
Machine Learning for Adaptive User InterfacesPat LangleyIntelligent Systems LaboratoryDaimler-Benz Research and Technology Center1510 Page Mill Road, Palo Alto, CA 94304 USAlangley@rtna.daimlerbenz.comAbstract. In this paper we examine the growing interest in personalizeduser interfaces and explore the potential of machine learning in meetingthat need. We brie
y review progress in developing �elded applications ofmachine learning, then consider some characteristics of adaptive user in-terfaces that distinguish them from more traditional applications. Afterthis, we consider some examples of adaptive interfaces that use induc-tive methods to personalize their behavior, and we report some ongoingresearch that extends these ideas in the automobile environment.1 The Need for Personalized User InterfacesEarly computer software aimed to solve business and scienti�c problems in apredetermined way that allowed only very constrained user input, through ar-guments given to the program at run time. This contrasts sharply with modern-day software, which is much more interactive and supports frequent user inputthroughout its operation. This shift toward interactive software is re
ected inthe growing emphasis on interfaces designed to ease communication betweensoftware and humans.Examples of such interactive software abound, and they have even becomemore common than the earlier, less interactive type, at least for nonspecialists.Most computer users have had experience with WYSIWYG editors for documentpreparation, with spreadsheets for handling �nancial data, with interactive com-puter games, and, most recently, with browsers and search engines for the WorldWide Web. Moreover, there is every indication that the number, variety, and im-portance of such software will increase rather than decrease in years to come.However, one major drawback of existing interactive systems is that theyhave little ability to take into account di�erences in the knowledge, style, andpreferences of their users. Systems for document production let one select froma set of default styles and even store his own variations, but the latter processis manual and tedious. Computer games let one specify a di�culty level, butthe opponent's strategy cannot re
ect the user's strengths or weaknesses. Webbrowsers let one store bookmarks and preferred layouts, but search engines areonly starting to incorporate user preferences to bias the retrieval process.Clearly, there is a need for increased personalization in many areas of in-teractive software, not only in the types of 
exibility but in the way that per-sonalization occurs. To date, most systems have required that users state their



preferences explicitly to the interface, which means the options are either limitedin number or tiresome to complete. Moreover, some facets of user styles may bere
ected in their behavior but not subject to conscious inspection. This suggeststhe use of techniques from machine learning to personalize interfaces, based onthe observation of user activity.In the rest of this paper, we explore the potential of machine learning technol-ogy for automatic personalization of interactive software. We start by reviewingthe state of machine learning and its recent successes in producing �elded appli-cations, then discuss the characteristics of interactive software that di�er fromother types of learning applications. After this, we consider two broad categoriesof interactive software { informative and generative { and review some existingsystems of each type that draw on machine learning in adapting to individualusers. In closing, we consider some new research directions that we are pursuingto aid automobile drivers.2 The Application of Machine LearningResearch on machine learning has existed since the beginnings of AI, and thepast decade has seen considerable developments in this area. For the sake ofdiscussion, we should de�ne the �eld's object of study:A learning algorithm is a software system that improves its performancein some task domain based on partial experience with that domain.This characterization of learning includes two important features that were ab-sent from early work in the area. First, it states that the goal of learning isto improve performance on some task; the process may involve the creation ofknowledge structures, but this is a means to the end of performance improve-ment. Second, it notes that learning involves induction beyond the training data,in that the system must perform after only partial experience with the task.Nearly all recent work on machine learning acknowledges these two requirements,typically re
ecting them in their experimental tests of new algorithms.However, machine learning has done more than evolve into a careful empiricalscience; it has also developed a successful applications methodology. Inductiontechniques have aided the construction of many �elded systems in science andindustry on a variety of tasks. These include mechanical diagnosis (e.g., Giordanaet al., 1993), credit scoring (e.g., Michie, 1989), manufacturing control (e.g.,Evans & Fisher, 1994), and scienti�c classi�cation (e.g., Fayyad, Smyth, Weir,& Djorgovski, 1995). Many of the standard induction algorithms have provenquite robust, and their increasing use for data mining and knowledge discoverypromises even more successes in years to come.The basic development process, although far from entirely automated, doescast machine learning in a central role (Brodley & Smyth, 1997; Langley & Si-mon, 1995; Rudstr�om, 1995). Brie
y, the developer works with a domain expertor user to understand some problem, then reformulates the problem into one solv-able by well-established methods for supervised learning. He then selects some



likely features to describe training cases and devises an approach to collectingand preparing data, on which he runs some induction method. The developer(and possibly the expert) then evaluate the resulting knowledge base and, if theresult seems acceptable, they attempt to deploy the learned knowledge in the�eld.1Most academic work on machine learning continues to focus on re�nementsin induction techniques and downplays the steps that must occur before andafter their invocation. Indeed, some research groups still emphasize di�erencesbetween broad classes of induction methods, despite evidence that decision-treetechniques, connectionist algorithms, case-based methods, and other schemesoften produce very similar results. In contrast, there is an emerging consensuswithin the applied community that the steps of problem formulation, represen-tation engineering, and data preparation play a role at least as important as theinduction stage itself. Indeed, there is a common belief that, once they are han-dled, the particular induction method one uses has little e�ect on the outcome(Langley & Simon, 1995).We will adopt this viewpoint in our discussion of machine learning's potentialfor adaptive user interfaces. As a result, we will have little to say about theparticular learning methods one might use to personalize an interface, but we willhave comments about the nature of the performance task, the source of trainingdata, and similar issues. This bias re
ects our belief that adaptive user interfacesare an important application area for machine learning, and that strategies whichhave proved successful in other areas will also serve us well there.3 The Nature of Adaptive User InterfacesWe can de�ne adaptive interfaces by direct analogy with our de�nition for ma-chine learning, using a slightly more speci�c formulation:An adaptive user interface is an interactive software system that im-proves its ability to interact with a user based on partial experience withthat user.As we suggested above, work on adaptive interfaces has much in common withother applied work on machine learning, including a reliance on careful problemformulation and engineering of useful features. For this reason, we will considerhere only those characteristics that are special to this class of problems.One central feature involves the manner in which the system uses the learnedknowledge. Some work in applied machine learning is designed to produce ex-pert systems, that is, knowledge bases (with associated performance elements)intended to replace a human. In contrast, work on adaptive interfaces aims toconstruct advisory systems, in which the knowledge base (through its perfor-mance element) only makes recommendations to the user. Rather than replacing1 Of course, this process is iterative, with problems at any step leading the developerto revisit earlier decisions.



a human, the system suggests information or generates actions that the user canalways override. Ideally, the learned knowledge should re
ect the preferences ofindividual users, thus providing personalized services for each one.However, this focus on advisory systems leads directly to another characteris-tic { the user's decisions give a ready source of training data to support learning.Every time the interface suggests some choice, the human either accepts thatrecommendation or rejects it, whether this feedback is explicit or simply re
ectedin the user's behavior. Either way, the system obtains another datum to driveits search for an improved knowledge base, and each case includes details aboutthe decision-making situation, providing important context for future predic-tions. This scenario contrasts with the situation for some potential applicationsof machine learning, where collecting data is a major obstacle.The embedded nature of the induction process has another implication forthe learning task: the system should carry out online learning, in which theknowledge base is updated each time an interaction with the interface occurs.This contrasts with most work in data mining, which assumes that all data areavailable at the outset. Because adaptive user interfaces collect data during theirinteraction with humans, one naturally expects them to improve during that use,making them `learning' systems rather than `learned' systems. This is not a strictrequirement, in that the interface could collect data during a session, run theinduction method o�ine, and then incorporate the results into the knowledgebase before the next session, but the online approach seems the most natural.Because adaptive user interfaces must learn from observing their user's be-havior, another distinguishing characteristic is their need for rapid learning. Theissue here in not CPU time, but rather the number of training cases needed togenerate good advice. Most work on data mining assumes large amounts of data,typically enough to induce accurate knowledge bases even when the model classincludes many parameters. In contrast, adaptive interfaces rely on a preciousresource { the user's time { which makes the available data much more limited.This recommends the use of learning methods that achieve high accuracy fromsmall training sets over those with higher asymptotic accuracy but slower learn-ing rates. On the other hand, the advisory nature of these systems makes thisdesirable but not essential; an interface that learns slowly will be no less usefulthan one that does not adapt to the user at all. Still, adaptive interfaces thatlearn rapidly will be more competitive, in the user's eyes, than ones that learnslowly.We can identify two broad classes of adaptive user interfaces, whose di�er-ences have implications for the type of feedback the user must provide. Infor-mative interfaces attempt to select or �lter information for the user, presentingonly those items he will �nd interesting or useful. The most obvious examplesare systems for product recommendation and news �ltering, but this categoryincludes any interface that directs the user's attention within a large space ofitems. Typical user feedback for informative systems includes marking recom-mended choices as desirable or undesirable, rating them on some scale, or givingsome similar form of evaluation. Less obtrusive feedback can sometimes be col-



lected by observing the access process itself, as when one clicks on some itemsretrieved by a search engine but not others.The second class, generative interfaces, focuses on the generation of someuseful knowledge structure. Examples of this category include document prepa-ration and drawing packages, spreadsheet programs, and systems for planning,scheduling, and con�guration. These areas support richer types of feedback, inthat the user can not only override a recommended action but can replace it withanother one entirely.2 The types of feedback are tied directly to the interactionstyles that the interface supports. Some systems require the user to explicitlycorrect undesirable actions, but others incorporate less obtrusive schemes thatcollect training data simply by observing the user's normal behavior.Now that we have considered the characteristics that distinguish adaptiveuser interfaces from other learning systems and the types of feedback they re-quire, we can consider some examples of systems within both categories.4 Examples of Informative InterfacesThe growing popularity of the World Wide Web has made informative interfacesthe most familiar type of advisory system, and also the most common area forpersonalization. As their name suggests, such interfaces aim to provide the userwith material that he will �nd informative or useful. Let us examine some existingsystems that fall into this category.One example interface is Pazzani, Muramatsu, and Billsus' (1996) Syskill& Webert, which recommends web pages on a given topic that the user is likelyto �nd interesting. Starting from a handcrafted page for the topic, the user markssuggested pages as desirable or undesirable, and the system uses these as trainingdata to develop a model of his preferences. Syskill & Webert incorporates acommon scheme, known as content-based �ltering, as the basis for selection andlearning. Brie
y, this approach represents each object using a set of descriptors,typically the words that occur in a document. The system uses these descriptorsas predictive features when deciding whether to recommend a document to theuser, which biases it toward documents that are similar to ones the user haspreviously ranked highly. Content-based methods also predominate in the olderliterature on information retrieval.Another example is FilmFinder, an interactive system that recommendsmovies one might enjoy. The user rates a number of sample movies, from whichthe system (available at www.filmfinder.com) constructs a simple user pro�le.FilmFinder then �nds other people with similar pro�les and suggests �lms thatthey liked but that the current user has not yet rated. One can contrast this ap-proach, known as collaborative �ltering , with content-based methods, since itrequires no prespeci�ed descriptions of the objects or products being recom-mended. In e�ect, collaborative methods classify users (who are described in2 The term learning apprentice was originally used in the context of such generativesystems, although some now use it to describe informative systems as well.



terms of the ratings they provide) rather than classifying the objects being rec-ommended. This makes them well suited for subjective domains like art, whereusers base their decisions on intangible features that are di�cult to measure.A third system, WiseWire, which resides at www.wisewire.com, recom-mends news stories and web pages to its customers. This interface derives fromLang's (1995) NewsWeeder, which used a content-based method, but the newsystem combines content-based and collaborative �ltering to select promisingitems. The intuition is that content-based methods are best for suggesting top-ics similar to ones the user has liked in the past, whereas collaborative methodscan suggest items outside the user's normal area that he will still �nd interest-ing. WiseWire users rate the items that it recommends for inspection, but italso lets them note high-level reasons for their evaluation, which constrains theinduction process and should improve the rate of learning.This sample far from exhausts the list of interfaces for information �lteringthat incorporate machine learning to personalize their interaction with users.Other examples include systems for sorting electronic mail and for matchmakingamong users with similar interests, and the number of applications is certain togrow as the Internet and its associated information sources become available tomore and more people.5 Examples of Generative InterfacesAlthough informative systems are becoming familiar entities, they are not theonly type of adaptive user interfaces. In some domains, one needs more than justinformation; one needs generative systems that actually construct new knowledgestructures to satisfy the user's goals. Let us examine a few systems that addresssuch tasks.Hinkle and Toomey (1994) describe Clavier, an advisory system that rec-ommends loads and layouts for aircraft parts to be cured in an autoclave. Thesystem retrieves previous loads and their layouts from a case library, preferringones that include more parts that are currently needed and that have curedwell in past runs. A graphical interface presents a proposed load and layout tothe expert user, who can then replace some parts or rearrange their positions.Each such modi�cation provides a new case for the library, so that Clavier'srepertoire grows over time. The system has been in continuous use since 1990,generating two to three autoclave loads per day and nearly eliminating problemsdue to incompatible loads. Although the Clavier e�ort did not focus directlyon personalization, the system is a �ne example of an adaptive interface of thegenerative variety.Another example of an interactive generator comes from Hermens and Schlim-mer (1994), who developed an adaptive system for �lling out repetitive forms.Their interface suggests values for various �elds in the form, but these are de-faults that the user can always override. Once the user completes the form, thesystem interprets the entries as opportunities for learning and uses them to re-vise its existing rules. Each such rule predicts a default value for a given �eld



based on �elds earlier in the form and those in previous forms. Experimentsshowed that the system reduced keystrokes by 87 percent over an eight-monthperiod. Although this work did not focus on personalization per se, Schlimmerand Hermens (1993) took a very similar approach in their personalizing interfacefor note taking. This adaptive system learns a grammar that predicts the orderand content of a user's notes, aiming to reduce keystrokes and to help themorganize their thoughts.Dent et al.'s (1992) CAP also aims directly at personalization issues, in thiscase trying to mimic a secretary's expertise at scheduling meetings for a pro-fessor. The system includes actions for specifying the day, time, duration, andlocation of a meeting, for which it o�ers default values. Again, the user can acceptor replace these suggestions, with each decision providing data for the learningprocess. Induction occurs every night rather than in true online fashion, withCAP learning a separate set of rules for each action that it needs to predict.The system was in use regularly for some years by a departmental secretary toschedule a faculty member's meetings.Work on programming by demonstration also aims to construct personal-ized generative interfaces by observing the user's behavior. For example, Cypher(1991) describes Eager, a system that learns iterative procedures from obser-vation in a HyperCard setting, then highlights the actions it anticipates for theuser's approval. In general, systems in this paradigm focus on constrained tasksthat support online learning from very few training cases, but they carry outinduction every bit as much as ones that use less domain-speci�c learning algo-rithms. A collection by Cypher (1993) contains a representative sample of workon programming by demonstration.Some e�orts on intelligent tutoring systems also draw on machine learningwith the aim of personalizing instruction. For instance, Langley and Ohlsson(1984) adapted methods for learning search-control knowledge to model indi-vidual student errors in arithmetic. Also, Anderson's (1984) technique of modeltracing relies on careful observation of student behavior in the same way asgenerative user interfaces, giving advice only when the student diverges fromacceptable paths. More recently, Ba�es and Mooney (1995) have adapted tech-niques for theory revision to develop personalized student models using similartrace data.6 Open Issues in Adaptive InterfacesAlthough a variety of research and development e�orts have shown the poten-tial of adaptive user interfaces, there remains much room for extending their
exibility and their interaction style. In closing, we will consider two ongoingprojects designed to address drawbacks in existing systems for personalized in-terfaces, both carried out at the Daimler-Benz Research and Technology Centerand both concerned with improving the automobile environment. 33 Collaborators on these projects include Afsaneh Haddadi, Bryan Johnson, AnnabelLiu, Seth Rogers, and Je� Shrager.



The �rst e�ort aims to develop an informative user interface that is moreinteractive in nature, so that it communicates with the user rather than simply�ltering items. The performance task involves recommending places of interest,such as restaurants or theaters, that the user might want as his destination. Thesystem, which we call the Adaptive Place Advisor , starts by accepting a querylike \Where should I eat?" in a restricted form of natural language. The advisorresponds with its own questions, which are designed to re�ne the user's desiresand, eventually, to arrive at a single place that meets his constraints.The advisor draws on background knowledge, stored in a number of concepthierarchies, to direct this re�nement process. For instance, in response to theabove query, the system might ask \How about Thai food?" or \Would you liketo take something out?". The user can answer these questions in the a�rmativeor negative, but he can also state a preferred alternative, such as \Let's haveChinese instead" or \I'd like a sit-down meal". The place advisor would continuethe process, asking questions such as \Would you like Szechuan?" and using theanswer to further narrow the options, until it has jointly agreed with the useron a unique place.When the Adaptive Place Advisor �rst interacts with a user, it knows nothingabout the person's preferences, so its guesses at each level are poor and thecommunication process is ine�cient. However, as the system gains experiencewith a user, it collects statistics about his preferences and should come to suggestoptions he �nds attractive, thus reducing the need for interaction. Of course, thisis an empirical claim that we must still test with human subjects, but positiveresults with simpler recommendation systems give us reason for optimism. Wemust also extend the advisor to generalize beyond individual choices, so thatit can predict the user's preferences for new options based on features theyshare with familiar ones, and improve the system's discourse model, so that itsinteraction with the user seems as natural as possible.Generative user interfaces typically support richer interaction with the userthan informative systems, but they often require special actions on the user'spart. A second project in our group involves a generative interface that drawson special information sources to remain as unobtrusive as possible. Here theperformance task is to generate a route between a driver's current and desiredlocation that he will �nd attractive. This system, which we call the AdaptiveRoute Advisor , uses a Global Positioning System (GPS) to infer the driver'slocation and constructs routes by searching for paths through a digital map.The system biases this search using learned knowledge about the routes knownto the driver, on the assumption that people usually prefer routes with familiarsegments over those with unfamiliar segments. This is another empirical claimthat we must test in experiments, but it seems plausible enough to use in ourprototype software.We have described the route advisor's learning methods in detail elsewhere(Rogers, Langley, Johnson, & Liu, 1997), so we will not focus on them here.Brie
y, the system matches traces of the driver's past trips against segmentsin the digital map, then transforms them into a constrained context-free gram-
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