptive I nterfaces

Although a variety of research and development efforts have shown taetfab of adaptive user
interfaces, there remains considerable room for extending their fléxibitd their interaction
style. Here we describe three ongoing projects designed to explorelinestions in the auto-
mated construction of user models. The first effort takes a novel approdoh task of making
recommendations, whereas the other two deal with a different class of pmblentypically
addressed in research on adaptive interfaces.

4.1 A Conversational Approach to Recommendation

Most work on information filtering and recommendation systems fadlaw approach originally
developed for document retrieval: the user enters some topic or kdgveord the system re-
sponds with an ordered list of candidates. This scheme makes sensedtiosgun which the
user wants multiple items, as when reading news stories or finding Weds plagt seems much
less appropriate for recommendation tasks in which he wants a singleatemwhen selecting
a hotel, movie, or restaurant. Ordered lists also have drawbacks whearséihenust rely on
auditory presentations, as when he is driving an automobile.

In response, we are developing a conversational interfaceddlaptive Place Advisode-
signed to recommend places of interest, such as restaurants or hotels, trssrthreght want as
his destination. Rather than accepting keywords and returning a ldraj tikoices, the system
carries out a dialogue with the user that helps him decide on a target lodstioe specifically,
the advisor asks the user a series of questions, each designed to reducalee of acceptable
candidates, and the user’s answers provide constraints that narrow tble. S&ee current ver-
sion focuses on recommending places to eat, and it draws on a database of nedhlyusand
restaurants in the San Francisco Bay Area, each described in terms of fields fkecprice
range, city, and parking availability. The system also gives sample valeesh field on request,
and it lets the user replace suggested questions and even change answersvenlesligr in
the dialogue. Elio and Haddadi (1998) present a detailed design for thisisational interface.

We can view the Adaptive Place Advisor as a tool for the interactive aectgdn of database
queries, with the system recommending fields that should be specifiedeandehgiving their
values. Another interpretation is that the system and user pursue aactiterprocess of con-
straint satisfaction, with the former suggesting variables and ther Isgtting their values. But
we hope users will treat the system simply as a knowledgeable advestoneglps them select
effectively from a large set of restaurants. The current version of the Pldeiséy includes a
graphical interface, displayed in Figure 1, that shows system quest&staifrant attributes) on



362 USERMODELING AND ADAPTIVE INTERFACES

F Restaurant Finder (Bay Area)
Menu Help
FEATURES VALLES
Suggest Features Suggest Values
Greek
Italian
Mare suggestions...
Location I Redwood City
Cuising

Display results

Figure 1. Graphical display for the Adaptive Place Advisor, showirgtate after the system has asked two
guestions and received answers from the user.

the left and user answers (selected values) on the right. The box at thelpotisents additional
information about a restaurant, such as its name and address, but onlthaftiinlogue has
reduced the candidate set to a few restaurants.

In future versions, we intend to replace this graphical display witoken interface that can
handle a reduced subset of English. This extension should be tractialcke user responses will
typically be limited to short answers and queries rather than unconstregmgithuous speech.
The next version will also include a mechanism for modeling the usg¢gtrthe level of complete
items, but at the finer-grained level of the questions he prefers and sheenhe tends to give.
Our approach here involves collecting statistics about the questions#nés willing to answer,
as well as his answers to each question, possibly conditioned on answergitaip ones. As the
system gains experience with a user, it should come to suggest ofitairise finds attractive,
thus reducing the need for interaction. The overall aim is not only to remama restaurants that
the user finds desirable, but to improve the efficiency of the commuoitptocess, as happens
when people get to know each other. Of course, this is an empirical predictibwe must test
with actual users, but we are confident that some version of the conveidadioproach will
prove effective.

4.2 An Adaptive Route Advisor

Another limitation of previous work on adaptive user interfaces has lisemiphasis on ‘choice’
problems like selecting web pages or books. Adaptive advisors for wmrglex decision-
making tasks, when they occur, typically decompose the problem intmbenof separate one-
step classification problems, as in Dent et al’s Calendar Apprentice and Heame&chlim-
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Figure 2. Graphical display for the Adaptive Route Advisor, showingrsnaries of the two initially pro-
posed routes, a third candidate generated from the firssporese to the user’s request for ‘more highway’,
and turn-by-turn directions for this route.

mer’s form-filling assistant. We have developed another advisory system Atiaptive Route
Advisor, that deals more directly with such a complex task: generating and selegtitesbe-
tween a driver’s current location and his destination. Like standardyatigh aides, our system
carries out a best-first search over a digital map to find an optimal routeditglays the result
both graphically and with turn-by-turn directions.

However, the Adaptive Route Advisor differs from its predecessosnime essential ways.
First, rather than optimizing paths along a single dimension, itsfihg route that is best ac-
cording to a weighted combination of features including the estimatethdriime, number of
intersections, number of turns, distance along different road typedaamtiarity of segments.
The weights on this evaluation function constitute the systengs n®del, with higher scores
reflecting greater importance to the driver. Second, as illustrated iné-Rjuthe system always
presents the user with at ledsto routes, one the optimum according to the current model and
the others found by varying its weights and penalizing overlaps wiHitht route. Moreover,
the user can ask the system to improve a given route along some dimenkich leads it to
generate another candidate using different weights.

Although desirable in their own right, these features also let the Adaptoute Advisor
collect data on user preferences in an unobtrusive manner. Whenever thesdtaets a route,
the system assumes that he likes that alternative more than the othayelis If the current

2 Hinkle and Toomey’s layout advisor is a clear exception te tfend, but such efforts are rare compared
to work cast in terms of simple choice tasks.
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user model predicts this decision, no changes are necessary, but if theipredidhcorrect,
the system invokes a variant on the perceptron algorithm to modifyhi®ig directions that
tend to correct the error. An experiment with 24 subjects suggested thairiple approach to
driver modeling fares better than more sophisticated induction schemesjsmmdhowed that
personalized models are more accurate than a single, aggregate model basexd foondatl
subjects. Rogers, Fiechter, and Langley (in press) describe the AdRptite Advisor and these
empirical results in more detail.

4.3 An Interactive Scheduling Assistant

We can view route finding as aptimizationtask, that is, a problem in which there are many
solutions, but some of which are much better than others. There arestalilished algorithms
for finding good solutions to such problems, provided one has an&iah metric or objective
function to order candidates. Our work on route advice equated the taskroing this metric
with the task of building a user model, which suggests that this @gprto automated modeling
might prove useful for optimization problems other than navigation

In fact, we have taken a very similar approach wittth, an adaptive assistant for interactive
scheduling. The system is designed to help incident commanders allocatecessim response
to emergencies that involve hazardous materials. To this end, it includeswedye base which
specifies actions that constitute legal responses to spills and fires iouv#&ypes of materials.
INcA differs from the Route Advisor in that, rather than generating candidedesscratch, it
retrieves schedules from a case library that are similar in terms of theitsin and the resources
they require.

After retrieving likely schedules from memory, the system shows dpeféw candidates to
the user, who selects one for improvement. If desired, he can also specdsyitdrion (related to
the spill, the fire, and the health hazard) along which improvement slaald and the type of
revision (adding a job, as well as changing its start time or duratlara carries out a limited
beam search through a repair space to generate new schedules that are better aitcarding
evaluation metric. The system then presents a small set of successorsusetheho selects
one of these schedules (as shown in Figure 3) and asks for furthenierpemts. This process
continues until the user finds a proposed schedule that he considers akxeptab

INcA’s differences from the Adaptive Route Advisor — starting from aiegtrd case and
searching through a repair space — do not keep it from using the same appyasssr mod-
eling. The system’s users still select one candidate from a set of gp@orn this still gives
feedback about which schedules they prefer over others. Moreou@s, &lso uses a weighted
combination of features to direct search through the space of schedulescaiig & modified
perceptron algorithm to revise weights when the user decides to regiaspdidate not ranked
best by the current model. The fact that this approach to data collection anchadeling fits so
well into two otherwise different frameworks recommends it as a primgizpproach to adaptive
interfaces for optimization tasks. Gervasio, Iba, and Langley (in pressyithe theMCA system
in more detail, along with some encouraging results on synthetiestshj

Before moving on, we should contrast our work on routing and scliveglabvice with other
approaches to adaptive interfaces for complex decision-making tasks. Astedearlier, most
work in this area transforms a multi-step problem into a numbenmafisistep tasks. This makes
excellent sense for applications in which the steps are relatively indepiesdeh as Hermens
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Figure 3. The graphical display forNca, showing the incident description (top left), unscheduded
scheduled jobs (top center), resources (right), user mesntér), and a current schedule (bottom).

and Schlimmer’s form-filling domain. But such a decomposition seersssigiged for optimiza-
tion problems, where different criteria interact, as in Dent et al.’s CaleAggarentice. Again,
the previous system most akin tadA and the Adaptive Route Advisor iSLAVIER, since it
treats each layout as a single item that it evaluates as a whole.

5 Relation to Other Paradigms

Although the notion of adaptive user interfaces is relatively recentaghigoach to interactive
software has some clear relatives in the literature. Perhaps the closedtititapibeen work
on programming by demonstratipa paradigm that aims to construct personalized interfaces by
observing the user’'s behavior. One example is Cypher's (1998€eE system, which learns
iterative procedures from observation in a HyperCard setting, thetidiigtithe actions it antic-
ipates for the user’s approval. In general, systems in this framewaetsfon quite constrained
tasks that support online learning from very few training cases, leyt¢hrry out induction ev-
ery bit as much as ones that use less domain-specific learning algorithmereAsignificant
difference is their emphasis on learning macro-operators, which can reduetietiive length
of solutions, rather than learning (as in most adaptive interfaces) &y atigérnatives, which can
reduce the effective branching factor. A collection by Cypher (1993) cantairepresentative
sample of work on programming by demonstration.
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Another older yet kindred paradigmiistelligent tutoring systemsvhich sometimes draw on
techniques from machine learning to personalize instruction. For iosta’'Shea (1979) em-
bedded simple learning methods in his quadratic tutor in order to mtsdstudent’s skills and
thus influence instructional sequences. Langley and Ohlsson’s (198¥) dxew on methods
for learning search-control knowledge to model individual studenteiroarithmetic, and more
recently, Baffes and Mooney (1995) have adapted techniques for theosioretd develop per-
sonalized student models using data on programming errors. More dgn&rnalerson’s (1984)
technique ofmodel tracingrelies on careful observation of student behavior in the same way
as adaptive user interfaces, giving advice only when the student diveogesiticeptable paths.
The main difference between the two paradigms is their application of usgelmavith tutor-
ing systems aiming to change student behavior and adaptive interfages tinysupport more
effective decision making.

A third tradition, known adearning apprenticesalso holds much in common with adaptive
user interfaces. This framework was originally proposed as a methoddaticg knowledge-
based systems for complex problem-solving tasks. Rather than deal Wingittithe serious
problem of credit assignment, this approach collected traces of an expert'sodedis the
domain and learned to imitate his behavior. For instance, Mitchell, Malaadewd Steinberg
(1985) used this technique to form search-control rules for VLSI designsforming a multi-
step learning problem into a set of independent supervised inductics tdske recently, Sam-
mut, Hurst, Kedizer, and Michie (1992) have used a very similar appreatbh they callbe-
havioral cloning to learn control knowledge for domains such as flying an airplane. Learning
apprentices and adaptive interfaces differ mainly in their perspectives, w@tfotmer empha-
sizing how domain experts can ease the process of machine learning andethledatmachine
learning can reduce user effort.

Of course, there exist other approaches to user modeling that do not nelgarine learning.
Some researchers favor manual construction of models for ‘stereotypseaB,uas Rich (1979)
did in her early work on book recommendation. In this framework, theractive system assigns
a user to membership in some predefined class based on his behavior ongssangjuestions.
This process is more akin to classification or categorization than to il etthough the system
can still use the inferred class to make predictions about the user’s gmeés or behavior.
Nor are the two approaches mutually exclusive, since a system could uselefiped class
description as an initial user model and then use learning to fine tunedt s additional
behavior traces.

Another paradigm constructs a new model for each user, but accomplishéssathis/ ex-
tracting explicit preferences rather than through induction over user trageten, Hanks, and
Lesh (1997) describe one such system, Altomated Travel Assistarthat addresses the se-
lection of airline flights. Their formulation shares some importadtfires with the Adaptive
Route Advisor, in that it casts user models as weights on numeric aréed presents users with
choices in order to better identify their concerns. However, their systas tiese choices to
elicit generic preferences directly from the user, rather than learning themtfiaining data,
and there is no evidence that it retains the user model across differegittagks.

We should also consider the place of adaptive interfaces in the contedeaxdnch on human
cognition. There exists a large literature on this topic that dessrdmmputational models for
many domains, including most of those we have considered here. Howeagly all compu-
tational models of cognition focus on tipeocessof human thought and decision making. This
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contrasts with work on adaptive user interfaces, which deals primarily thi contentof hu-
man decisions. Such systems construct cognitive models that prediet hebavior, but these
models lay no claim to operate on the same representations, or draw cantkeensechanisms,
as does the human cognitive architecture. Nevertheless, if one’s goalésaffective software,
user models of this sort have practical advantages over the more detaimsprrmodels that
predominate in cognitive science.

6 Challengesin Adaptive User Interfaces

We proposed earlier that many of the lessons mastered from the study ahenkezrning should
carry over directly to work on adaptive user interfaces. This suggests slemechallenges to
which any designer must respond if he hopes to create a viable system thatusar models
from interaction traces. However, adaptive interfaces also differ in sompertant respects from
applications of machine learning like data mining, leading to other chglethat appear unique
to this new class of artifacts.

As in other applications of machine learning, the developer of an adaptimeinterface
must first find a way to recast the problem of user modeling in terms afralatd induction task,
typically some form of supervised learning. This includes selectingeslewel of aggregation
at which to make predictions and deciding on the classes the system wiittpféadst work
on information filtering and recommendation treats documents and proakistagle items, at-
tempting to place them into two classes, such as interesting and unintgrésti the Adaptive
Place Advisor shows one can model users at finer grains as well, includirigvitleof con-
versational actions. Similar issues arise for more complex decisiommedsks. For example,
Hermens and Schlimmer treated form filling as a set of separate prediction @adRent et al.
did for scheduling meetings, whereascla and the Adaptive Route Advisor handled schedules
and routes as complete entities.

An adaptive interface developer must also decide how to encode user dateeantbdels,
as such representation engineering can be an important factor in making émdiattable. As
we have seen, most adaptive systems for information filtering reprdsentments in terms of
the words they contain, though some recommendation systems use aongtrained attribute-
value scheme, as illustrated by the Adaptive Place Advisor. In essencestimetdin between
content-based and collaborative filtering revolves around the best wapitesent user data and
models. One key to designing a successful adaptive interface is to seledpties that can
predict user behavior, but to include as few such descriptors as passifde irrelevant features
can reduce the learning rate. For example, in botbA and the Adaptive Route Advisor, we
decided on a few global features that we felt would most concern users, Hatimea targer set
that would be more complete.

A third challenge in applied machine learning concerns the collection ofrtiagases. For-
tunately, by their very definition, adaptive user interfaces are designiediet@ct with people,
and traces of such interaction give a ready source of data to support ledsiowgver, one can
implement this data collection in very different ways. Some adaptivefates require users to
give explicit feedback about system suggestions, such as by rating canitiéelas. Others rely
on implicit feedback based on interactions that would occur naturally evemuser modeling
were involved, such as requesting improved schedules@a land answering questions posed
by the Adaptive Place Advisor. Billsus and Pazzani (in press) have iocaigd a fine example
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of this idea into News DUDE, an adaptive interface that reads news stories and lets listeners
interrupt items they do not want to hear. This means that the systemskwbiveh words the
user has encountered by the time he interrupts a story, which it usesistraio the learning
process. In general, users should favor adaptive interfaces that collectndiduiropreferences

in unobtrusive ways, other things being equal.

One difference between adaptive user interfaces and other applications of maehireg
is the embedded nature of the induction process. This characteristiestadgge need foon-
line learning, in which the knowledge base is updated each time a user interactiors. This
contrasts with most work in data mining, which assumes that all datavailalale at the outset.
Because adaptive user interfaces collect data during their interaction withrtslione naturally
expects them to improve during that use, making them ‘learning’ systathsr than ‘learned’
systems. This is not a strict requirement, in that the interface coulelotalata during a session,
run the induction method offline, and then incorporate the resutidliet knowledge base before
the next session, but the online approach seems most desirable, ampdaitess constraints on
system design.

Because adaptive user interfaces construct models by observing their @sexsdr, a final
challenge is to supportpid learning. The issue here in not CPU time, but rather the number
of training cases needed to generate an accurate model of user preferences. Moshidgta-mi
applications assume large amounts of data, typically enough to induce adcwatledge bases
even when the model class includes many parameters. In contrast, adaptifee@seely on a
precious resource — the user’s time — which makes the available data mueHimited. This
suggests relying on induction methods that achieve high accuracy frathtsaning sets over
those with higher asymptotic accuracy but slower learning rates. Otherd$dmting equal, an
adaptive interface that learns rapidly should be more competitive thesitbat learn slowly.

7 Concluding Remarks

In this paper, we considered the notion of adaptive user interfaces amtexXjiis relation to
machine learning. We reviewed a variety of systems that invoke indualgmrithms to automat-
ically construct user models from interaction traces, designed for taskimgglingm information
filtering to generating layouts and schedules. We also described three resdartshaaf new
types of adaptive interfaces. One of these systems, the Adaptive PlacgoAdvipports a con-
versational recommendation process and models users at a finer grain tharytyjminal Two
other prototypes — the Adaptive Route Advisor angth — provide assistance on optimization
tasks — route selection and crisis scheduling — and model user preferencesnasri evalua-
tion function. We also discussed some related research paradigms and exéweicedllenges
that arise when developing any system of this sort.

Clearly, we have only started to explore the design space of adapterfaires, and there
undoubtedly exist other ways in which we can make them more effective hBaetimprove-
ments will only come from developing prototypes for particular damarunning experimental
studies with human subjects, and evaluating their ability to persorthkraselves to the user’s
needs. Fortunately, we should be able to borrow many tools and hesiasbut the design and
evaluation of complex systems from the parent fields of machine learnthg@man-computer
interaction. This suggests that the study of adaptive user interfadenatilre rapidly, now that
scientists and engineers have started to recognize their considerablégbotent
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