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AbstractIn this paper we examine some issues that arise in the experimental evaluation of adaptive userinterfaces, which are computational decision aids that use machine learning to improve their in-teraction with users. We begin by reviewing the notion of an adaptive interface and presentingexamples for a number of application areas. After this, we discuss plausible dependent measures oftheir behavior, including solution speed, solution quality, user satisfaction, and predictive accuracy.Next we turn to independent variables that are likely to inuence these measures, including thenumber of user interactions and characteristics of the system, the user, and the task at hand. Inclosing, we comment on the role that experimentation plays in the larger scienti�c process.
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1. The Promise of Adaptive User InterfacesAs computers have become more widespread, the software that runs on them has also become moreinteractive and responsive. The days of programming on punch cards and submitting overnightjobs are remembered by only a few early users, and even the era of time-sharing systems and texteditors has become a dim memory. Modern operating systems support a wide range of interactivesoftware, from WYSIWYG editors to spreadsheets to computer games, most embedded in someform of graphical user interface. Such packages have become a central part of business and academiclife, with millions of users dependent on them for accomplishing their daily goals.Another type of interactive software, which developed independently of graphical interfaces, tookthe form of computational decision aids or advisory systems. These were typically knowledge-basedsystems designed to help human decision makers in a speci�c domain like medical diagnosis, stockselection, or military planning. Early decision aids relied on textual interfaces rather than graphicalones, but interaction with the user was always central to their operation.A recurring problem with both types of interactive software is that they have little exibilityin their behavior, and thus cannot respond to demands from di�erent users. One can modifythe default parameter settings on most editors and alter the di�culty level on many computergames, but incorporating more subtle preferences is beyond the scope of most interactive systems,especially computational aids designed to support complex decision making. Even when the usercan customize the system's behavior, the standard approach involves �lling out an online form; thismay reect the user's beliefs but not his actual practices, for even domain experts have di�cultydescribing their true knowledge and biases about a domain.However, in recent years, a new approach to exible software has emerged under the rubricof adaptive user interfaces (Langley, 1997). These systems are computational decision aids thatinteract with a user and, based on their experience with that person, improve their ability to servehis needs over time. The typical adaptive interface accomplishes this by providing advice to theuser, collecting traces of user decisions about that advice, constructing a user pro�le from thesetraces through machine learning, and using this pro�le to alter its future interactions. In this way,the resulting advisory system is personalized to the individual user.A number of key issues arise in the design of adaptive user interfaces. One concern is that theprocess of collecting feedback should not place excessive demands on the user. Thus, a systemthat collects decision traces as part of its normal interaction is preferable to one that requiresusers to explicitly rate alternatives. In addition, adaptive interfaces bene�t from the use of onlinelearning, which updates the user model after every interaction, and from rapid learning, since userswill typically expect the system to reect their preferences soon after they start using it. Bothconcerns contrast with the typical emphases in machine learning, which focuses on o�ine learningand obtaining high asymptotic performance.In summary, adaptive user interfaces constitute a relatively new type of artifact that deservecloser study. As Simon (1969) has argued, su�ciently complex artifacts are best understood notthrough formal analysis but through the same experimental method that predominates in thenatural sciences. In the last decade, such experimentation has become common within arti�cialintelligence, especially in machine learning, and many of the concepts and techniques from the studyof such intelligent artifacts carries over to the study of adaptive user interfaces. Nevertheless, theydi�er from previous software entities in some important ways, which suggests a careful examinationof the issues surrounding their experimental evaluation.



Experiments with Adaptive Interfaces Page 2In this paper, we discuss the experimental study of adaptive user interfaces. The goal of scienti�cexperimentation in any domain is to better understand a class of behaviors and the conditions underwhich they occur. Ideally, this understanding will lead to empirical laws and theories, as well asto tests of those theories. As normally de�ned, an experiment involves systematically varying oneor more independent variables and examining their e�ect on some dependent variables. Thus, anexperiment with an adaptive interface requires more than one observation of a system's behavior; itrequires a number of observations made under di�erent conditions. In each case, the experimentermust measure some aspect of the system's behavior for comparison across di�erent conditions.We begin with a brief review of some adaptive user interfaces, which we use later to illustrateimportant concepts. After this, we examine some dependent measures that make sense for theexperimental study of such systems, then discuss four broad classes of independent variables thatseem likely to a�ect these measures. Because adaptive interfaces borrow elements from machinelearning, cognitive psychology, and human-computer interaction, these variables should be familiarto researchers from those �elds. We close the paper with comments about the broader context inwhich experiments occur and their role in scienti�c progress. Many of our observations will holdfor the study of computational decision aids in general, but they are still worth stating for the newclass of adaptive artifacts.2. Examples of Adaptive User InterfacesBefore examining the issues that arise in experiments with adaptive interfaces, we should �rstconsider some examples. There are many possible applications for such advisory systems, but onevery common use concerns the task of information �ltering , in which the aim is to provide the userwith material that he will �nd informative or useful. Software of this sort has a long history ininformation retrieval, a �eld with a strong tradition of empirical evaluation, but the recent focuson this topic has been driven by the growing popularity of the World Wide Web. There nowexist a number of information-�ltering systems that incorporate user feedback and adapt to userpreferences in response.One example interface is Pazzani and Billsus' (1997) Syskill & Webert, which recommendsWeb pages on a given topic that the user is likely to �nd interesting. Starting from a handcraftedpage for the topic, the user marks suggested pages as desirable or undesirable, and the systemuses this feedback as training data to develop a model of his preferences. Syskill & Webertrepresents each user pro�le as a naive Bayesian classi�er, which stores a conditional probabilitydistribution over a set of predictive features, in this case words that occur in the Web page. Thesystem invokes this user pro�le and compares it with the words in a candidate document whendeciding whether to recommend that document to the user, which biases it toward documents thatare similar to ones the user has previously ranked highly.Although recommending Web pages is a common application of adaptive information �ltering,other uses are also possible. Another system, Lang's (1995) NewsWeeder, recommends newsstories to readers, again using the words in each story to predict whether the user will �nd itinteresting. Another popular task involves sorting and prioritizing electronic mail, typically usingwords that occur in the message headers and body (e.g., Boone, 1998). A quite di�erent butstill common technique recommends items that the user might enjoy, based on that user's ratingsand the ratings from other users with similar pro�les. Amazon.com draws on such a collaborative�ltering mechanism to recommend books to its customers.



Experiments with Adaptive Interfaces Page 3Another class of adaptive user interfaces address more complex tasks that involve generatingnew knowledge structures to satisfy the user's goals. For example, Hermens and Schlimmer (1994)describe an adaptive system of this sort for �lling out repetitive forms. Their interface suggestsvalues for various �elds in the form, but these are defaults that the user can always override. Oncethe user completes the form, the system interprets the entries as opportunities for learning and usesthem to revise its existing predictive rules. Each such rule speci�es a default value for a given �eldbased on �elds earlier in the form and those in previous forms. Although this work did not focuson personalization per se, Schlimmer and Hermens (1993) incorporated a very similar approach intheir personalized interface for note taking. This adaptive system learns a grammar that predictsthe order and content of a user's notes, aiming to reduce keystrokes and to help them organize theirthoughts.Rogers and Langley (1998) report another adaptive user interface with a generative avor, thisone focusing on giving advice to drivers. Their Adaptive Route Advisor accepts a current anddesired location from the user, carries out best-�rst search through a digital map to �nd a fewhigh-quality routes, and presents the user with these options. When the user accepts one of thesuggested routes, the system incorporates this decision into its training set and revises its usermodel, which it represents as relative weights on global route features like the number of turns, thedistance, the number of intersections, and the estimated driving time. The algorithm that updatesthis user model carries out a hill-climing search through the weight space, aiming for parametersthat summarize past choices the user has made. The system then draws on the revised model todirect search for routes on future tasks.Yet another adaptive interface, this one described by Iba, Gervasio, and Langley (1998), focuseson scheduling in the domain of chemical spills and �res. Their Inca system retrieves a schedule froma case library that best matches the features of the current incident, then lets the user interactivelymodify them for application to that situation, with the system suggesting likely repairs. Once theuser decides on an acceptable schedule, Inca passes this solution on to an execution module, whichmay lead to new events and the need for further repairs to the schedule. Personalization occursthrough storage in the case library of �nal schedules, which presumably reect user preferencesabout desirable solutions, and through induction of rules about the conditions under which theuser makes each type of repair. Inca uses the expanded case library on future problems and usesits revised repair model to recommend future revisions.This list does not exhaust the work on adaptive user interfaces, which is an active area with manyongoing research e�orts. However, it should clarify the range of tasks to which one can apply thisbasic idea and it should motivate our discussion of experimental methods. We can now consider inmore detail the issues that arise in the experimental evaluation of adaptive interfaces, drawing onexample studies from the systems we have already considered.3. Dependent MeasuresExperimental studies in nearly every discipline concern some form of behavior . This means theyrequire some measure of that behavior to play the role of a dependent variable in the experiment,that is, the variable that is a�ected by the experimental manipulations. Di�erent dependent vari-ables make sense for di�erent �elds, but here we consider four general types of measures that seemappropriate for the study of adaptive interfaces.
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Table 1. Evaluation of Inca's interactive scheduler in terms of (a) solution time and (b) solution qualityunder three di�erent experimental conditions (Iba et al., 1998).(a) solution time (b) solution qualitygenerated from scratch 168.98 � 17.07 33.67 � 4.06generated and repaired 203.27 � 30.88 29.52 � 4.42retrieved and repaired 127.35 � 19.91 34.33 � 4.643.1 Measures of E�ciencyPeople typically invoke computational decision aids, including adaptive user interfaces, becausethey expect the software will let them accomplish some task more rapidly and with less e�ort thanthey can do on their own. This makes the e�ciency of decision making or problem solving anobvious dependent variable to use when evaluating such an adaptive interface. However, one caninstantiate this metric in di�erent ways, each of which reects only part of the picture.One natural measure of e�ciency is the time the user takes to complete his interaction with theadvisory system. For example, Table 1 (a) shows results from an experimental study with Inca, theinteractive scheduler described earlier, that compared user behavior under various conditions. Oneversion of the system presented the user with an empty schedule, another used heuristic search togenerate the initial schedule which the user then repaired, and a third version retrieved a schedulefrom its case library for revision by the user. The dependent measure was the number of secondstaken to transform this initial schedule into one the user found acceptable.But time is not the only measure of e�ciency; another facet is the e�ort that the user must exertto make a decision or solve a problem. Here the most obvious metrics concern the number of useractions that occur during solution of a given problem. In evaluating their system for aiding thecompletion of repetitive forms, Hermens and Schlimmer measured the number of keystrokes thatthe user took to complete the form, which they found generally decreased over time as the userinteracted with the system. Keystrokes were the obvious performance measure for this interface,but mouse clicks would be more appropriate for an adaptive graphics package and utterances wouldbe natural for any system that incorporates a speech interface.3.2 Measures of QualityAnother important reason that people turn to advisory systems is to improve the quality of solutionsto their task. This goal is especially common for problem-solving activities that involve many steps,like design or scheduling, but it is also relevant when one tries to �nd an appropriate item, likea book or Web page, from among many choices. As with e�ciency, one can de�ne the notion ofquality in quite di�erent ways.If there exists some objective measure of quality for a domain, then one can use this directlyas the dependent variable in an experimental study. For example, some popular advisory systemssearch the World Wide Web to �nd the site that o�ers a given item (a particular book or softwarepackage) at the lowest price. For such tasks, the resulting price constitutes an objective measure



Experiments with Adaptive Interfaces Page 5of the decision aid's success, which one can then compare to that for another advisory system orto the user's ability without computational support.Evaluating quality becomes more complicated in domains that involve more than one criterionfor success. For example, the Inca system described earlier operates in a domain where the userwants to minimize chemical spills, chemical �res, and hazard to human life. To evaluate the qualityof system solutions, Iba et al. developed a simulator that could execute the generated schedulesand then measured their percentage improvement on these dimensions over taking no action. Butto obtain a single quality metric, they needed to combine these separate factors in some manner,and for simplicity they chose to give them equal weights. Table 1 (b) shows another result fromtheir study, which suggested that Inca's seeding schedules with retrieved cases did not signi�cantlyimprove the �nal quality measure over solutions produced from scratch or over seeding the repairprocess with schedules generated by heuristic search.However, giving equal weight to di�erent quality criteria conicts directly with a core assumptionof adaptive interfaces: that users di�er in the relative importance they assign to such criteria. Oneobvious source for such information is the learned user model, but using this would be circular inthat it would guarantee improvement in quality. In cases of multiple criteria, we need some externalmeasure that is subjective but that is not tied directly to the user model, which may only partlyreect the user's true preferences.3.3 Measures of User SatisfactionThese observations suggest reliance on some separate measure of user satisfaction to determinequality of the system's behavior. One way to collect this information would be to present each userwith a questionnaire that asks about their subjective experience. Embedding a questionnaire inthe system itself would make extra demands on the user, which seems undesirable, but that doesnot prevent a researcher from presenting a form to experimental subjects after they have �nishedusing the adaptive interface. Yet questionnaires can be unreliable in predicting whether a personwill continue to use the system, which we would like to know.Another measure of user satisfaction involves giving the user some control over whether they usecertain system features. If a user turns o� the system's advisory capability or disables its person-alization module after his initial interactions, we can safely conclude that he has not been satis�edby his experience with these features. Such subject control runs counter to normal experimentalmethod, but one wants to know whether people will use an adaptive interface, so it seems appro-priate. Some commercial advisory systems include disable switches, but we have not seen their usein any experimental studies of adaptive advisors.3.4 Measures of Predictive AccuracyBecause the user model in an adaptive interface makes predictions about user responses to thesystem's advice, there is a natural temptation to rely on predictive accuracy as a surrogate measurefor e�ciency and quality. Moreover, accuracy is the most widespread measure in machine learning,which makes it very familiar to adaptive interface developers. Pazzani and Billsus provide oneexample in which they report the percentage of Web pages Syskill & Webert recommends thatits users actually like. Gervasio, Iba, and Langley (1998) describe similar results with Inca inwhich they measured the percentage of user repairs to an initial schedule that the system correctly



Experiments with Adaptive Interfaces Page 6predicted. Both studies borrow directly from experiments on supervised machine learning, wherethe data sets include labels that the learned classi�er must predict.However, there are some inherent problems with using predictive accuracy to determine thesuccess of an adaptive interface. Although this measure can be a useful analytical tool for under-standing the details of system behavior, it does not directly reect the overall e�ciency or qualityof solutions, which should be the main concern. Correct prediction of user responses may be corre-lated with these direct measures, but it cannot substitute for them. Also, some studies (includingGervasio et al.'s) involve collecting user traces in a nonadaptive setting, learning a user model fromsome of these data, and measuring the model's accuracy on the remainder. This scheme violatesthe standard assumption that adaptive interfaces change their user model over time, making theresults of marginal relevance.4. Independent VariablesA scienti�c experiment must do more than measure behavior under some condition. Because it aimsto understand the factors that inuence that behavior, it must measure the dependent variable intwo or more situations that di�er on some dimension. Because one can typically vary these factorsindependently, they are often referred to as independent variables. As with dependent measures,di�erent controllable factors make sense for di�erent disciplines. Here we consider four classes ofindependent variables that seem appropriate in the study of adaptive interfaces.4.1 E�ects of ExperienceWe have seen that adaptive interfaces infer user models by observing their user's behavior; thisfeature distinguishes them from traditional advisory systems, which remain static over time or whichthe user must recon�gure explicitly. However, their reliance on this approach makes it importantthat adaptive interfaces learn rapidly , since most users will want to see the feedback have an e�ectsoon after they provide it. The issue here is not CPU time but rather the number of training casesbefore the system can accurately predict user preferences. Other things being equal, users willprefer adaptive interfaces that learn rapidly over ones that learn slowly. As Langley (1997) hasnoted, this concern with rapid learning encourages the use of simple induction algorithms, sincethey usually achieve reasonable accuracy before more sophisticated methods that have many moreparameters.This concern with learning rates also has implications for the evaluation of adaptive user inter-faces. In particular, it suggests as a natural independent variable the number of training cases thatthe system has collected from the user. Plotting some performance measure against the number oftraining items produces a learning curve; such graphs are common in the psychological literaturebut remain rare in machine learning, where most researchers report results on training set of pres-elected size. In general, one hopes the learning curve for an adaptive interface will increase quicklyin the early stages, even if the curve levels o� as more data becomes available.Figure 1 shows a learning curve from Rogers and Langley's studies of their Adaptive RouteAdvisor. Here the dependent variable is the percentage of route pairs for which the learned usermodel correctly predicts the route the subject prefers, averaged over 24 users and over ten training-test splits for each user. As expected, the accuracy increases quickly from around chance to 75%after 12 training pairs, then grows more slowly until it levels o� at 79% at around 60 training
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Figure 1. A learning curve that shows the percentage accuracy of a personalized user model generated bythe Adaptive Route Advisor (Rogers & Langley, 1998), in predicting which of two routes a subjectwill prefer, as a function of the number of choices used in training.pairs. Although more complex induction methods might have higher asymptotic accuracy aftermany more interactions, the Route Advisor's perceptron scheme serves it quite well in achievingreasonable accuracy quickly.Pazzani and Billsus (1997), Hermens and Schlimmer (1994), and Gervasio et al. (1998) alsoreport learning curves for their adaptive user interfaces, which suggests that they all recognizethe importance of learning rate for their systems' success. However, most studies still collect userdecisions in a non-adaptive setting, then use these traces to train and test the user modeling methodo� line. As we noted earlier, the data collected in such experiments can di�er from those observedin actual system use, since adaptation can lead the advisory system to recommend di�erent optionsas it updates its user model and since the users may react to these changes in system behavior.4.2 E�ects of the SystemAnother key claim of adaptive user interfaces, and computational decision aids in general, is thatthey help their users make decisions more e�ectively. Naturally, testing this claim requires depen-dent measures of e�ectiveness like those considered in the previous section. But it also requires acomparison between user behavior with and without the advisory system. Variations of this sortconstitute an important independent factor in the experimental study of adaptive interfaces.A clear advantage of adaptive user interfaces is that their interactive nature makes it easy tocollect data on user behavior. But this also means that it is typically di�cult to measure userperformance in the absence of the interface. As a result, most experimental studies compare thefull version of a system with a version that lacks certain features but that retains its interactive(often graphical) nature. Such lesion studies tell whether the omitted component actually aidsuser performance, but not whether users fare better with the lesioned interface than with no
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Figure 2. Results from a lesion study with Syskill & Webert that compared the strategy of using datato revise an initial user model to a version with a �xed user model and another that learned theuser model only from data (Pazzani & Billsus, 1997).computational aids at all. Most researchers simply assume the latter holds, although it could betested empirically as well, with some di�culty.Pazzani and Billsus (1997) report one lesion study with their Syskill & Webert recommen-dation system. They compared one version of their system, which based its user models on acombination of words that the user suggested and a set selected by cross validation, with a lesionedversion that used only the former and a third that used only the latter. Figure 2 reproduces theirlearning curves from one domain, involving Web pages about biomedical topics, in which bothlesioned systems did substantially worse than the full version of Syskill & Webert. Similarresults occurred for two other domains, which led Pazzani and Billsus to conclude that both setsof features provided important sources of power for their recommendation system.In some situations, it makes more sense to replace one component of the interface with anothercomponent than to remove it entirely. Such a replacement study contrasts system behavior usingthe standard module to behavior with another module that, intuitively, should not produce asgood results. This straw man may use less information, use less computation, be less adaptive,or be otherwise more limited than its analog in the basic advisory system. The conclusions onedraws from such experiments are the same as in lesion studies; if the straw man leads to worsenedperformance, then the standard module contributes to the success of the original system.The form completer developed by Hermens and Schlimmer lends itself naturally to such a re-placement study. Their experimental evaluation examined three conditions, one for the system'sstandard adaptation method, which relies on decision-tree induction, and two others for simplerinduction methods: predicting the most recent value for a given �eld and predicting the mostcommon value. These simpler techniques played the role of straw men, in that one would expecta system which relies on them to fare worse than one which relies on the decision-tree method, atleast if the more sophisticated method is truly useful. The results of their study supported thisconclusion, since the two straw men reduced keystrokes much less than the decision-tree module.
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Figure 3. Percentage accuracy in predicting which of two routes a subject will prefer, with a personalizeduser model that was trained separately on each subject and a generalized model that was trainedon choices from all subjects (Rogers & Langley, 1998).4.3 Personalization and User E�ectsAnother type of independent variable that arises in the evaluation of adaptive user interfaces con-cerns the person using the system. The importance of user characteristics has long been recognizedin human-computer interaction, where di�erent types of interface may be appropriate for di�er-ent types of users. Similarly, the notion of aptitude-treatment interaction has made its way fromeducational psychology into some computer-based tutors, which present material in di�erent waysdepending on student learning styles. Although such issues are relevant for adaptive user interfaces,they are less central than the claim that such systems bene�t from adapting to individual users.One can best test such hypotheses about personalization by varying whether the system is testedon the same person as it was trained.For example, Iba et al. (1998) report a personalization study with their interactive scheduler,Inca, that involved two separate users. In one condition, they used schedules from a given user'scase library as the starting point for that user's repairs; this corresponds to the system's defaultmode. In the second condition, they presented each user with starting schedules from another user'scase library. They predicted that subjects in the �rst setting would complete their revisions in lesstime, and produce schedules with higher quality, than those in the second situation, since schedulesconstructed by a particular user should reect his preferences better than those created by another.However, their experiment revealed no signi�cant di�erences between the two conditions on eitherdependent measure, suggesting that personalization at this stage of the system is less importantthan expected.Rogers and Langley (1998) present a di�erent approach to testing personalization claims in thecontext of their Adaptive Route Advisor. Their �rst experimental condition was analogous to thatin the previous study, in that it tested a learned user model's ability to predict route preferences
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Figure 4. The time taken to repair a schedule as a function of task di�culty and whether the user of Inca(Iba et al., 1998) was initially given a retrieved or generated schedule.for the user on which it was trained. But their second condition used not a model trained on adi�erent user but rather a generalized model trained on decisions from 24 di�erent subjects. Theirhypothesis was that the personalized model would more accurately predict user responses than thegeneralized model, even though the latter had been trained on 24 times as much data. Figure 3shows the results of this study, with accuracy graphed separately for each subject; in this case, thepersonalized models clearly fared better than the generic one.4.4 E�ects of Task CharacteristicsA fourth important class of independent variables concerns characteristics of the task that thedecision aid aims to support. In general, adaptive interfaces are intended to help users handledi�cult tasks e�ectively, so most task variables involve some measure of problem di�culty. Forinstance, one can make a selection task more challenging by increasing the number of items availableor increasing the number of features that describe each item. Similarly, one can make a con�gurationtask harder by increasing the number of slots to be �lled, the components possible for each slot,and the constraints that must be checked among them. The general prediction is that, as taskdi�culty increases, performance on the task decreases.However, students of adaptive interfaces are less interested in task e�ects themselves than inthe ability of their computational aids to minimize these e�ects. When present, this ability shouldappear as an interaction between task variables and system variables. That is, one expects that anincrease in task di�culty will cause less reduction in performance when using an adaptive interfacethan when operating without such assistance. Thus, users will still make slower decisions andgenerate solutions with lower quality as they encounter more di�cult problems, but the rate ofreduction will be less than if the tackled the task without an advisory system.An illustrative example of a task-oriented experiment comes from the Inca study (Iba et al.,1998) that compared the times taken to repair an initial schedule retrieved from a case library and



Experiments with Adaptive Interfaces Page 11another schedule generated by heuristic search. In a follow-up analysis, the researchers decidedto order the scheduling tasks by their solution time under the second condition, which constitutesa rough measure of problem di�culty. Figure 4 presents the two resulting curves, which showthat the time to repair generated schedules increases with problem di�culty, but that this trendis much weaker when users repair a schedule that Inca retrieves from its case library. Note thatthe de�nition of task di�culty here is somewhat circular, as it is linked to the dependent measurerather than being de�ned independently. Still, this experiment illustrates the interaction betweentask complexity and aspects of the advisory system.5. The Context of Scienti�c ExperimentationThe previous sections considered the types of variables that arise in experiments with adaptive userinterfaces and some examples of these factors, but the larger context in which such experimentsoccur also deserves some discussion. The basic procedure di�ers little from that in other experi-mental sciences, except for the objects under study and their relevant characteristics. Thus, ourpoints will appear obvious to some readers, but given the recent advent of adaptive interfaces andthe paucity of studies, they are worth reiterating.We should make clear at the outset a central assumption: the aim of systematic experimentationis not to show that one approach is superior to another but rather to increase understanding .Good science and good engineering both seek general principles that characterize the behaviorof the objects they study, in this case adaptive user interfaces. Such understanding may leadeventually to improved artifacts, but the immediate goal is to produce results that add to ourscienti�c knowledge.5.1 Formulating HypothesesIn many situations, a developer or researcher has clear expectations about the e�ects he will observein an experiment. In such cases, he should state these hypotheses explicitly and use them to focushis experimental design. These predictions will often be qualitative in nature, such as the beliefthat system performance will improve with experience or that personalized models will fare betterthan generic ones, as illustrated by the examples in Section 4.Nevertheless, they are enough to suggest clear dependent measures, likely independent variables,and the direction of the expected e�ect. Some studies are so exploratory in nature that no obvioushypotheses suggest themselves, but even brief reection about the adaptive interface in questionoften brings plausible claims to mind. These predictions will often be violated in the experiment,but having stated them at the outset helps focus the scientist's attention and makes him preparedfor such occurrences.5.2 Designing Experiments and Selecting SamplesHaving decided on a set of hypotheses, the researcher must design one or more experiments to testthem. Since we have spent the preceding pages examining options for dependent and independentvariables, we will not repeat them here. In most cases, the hypotheses themselves will suggestcandidate variables, so the experimenter need only decide which measures best suit his purpose.But a complete design must also include decisions about the number of runs to average across in



Experiments with Adaptive Interfaces Page 12each condition, the range of each independent variable, and the step size to use for each such factor.For instance, to produce a learning curve, one must select the total number of training runs andthe interval at which one will measure performance. If the independent variables are qualitative,one must specify the values to use. For example, in a replacement study, one must decide on thestraw men that will serve in place of the system's normal module.Another issue in experimental design involves sampling strategies. Because a researcher can nevercontrol all possible variables, he must collect multiple observations for each cell in the experimentaldesign and average the resulting values. The fact that adaptive interfaces are artifacts lets one avoidsome but not all of these complications. In particular, one has control over the user interface, thelearning algorithm, and other system characteristics, but the users themselves bring with them allthe complexities of experimental psychology. Thus, averaging over a su�cient number of subjectsfor each experimental condition is essential for a careful study of adaptive interfaces.Basic experimental method recommends varying the value of one independent term while holdingothers constant. However, one can apply this process iteratively to obtain factorial designs, whichobserve the dependent measure under all combinations of independent values. This lets one movebeyond isolated e�ects and look for interactions between independent variables. We have alreadydiscussed interactions that seem likely between task di�culty and computational advice, but onecan easily imagine other interactions that could occur with an adaptive user interface. For instance,combining learning curves with a replacement study could reveal that one inductionmethod achievesa reasonably accurate user model quickly but then levels o�, whereas another method takes moretraining cases but has a higher asymptote. Interactions between user characteristics and inductionmethods also seem plausible in some domains.5.3 Running Experiments and Compiling ResultsGiven a clear experimental design, a researcher can proceed to carry out the experiment that itspeci�es. To this end, he must recruit subjects, gather training and test problems, present subjectswith the adaptive interface, have subjects use the system to solve problems or make decisions, andmeasure their performance on each task. The literature on experimental psychology incorporatesmany heuristics for the careful execution of experiments with human subjects, but we will notattempt to recount them here.After measuring each subject's behavior for each time he has used the software, the experimentercan compile the results. This involves removing any suspicious measurements, averaging across theremainder for all subjects and problems in each experimental condition, and organizing the resultsin some readable format such as tables or graphs. Such statistics are the most obvious productof scienti�c experimentation, and we have seen many examples of experimental results in previoussections of the paper.5.4 Testing HypothesesOnce the experimenter has collected and organized his data, they can be used to draw tentativeconclusions about the hypotheses that led to the study. In some cases, regularities in the data maysuggest detailed models that would characterize them; for example, a learning curve may followa power law that can be speci�ed by its parameters. More often, one simply decides whether thedata bear out the original qualitative hypothesis.



Experiments with Adaptive Interfaces Page 13To this end, one can use statistical measures that indicate the con�dence with which one can be-lieve apparent di�erences. This con�dence level is a�ected by three factors: the observed di�erencebetween conditions, the number of samples in each condition, and the variation in those samples.Even a large di�erence may not be robust if the sample is small or the variance high, making itdesirable to use signi�cance tests when possible. For presentation purposes, it is useful to report`error bars' that show a con�dence interval around the observed values, as we saw in Figure 1'slearning curve.5.5 Explaining Unexpected ResultsHypotheses about adaptive interfaces are based on some model of the system, the task environment,and its users, whether this model is explicit or not. Results that agree with an hypothesis lendevidence to that model, though they do not `con�rm' it; science can never draw �nal conclusionsabout any situation. Results that diverge from one's expectations count as evidence against amodel, and thus require additional explanation. Accounting for a rejected hypothesis may involvealtering assumptions about the users or the task, as we saw in the Inca study that found noadvantages for personalization, or it may concern aspects of the system itself, such as the feedbackmechanism or the induction algorithm.In either case, faulty predictions indicate that one's model needs improvement, which often makesthem more signi�cant than positive results. More important, they can indicate directions in whichto make changes. The ensuing altered models, whether formal or informal, suggest new hypothesesand predictions, which in turn suggest new experiments to test them. In other words, the iterativeloop of hypothesize and test is as central to adaptive user interfaces as for any other experimentaldiscipline.6. Concluding RemarksIn this paper, we have reviewed the notion of adaptive user interfaces and examined some issuesthat arise in their experimental study. As an o�spring of machine learning, cognitive psychology,and human-computer interaction, the �eld of adaptive interfaces has a rich conceptual and method-ological inheritance to support its development. Yet the notion of software systems that adapt totheir users introduces novel features that deserve careful reection and innovative approaches totheir empirical evaluation.To this end, we reviewed four classes of dependent measures { e�ciency, quality, user satisfaction,and accuracy { that seem appropriate for experiments with adaptive interfaces. We also examinedfour types of independent variables { amount of training data, system characteristics, user aspects,and task features { that seem likely to inuence user-system behavior. We illustrated each type ofvariable with examples taken from previous studies of adaptive user interfaces, and we consideredthe broader context in which experimentation occurs. Many ideas carry over directly from otherexperimental sciences, but others seem unique to our growing discipline.As the �eld of adaptive user interfaces matures, the need for such careful experimentation willexpand rather than contract. This will result partly from the more complex artifacts made possibleby early prototypes and their study. But it will also come from the very nature of science, wherethe process of discovery always leads to more questions than it answers, and where systematicexperimentation occupies a central role in both the generation of questions and their resolution.
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