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Abstract

In this paper, we compare the rhetoric that sometimes
appears in the literature on computational models of
category learning with the growing evidence that dif-
ferent theoretical paradigms typically produce similar
results. In response, we suggest that concrete computa-
tional models, which currently dominate the field, may
be less useful than simulations that operate at a more
abstract level. We illustrate this point with an abstract
simulation that explains a challenging phenomenon in
the area of category learning the effect of consistent
contrasts and we conclude with some general observa-
tions about such abstract models.

Introduction and Overview

Learning is one of the ubiquitous aspects of human be-
havior, so it seems natural that the process of learn-
ing has drawn significant attention within both cogni-
tive psychology and artificial intelligence. Over time,
different candidate mechanisms have arisen to account
for learning phenomena, leading to distinct theoretical
camps that have direct analogues across the two dis-
ciplines. Another clear parallel lies in the rhetorical
stances often taken by authors, which assume that the
success of a learning method on a specific problem de-
rives from that method’s distinguishing features, rather
than from other factors.

In this paper, we review five main paradigms in the
computational study of learning, and we consider the
mounting evidence that, for purposes of both artifact
construction and psychological modeling, these differ-
ent frameworks typically give equivalent results. Indeed,
analysis of successful applications and successful models
suggests decisions about how to cast the learning task
and how to encode training data are the main source of
power in computational learning. This observation leads
us to question the usefulness of developing detailed, con-
crete computational models of human learning.

In response, we draw on the notion of an abstract com-
putational model that makes predictions about behavior
but that does not actually carry out the task. We discuss
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some earlier work in this alternative framework that has
focused on skill learning, then apply the approach to a
phenomenon from category learning the effect of con-
sistent contrasts which poses challenges to most com-
putational accounts. We show that a certain abstract
model explains this finding without taking a position on
the details of representation or learning, whereas another
abstract simulation, which matches the assumptions of
most concrete models, does not explain the phenomenon.
We close with responses to some natural criticisms of ab-
stract models and with comments on their long-term role
in developing theories of human behavior.

Rhetoric and Reality in Learning

Much of the research on mechanisms of learning, both
within AT and cognitive psychology, has focused on the
acquisition of knowledge for classification or categoriza-
tion. The performance task here involves assigning a new
instance or stimulus, typically described using attribute-
value pairs, to some category or class, given a known set
of mutually exclusive classes. The associated learning
task involves finding some function or mapping that cat-
egorizes novel instances, given a set of training instances
and their assigned classes. The typical performance mea-
sure is classification accuracy or error, though measures
of speed and typicality sometimes appear as well.

The machine learning community has explored five
main representations of knowledge about categories,
each which its associated mechanisms. The first major
paradigm represents knowledge as decision lists, which
consist of rules that specify the logical conditions for
membership in a category, typically learned one at a
time. A second framework represents category knowl-
edge as a decision tree that is acquired through a process
of recursive partitioning. A third paradigm represents
knowledge as a multilayer neural network, often relying
on a weight-adjusting method known as backpropagation.
Yet another framework encodes knowledge about cate-
gories as experiences or stimuli stored in long-term mem-
ory, using nearest neighbor or case-based methods for
classification. A final paradigm uses training instances
to update probabilistic descriptions, often using simple
methods like naive Bayesian classifiers for categorization.
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Superficially, these five paradigms appear quite dis-
tinct, and early research in machine learning empha-
sized differences among them. For example, for many
years the common wisdom posited that methods for
decision-tree and rule induction were most appropriate
for ‘symbolic’ domains, whereas backpropagation in neu-
ral networks was best suited for sensori-motor tasks. In-
deed, some felt that such different representations, per-
formance elements, and learning algorithms could not
even operate in the same domains. These beliefs were en-
couraged by the different notations used in various com-
munities, but they were also aided by rhetorical claims,
unbacked by evidence, coming from the various camps.

This perception started to change with the first exper-
imental comparisons among different methods for classi-
fication learning (e.g., Mooney, Shavlik, Towell, & Gove,
1989). These studies and ensuing ones showed that in-
duction algorithms from separate frameworks, although
superficially very different, could operate on the same
problems. Their experimental results also suggested that
no one induction method was always superior to oth-
ers, and a decade of experimental comparisons has sup-
ported these early results. Although methods for clas-
sification learning have steadily improved over time, no
one paradigm has emerged as superior to others in terms
of classification accuracy.

However, contributors to each paradigm have found
some quite different factors that affect the success of
learning. These include decisions about the formulation
of the learning task, the representation or encoding of
the stimuli, and the quality of the training cases. Both
experimental studies and application efforts suggest that
such factors are more important determinants of learn-
ing effectiveness than the induction algorithm or the rep-
resentational formalism itself, although authors seldom
emphasize these issues in papers. Langley and Simon
(1995) argue that these items problem formulation,
representation engineering, and data collection — are the
main sources of explanatory power in machine learning.

Each paradigm in machine learning has a direct ana-
logue in theories of human learning. Techniques for
learning decision lists bear a close relation to production-
system models of human category learning (e.g., An-
derson & Kline, 1979), whereas methods for decision-
tree induction are quite similar to psychological mod-
els of learning that construct discrimination networks
(e.g., Richman & Simon, 1989). Backpropagation and
its relatives have been used not only for applied problems
but also play a role in many models of human learning
(e.g., Gluck & Bower, 1988). Case-based methods fig-
ure prominently in the papers on human concept learn-
ing, where they are known as ezemplar models (Smith &
Medin, 1981), and probabilistic methods have also been
proposed as models of human category formation (e.g.,
Anderson, 1991; Fisher & Langley, 1990).

289

The literature on computational models of human
learning has also seen a period dominated by rhetori-
cal claims. The typical research paper begins by arguing
the strengths of connectionism, production systems, or
exemplar models, whichever happens to represent the
author’s paradigm. The text then reviews some psycho-
logical phenomena and describes a computational model,
cast within this paradigm, that replicates those findings.
In closing, the authors conclude that these positive re-
sults are evidence for their theoretical framework, ignor-
ing the possibility that the source of explanatory power
lies elsewhere, such as in carefully selected stimulus en-
codings or in a well-crafted training regimen.

The reason for drawing such hasty conclusions are
understandable even if the conclusions themselves are
questionable. One simply cannot construct a detailed
computer simulation of human behavior without mak-
ing many assumptions, such as representational deci-
sions, that are not central to one’s theoretical claims.
Naturally, many scientists are tempted to conclude that,
when their simulation succeeds at modeling some phe-
nomenon, their core assumptions are responsible rather
than the peripheral ones.

Yet not all authors follow this natural inclination, with
one revealing counterexample coming from Richman and
Simon (1989). They suggest that two alternative ac-
counts of word-recognition findings — connectionist mod-
els (which posit parallel processing) and discrimination
networks (which posit sequential processing) are not
due to these paradigms’ core assumptions. Rather, they
argue that a hierarchical representation of words, an aux-
iliary assumption that both classes of model share, con-
stitute the real source of explanatory power in this do-
main. We believe many similar examples exist in the
literature on computational models of human learning.

Abstract Models of Learning

These observations suggest that traditional computer
simulations of human learning, although useful contri-
butions to artificial intelligence and machine learning,
may be unnecessary or even misleading in our attempts
to explain psychological phenomena. In place of such
concrete models, we need process models which operate
at some more abstract level that lets us make predictions
from the central claims of a theory, without needing an
overwhelming number of peripheral assumptions.

Of course, there exists a long tradition of such abstract
models of learning within mathematical psychology. But
many process accounts developed within this framework
have drawbacks of their own, in that they usually make
constraining assumptions and embody simple theories
for the sake of analytical tractability. Such restrictions
on analytic models were originally an important factor in
the development of computer simulations that actually
carry out the task at hand.
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However, the decision to work at an abstract level
does not mean one must develop an analytic mathe-
matical model; nor does the use of computer simulation
mean one’s program must accomplish a complete task.
Instead, a process-oriented psychologist can develop an
abstract computational model, a notion championed by
Ohlsson and Jewett (1997). In this framework, the sci-
entist still implements a running computer program that
predicts behavior, but the system omits details that are
not essential to the phenomena it aims to explain. For
example, to model learning in problem-solving domains,
they retain the idea of search through a problem space,
but remove details about the states and operators that
define the space. Instead, they specify the structure or
connectivity of the space and model the learning process
using mechanisms that alter the probability of taking
given branches in the future.

Ohlsson and Jewett’s goal was to model the power law
of learning, in which the rate of improvement decreases
with the number of training steps. Simulations on syn-
thetic problems revealed that two learning schemes, in-
volving positive feedback for selecting good branches and
negative feedback for bad selections, produced power
curves across a broad range of parameter settings. For
instance, varying the branching factor, the length of so-
lution, and the probability of feedback did not affect the
shape of the learning curve, but extreme parameter set-
tings for success-driven learning gave different simulated
behavior. Moreover, failure-driven models that incorpo-
rated additive weight reductions in response to negative
feedback produced exponential curves, although multi-
plicative updates gave the power law.

Another abstract computational model of learning
comes from Rosenbloom and Newell (1987), who also
focused on the power law. Their primary aim was to
develop a concrete computer simulation that exhibited
this effect on a finger-manipulation task. The key idea
in their model is that humans acquire chunks which let
them link complex perceptual configurations to complex
actions, thus reducing the need to carry out multiple
reasoning steps at the cognitive level. Rosenbloom and
Newell embedded their learning mechanism in a detailed
theory of the human cognitive architecture, cast as a
production system, and showed that their mechanism for
chunk acquisition reduced response time with practice.
However, to actually fit the psychological data, they in-
voked a simple abstract model with four parameters that
embodied the core assumptions of their chunking theory.

Shrager, Hogg, and Huberman (1988) present yet an-
other explanation of power-law learning. Like Ohlsson
and Jewett’s, their abstract model describes a problem
space only in terms of nodes and links, along with the
probability that a selected branch will lead toward the
goal node. Their computer simulations show that power-
level behavior can result from two quite different learning
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processes. One mechanism (similar to Rosenbloom and
Newell’s) creates new links from a problem’s initial state
to its goal state, letting the problem solver make future
traversals in one step. Another mechanism (closer to
Ohlsson and Jewett’s) alters the probability of travers-
ing a link based on whether it led to a solution. Shrager
et al. also carried out an average-case analysis of their
task, which gave good fits to simulated behaviors.

Langley (1996) reports a rather different abstract
model for the task of flying an aircraft simulator through
a three-dimensional slalom course. His model’s central
assumptions are that differences among subjects are due
to differences in sensing skills, and that the main form
of learning involves improving the ability to focus on rel-
evant features during skill execution. Langley describes
an implementation of this abstract model of sensory
learning, along with a system that searches the space
of parameter settings in order to fit the model to the
experimental data. He compares the sensory-learning
framework to an alternative model based on the power
law, finding that the latter fits the data slightly better
but that it requires many more parameters.

There are clear kinships between these abstract simu-
lations and models from mathematical learning theory,
such as Estes’ stimulus sampling account of learning.
Both frameworks typically assume that subjects’ deci-
sions are probabilistic in nature and that learning follows
from simple changes to probability distributions. As we
have noted, the key difference lies in abstract models’ re-
liance on computer simulation rather than detailed anal-
ysis, which supports a wider range of process models. A
similar relation holds with respect to the average-case
analyses occasionally published in machine learning.

Of course, the different approaches to process mod-
eling are not mutually exclusive. The Rosenbloom and
Newell work showed that concrete and abstract simula-
tions can coexist, and the Shrager et al. analysis made
the same point with respect to abstract simulations and
purely analytical models. Ohlsson and Jewett’s con-
tribution was the realization that neither mathematical
analysis nor the concrete model are really necessary, and
that researchers may often find it useful to work entirely
at the level of abstract computational models. Neverthe-
less, research in this paradigm remains rare, especially
in the otherwise well-studied topic of category learning.
In the remaining pages, we apply the abstract modeling
framework to an intriguing phenomenon in this area.

The Effect of Consistent Contrasts

As we have noted, considerable effort has gone into
computational models of human category learning, typ-
ically using techniques very similar to those from ma-
chine learning. For example, Kruschke’s (1992) ALCOVE
incorporates a variant on the nearest-neighbor method
that places weights on attributes, Martin and Billman'’s
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Table 1: Schema for the stimuli used in Billman and
Davila’s (1995) experimental study of category learning.
‘Consistent contrast’ subjects saw instances from cate-
gories characterized by the same two attributes, whereas
those in the inconsistent contrast condition learned cat-
egories characterized by different attributes.

CONS. CONTRAST INCONS. CONTRAST

CATEGORY 1 11 XX XX 11 XX XX
CATEGORY 2 22 XX XX XX 22 XX
CATEGORY 3 33 XX XX XX XX 33

(1992) TWILIX constructs a form of multivariate decision
tree, and Anderson’s (1991) RA model bears a close re-
lation to the naive Bayesian classifier. All three systems
have shown good matches to experimental results on hu-
man category learning. However, here we consider an
interesting phenomenon that seems difficult to explain
within the standard theoretical frameworks.

Billman and Dévila (1995) noted that most psycho-
logical studies of concept induction assume that some
attributes are relevant and others irrelevant, but that
the same ones are relevant to each category. They hy-
pothesized that subjects would find concepts easier to
learn when such consistent contrast occurs than when
distinct categories are defined by different features. Ta-
ble 1 shows the structure of the stimuli Billman and
Dévila used to test this hypothesis, using a cover story
in which subjects classified animals from an alien zoo
and received feedback after each guess. Both conditions
involve three classes and six attributes with three values
each; moreover, all target concepts involve a conjunction
of two relevant features. However, in the consistent con-
dition, the same attributes are relevant to recognizing
cases from all three classes, whereas in the inconsistent
condition, a different pair plays this role for each class.

The learning curves in Figure 1 (a) show a clear dif-
ference between the two experimental conditions. Sub-
jects who dealt with consistent contrasts improved very
rapidly, achieving over 90 percent predictive accuracy af-
ter only ten training stimuli. Subjects in the inconsistent
condition hovered around 50 percent during most of the
45 instances, better than the 33 percent that results from
random guesses, but far below the accuracy for the con-
sistent subjects. Separate tests on novel stimuli, some
that matched the intended category definitions and oth-
ers that did not, showed that subjects in the consistent
condition were much more accurate at this task as well.

Naturally, Billman and D4&vila attempted to explain
this phenomenon using existing computational models
of category induction. However, simulation runs with
Kruschke’s ALCOVE predicted no differences between the

201

two conditions, and similar studies with Anderson’s RA
indicated a slight advantage for the inconsistent con-
dition. Even runs with Martin and Billman’s TWILIX,
which they had expected to reflect the observed dif-
ferences, failed to produce the desired result. Further
analysis suggested that all three models lack a strong
bias toward category descriptions incorporating fewer at-
tributes overall, which seems the obvious explanation for
the large difference in learning rate.

Of course, we could incorporate such an inductive bias
into yet another concrete simulation of category learn-
ing, based on one of the above models or embedded in
a new one entirely. But this would require us to adopt
a position on the representation of knowledge, to select
a complete performance element, and to propose a de-
tailed learning algorithm. Yet the above account states
that none of these factors are important in explaining
the consistent contrast phenomenon. Rather, the key
issue is whether learners are biased toward category de-
scriptions that, across concept boundaries, require fewer
features. Thus, this seems like an ideal context in which
to illustrate the notion of abstract models.

An Abstract Model of Contrast Effects

We want our abstract model to make as few assumptions
about representation, performance, and learning as nec-
essary to account for the phenomena at hand. However,
we can view all induction methods as constructing de-
cision regions that partition a multi-dimensional space
of instances or stimuli. Moreover, all basic induction al-
gorithms incorporate some type of locality bias, so they
are typically more accurate on test cases that fall near
to observed training cases in this space. We would like a
modeling framework that reflects this bias without com-
mitting to a particular encoding of learned knowledge.
For discrete domains like the one in Billman and
Dévila’s study, we can model conceptual knowledge as a
table with ¢ columns (one per attribute) and r rows, with
each row specifying a unique combination of attribute
values. We also need one extra column to specify the
category or class associated with each value combination
or to state that the class is unknown for this situation.
This notation lets us describe arbitrary contrasting con-
cepts that map from combinations of discrete values to
class labels. Given a attributes with v values each, we
can have a table with a + 1 columns and v® rows, but
many concepts are much simpler in nature. For example,
if only ¢ attributes are relevant, we need only include ¢
columns, which means we need at most v rows. And not
all possible combinations of values may occur in practice,
which lets us reduce the number of rows still further.
Our performance and learning elements are similarly
abstract. Given a test stimulus, described as a attributes
and their values, we assume the subject finds the table’s
row whose ¢ attribute values match this instance. If the
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Figure 1: (a) Learning curves that Billman and Dévila’s observed for subjects in conditions involving consistent and

inconsistent contrast; and (b) learning curves that the abstract model predicts for the same conditions when p = 0.3.

row has an associated class, then the subject predicts
it; otherwise he selects a class at random from a uniform
distribution. We posit two distinct learning mechanisms,
one that selects relevant features and another that as-
signs class labels to rows in the table. We assume that
feature selection happens early in the learning process,
and thus we model only its result in terms of the num-
ber of columns ¢ in the table. For labeling, we assume
that each time the subject sees a training instance that
matches a given row with an unknown label, he stores,
with probability p, the label observed with that stimulus.

When we instantiate this model for Billman and
Davila’s two conditions, we see that it should predict
quite different behavior. For the situation involving con-
sistent contrast, we have two attributes that are rele-
vant across all categories, giving a table with only two
columns. Moreover, since different values on the other
four attributes do not matter, we need only three rows
in the table, one for each co-occurring pair of relevant
values. On the other hand, the table for the inconsistent
condition requires six columns, since all six attributes
play a role in some concept description; this means we
must have 12 rows, one for each combination of values
in the training set. Even ignoring the stage of feature
selection, which we do not model, subjects should take
longer to master categories that require the larger table.

We implemented this abstract model as a simple Lisp
program that accepts as input the number of simulated
subjects, rows, classes, and training items, along with
the probability p of learning on each trial. Figure 1 (b)
shows the behaviors that the model generates when we
set p to 0.3 and averaged over 1000 simulation runs. As
intended, there is a clear difference between simulated
subjects under conditions of consistent and inconsistent
contrast, with the former learning much more rapidly
than the latter. The match to Billman and D4&vila’s re-

sults is only qualitative, as the simulated learning curve
for the consistent condition is slower, and the one for
the inconsistent condition higher, than they observed.?
Altering the parameter p does not help, since this speeds
or slows the curves for both conditions. However, Bill-
man (personal communication, 1998) reports that using
stimuli with different within-class similarity reduces the
separation between the two curves. An extended model
might incorporate such additional factors, but the cur-
rent one still produces the basic effect intended.

We can contrast this qualitative behavior with that
for a different abstract model that operates in the same
manner but that does not include feature selection. We
can simulate this situation by assuming that the tables
encoding the learned knowledge have the same number
of columns and rows for both the consistent and incon-
sistent, conditions. Thus, they predict identical behavior
for subjects in both situations. As such, it constitutes
an abstract version of the concrete models developed by
Martin and Billman, Anderson, and Kruschke. But, to
reiterate, we need not descend to their detailed level to
explain the consistent contrast effect.

Closing Remarks

In the preceding pages, we reviewed the main research
paradigms in machine learning and their links to compu-
tational models of human learning. We also argued that,
for purposes of both developing artifacts and matching
human behavior, one can usually achieve very similar
results with each of the various approaches. Moreover,
we claimed that the source of explanatory power often

20n novel test items, the model also predicts very high ac-
curacy for the consistent situation and chance for the incon-
sistent condition. In this case, the experimental differences
are smaller than the model predicts, but the behaviors again
match at the qualitative level.
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lies not in whether one uses rule induction, neural net-
works, exemplar models, decision trees, or probabilistic
schemes, but rather in the features used to describe ex-
perience, the formulation of the problem, and the nature
of the training items. Our response was to recommend
the use of abstract computational models to explain phe-
nomena, rather than the concrete models that have di-
rect analogs in machine learning. We reviewed some ex-
amples of abstract models and applied this approach to
specific experimental results in category learning.

Before closing, we should examine some likely criti-
cisms of abstract models. For example, one might claim
that such models merely ‘describe’ the data rather than
explain them. But the models we have reported all posit
explicit (although abstract) processes, and thus embody
some form of explanatory structure. A more interesting
question concerns whether such models’ assumptions are
necessary or merely sufficient to explain the phenomena.
Since we reviewed three abstract models of the power
law, each making somewhat different assumptions, they
clearly constitute the sufficient variety, but necessity is
a difficult hurdle to leap in any science.

A deeper criticism is that, to date, abstract modeling
efforts have focused on explaining isolated phenomena.
Clearly, we do not want to develop 20 unrelated models
of category learning, one for each robust phenomenon in
the literature. A more desirable approach would imitate
older sciences like physics, which devise separate models
for each phenomenon but constrain them with links to
deep theoretical principles. The concrete modeling com-
munity has made some progress on this front, as in using
discrimination networks to explain diverse memory phe-
nomena (H. A. Simon, personal communication, 1998)
but the same strategy should work for abstract models.

In the long term, these two frameworks need not re-
main antithetical. As we gradually extend abstract mod-
els to cover more phenomena, we must place ever more
constraints on them to ensure consistency with previ-
ous accounts. At some point, we may even have enough
constraints to take defensible positions on issues like the
underlying representation of knowledge, the performance
mechanisms that operate on that knowledge, and the
learning processes that generate it. Eventually, we may
have enough data to justify the construction of concrete
models or even a unified theory of the cognitive architec-
ture that covers behavior in many domains. However, we
do not feel the study of human learning has reached that
stage, and abstract models, even isolated ones that focus
on specific results, seem worthy of increased attention.
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