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Concrete and Abstract Models of Category LearningPat Langley1 (langley@isle.org)Institute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306 USAAbstractIn this paper, we compare the rhetoric that sometimesappears in the literature on computational models ofcategory learning with the growing evidence that dif-ferent theoretical paradigms typically produce similarresults. In response, we suggest that concrete computa-tional models, which currently dominate the �eld, maybe less useful than simulations that operate at a moreabstract level. We illustrate this point with an abstractsimulation that explains a challenging phenomenon inthe area of category learning { the e�ect of consistentcontrasts { and we conclude with some general observa-tions about such abstract models.Introduction and OverviewLearning is one of the ubiquitous aspects of human be-havior, so it seems natural that the process of learn-ing has drawn signi�cant attention within both cogni-tive psychology and arti�cial intelligence. Over time,di�erent candidate mechanisms have arisen to accountfor learning phenomena, leading to distinct theoreticalcamps that have direct analogues across the two dis-ciplines. Another clear parallel lies in the rhetoricalstances often taken by authors, which assume that thesuccess of a learning method on a speci�c problem de-rives from that method's distinguishing features, ratherthan from other factors.In this paper, we review �ve main paradigms in thecomputational study of learning, and we consider themounting evidence that, for purposes of both artifactconstruction and psychological modeling, these di�er-ent frameworks typically give equivalent results. Indeed,analysis of successful applications and successful modelssuggests decisions about how to cast the learning taskand how to encode training data are the main source ofpower in computational learning. This observation leadsus to question the usefulness of developing detailed, con-crete computational models of human learning.In response, we draw on the notion of an abstract com-putational model that makes predictions about behaviorbut that does not actually carry out the task. We discuss1 Also a�liated with the DaimlerChrysler Research &Technology Center, Palo Alto, and the Center for the Studyof Language and Information at Stanford University.

some earlier work in this alternative framework that hasfocused on skill learning, then apply the approach to aphenomenon from category learning { the e�ect of con-sistent contrasts { which poses challenges to most com-putational accounts. We show that a certain abstractmodel explains this �nding without taking a position onthe details of representation or learning, whereas anotherabstract simulation, which matches the assumptions ofmost concrete models, does not explain the phenomenon.We close with responses to some natural criticisms of ab-stract models and with comments on their long-term rolein developing theories of human behavior.Rhetoric and Reality in LearningMuch of the research on mechanisms of learning, bothwithin AI and cognitive psychology, has focused on theacquisition of knowledge for classi�cation or categoriza-tion. The performance task here involves assigning a newinstance or stimulus, typically described using attribute-value pairs, to some category or class, given a known setof mutually exclusive classes. The associated learningtask involves �nding some function or mapping that cat-egorizes novel instances, given a set of training instancesand their assigned classes. The typical performance mea-sure is classi�cation accuracy or error, though measuresof speed and typicality sometimes appear as well.The machine learning community has explored �vemain representations of knowledge about categories,each which its associated mechanisms. The �rst majorparadigm represents knowledge as decision lists , whichconsist of rules that specify the logical conditions formembership in a category, typically learned one at atime. A second framework represents category knowl-edge as a decision tree that is acquired through a processof recursive partitioning. A third paradigm representsknowledge as a multilayer neural network , often relyingon a weight-adjusting method known as backpropagation.Yet another framework encodes knowledge about cate-gories as experiences or stimuli stored in long-term mem-ory, using nearest neighbor or case-based methods forclassi�cation. A �nal paradigm uses training instancesto update probabilistic descriptions, often using simplemethods like naive Bayesian classi�ers for categorization.



Abstract Models of Category Learning 289Super�cially, these �ve paradigms appear quite dis-tinct, and early research in machine learning empha-sized di�erences among them. For example, for manyyears the common wisdom posited that methods fordecision-tree and rule induction were most appropriatefor `symbolic' domains, whereas backpropagation in neu-ral networks was best suited for sensori-motor tasks. In-deed, some felt that such di�erent representations, per-formance elements, and learning algorithms could noteven operate in the same domains. These beliefs were en-couraged by the di�erent notations used in various com-munities, but they were also aided by rhetorical claims,unbacked by evidence, coming from the various camps.This perception started to change with the �rst exper-imental comparisons among di�erent methods for classi-�cation learning (e.g., Mooney, Shavlik, Towell, & Gove,1989). These studies and ensuing ones showed that in-duction algorithms from separate frameworks, althoughsuper�cially very di�erent, could operate on the sameproblems. Their experimental results also suggested thatno one induction method was always superior to oth-ers, and a decade of experimental comparisons has sup-ported these early results. Although methods for clas-si�cation learning have steadily improved over time, noone paradigm has emerged as superior to others in termsof classi�cation accuracy.However, contributors to each paradigm have foundsome quite di�erent factors that a�ect the success oflearning. These include decisions about the formulationof the learning task, the representation or encoding ofthe stimuli, and the quality of the training cases. Bothexperimental studies and application e�orts suggest thatsuch factors are more important determinants of learn-ing e�ectiveness than the induction algorithm or the rep-resentational formalism itself, although authors seldomemphasize these issues in papers. Langley and Simon(1995) argue that these items { problem formulation,representation engineering, and data collection { are themain sources of explanatory power in machine learning.Each paradigm in machine learning has a direct ana-logue in theories of human learning. Techniques forlearning decision lists bear a close relation to production-system models of human category learning (e.g., An-derson & Kline, 1979), whereas methods for decision-tree induction are quite similar to psychological mod-els of learning that construct discrimination networks(e.g., Richman & Simon, 1989). Backpropagation andits relatives have been used not only for applied problemsbut also play a role in many models of human learning(e.g., Gluck & Bower, 1988). Case-based methods �g-ure prominently in the papers on human concept learn-ing, where they are known as exemplar models (Smith &Medin, 1981), and probabilistic methods have also beenproposed as models of human category formation (e.g.,Anderson, 1991; Fisher & Langley, 1990).

The literature on computational models of humanlearning has also seen a period dominated by rhetori-cal claims. The typical research paper begins by arguingthe strengths of connectionism, production systems, orexemplar models, whichever happens to represent theauthor's paradigm. The text then reviews some psycho-logical phenomena and describes a computational model,cast within this paradigm, that replicates those �ndings.In closing, the authors conclude that these positive re-sults are evidence for their theoretical framework, ignor-ing the possibility that the source of explanatory powerlies elsewhere, such as in carefully selected stimulus en-codings or in a well-crafted training regimen.The reason for drawing such hasty conclusions areunderstandable even if the conclusions themselves arequestionable. One simply cannot construct a detailedcomputer simulation of human behavior without mak-ing many assumptions, such as representational deci-sions, that are not central to one's theoretical claims.Naturally, many scientists are tempted to conclude that,when their simulation succeeds at modeling some phe-nomenon, their core assumptions are responsible ratherthan the peripheral ones.Yet not all authors follow this natural inclination, withone revealing counterexample coming from Richman andSimon (1989). They suggest that two alternative ac-counts of word-recognition �ndings { connectionist mod-els (which posit parallel processing) and discriminationnetworks (which posit sequential processing) { are notdue to these paradigms' core assumptions. Rather, theyargue that a hierarchical representation of words, an aux-iliary assumption that both classes of model share, con-stitute the real source of explanatory power in this do-main. We believe many similar examples exist in theliterature on computational models of human learning.Abstract Models of LearningThese observations suggest that traditional computersimulations of human learning, although useful contri-butions to arti�cial intelligence and machine learning,may be unnecessary or even misleading in our attemptsto explain psychological phenomena. In place of suchconcrete models, we need process models which operateat some more abstract level that lets us make predictionsfrom the central claims of a theory, without needing anoverwhelming number of peripheral assumptions.Of course, there exists a long tradition of such abstractmodels of learning within mathematical psychology. Butmany process accounts developed within this frameworkhave drawbacks of their own, in that they usually makeconstraining assumptions and embody simple theoriesfor the sake of analytical tractability. Such restrictionson analytic models were originally an important factor inthe development of computer simulations that actuallycarry out the task at hand.



Abstract Models of Category Learning 290However, the decision to work at an abstract leveldoes not mean one must develop an analytic mathe-matical model; nor does the use of computer simulationmean one's program must accomplish a complete task.Instead, a process-oriented psychologist can develop anabstract computational model , a notion championed byOhlsson and Jewett (1997). In this framework, the sci-entist still implements a running computer program thatpredicts behavior, but the system omits details that arenot essential to the phenomena it aims to explain. Forexample, to model learning in problem-solving domains,they retain the idea of search through a problem space,but remove details about the states and operators thatde�ne the space. Instead, they specify the structure orconnectivity of the space and model the learning processusing mechanisms that alter the probability of takinggiven branches in the future.Ohlsson and Jewett's goal was to model the power lawof learning, in which the rate of improvement decreaseswith the number of training steps. Simulations on syn-thetic problems revealed that two learning schemes, in-volving positive feedback for selecting good branches andnegative feedback for bad selections, produced powercurves across a broad range of parameter settings. Forinstance, varying the branching factor, the length of so-lution, and the probability of feedback did not a�ect theshape of the learning curve, but extreme parameter set-tings for success-driven learning gave di�erent simulatedbehavior. Moreover, failure-driven models that incorpo-rated additive weight reductions in response to negativefeedback produced exponential curves, although multi-plicative updates gave the power law.Another abstract computational model of learningcomes from Rosenbloom and Newell (1987), who alsofocused on the power law. Their primary aim was todevelop a concrete computer simulation that exhibitedthis e�ect on a �nger-manipulation task. The key ideain their model is that humans acquire chunks which letthem link complex perceptual con�gurations to complexactions, thus reducing the need to carry out multiplereasoning steps at the cognitive level. Rosenbloom andNewell embedded their learning mechanism in a detailedtheory of the human cognitive architecture, cast as aproduction system, and showed that their mechanism forchunk acquisition reduced response time with practice.However, to actually �t the psychological data, they in-voked a simple abstract model with four parameters thatembodied the core assumptions of their chunking theory.Shrager, Hogg, and Huberman (1988) present yet an-other explanation of power-law learning. Like Ohlssonand Jewett's, their abstract model describes a problemspace only in terms of nodes and links, along with theprobability that a selected branch will lead toward thegoal node. Their computer simulations show that power-level behavior can result from two quite di�erent learning

processes. One mechanism (similar to Rosenbloom andNewell's) creates new links from a problem's initial stateto its goal state, letting the problem solver make futuretraversals in one step. Another mechanism (closer toOhlsson and Jewett's) alters the probability of travers-ing a link based on whether it led to a solution. Shrageret al. also carried out an average-case analysis of theirtask, which gave good �ts to simulated behaviors.Langley (1996) reports a rather di�erent abstractmodel for the task of 
ying an aircraft simulator througha three-dimensional slalom course. His model's centralassumptions are that di�erences among subjects are dueto di�erences in sensing skills, and that the main formof learning involves improving the ability to focus on rel-evant features during skill execution. Langley describesan implementation of this abstract model of sensorylearning, along with a system that searches the spaceof parameter settings in order to �t the model to theexperimental data. He compares the sensory-learningframework to an alternative model based on the powerlaw, �nding that the latter �ts the data slightly betterbut that it requires many more parameters.There are clear kinships between these abstract simu-lations and models from mathematical learning theory,such as Estes' stimulus sampling account of learning.Both frameworks typically assume that subjects' deci-sions are probabilistic in nature and that learning followsfrom simple changes to probability distributions. As wehave noted, the key di�erence lies in abstract models' re-liance on computer simulation rather than detailed anal-ysis, which supports a wider range of process models. Asimilar relation holds with respect to the average-caseanalyses occasionally published in machine learning.Of course, the di�erent approaches to process mod-eling are not mutually exclusive. The Rosenbloom andNewell work showed that concrete and abstract simula-tions can coexist, and the Shrager et al. analysis madethe same point with respect to abstract simulations andpurely analytical models. Ohlsson and Jewett's con-tribution was the realization that neither mathematicalanalysis nor the concrete model are really necessary, andthat researchers may often �nd it useful to work entirelyat the level of abstract computational models. Neverthe-less, research in this paradigm remains rare, especiallyin the otherwise well-studied topic of category learning.In the remaining pages, we apply the abstract modelingframework to an intriguing phenomenon in this area.The E�ect of Consistent ContrastsAs we have noted, considerable e�ort has gone intocomputational models of human category learning, typ-ically using techniques very similar to those from ma-chine learning. For example, Kruschke's (1992) Alcoveincorporates a variant on the nearest-neighbor methodthat places weights on attributes, Martin and Billman's
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Table 1: Schema for the stimuli used in Billman andD�avila's (1995) experimental study of category learning.`Consistent contrast' subjects saw instances from cate-gories characterized by the same two attributes, whereasthose in the inconsistent contrast condition learned cat-egories characterized by di�erent attributes.Cons. contrast Incons. contrastCategory 1 11 xx xx 11 xx xxCategory 2 22 xx xx xx 22 xxCategory 3 33 xx xx xx xx 33(1992)Twilix constructs a form of multivariate decisiontree, and Anderson's (1991) RA model bears a close re-lation to the naive Bayesian classi�er. All three systemshave shown good matches to experimental results on hu-man category learning. However, here we consider aninteresting phenomenon that seems di�cult to explainwithin the standard theoretical frameworks.Billman and D�avila (1995) noted that most psycho-logical studies of concept induction assume that someattributes are relevant and others irrelevant, but thatthe same ones are relevant to each category. They hy-pothesized that subjects would �nd concepts easier tolearn when such consistent contrast occurs than whendistinct categories are de�ned by di�erent features. Ta-ble 1 shows the structure of the stimuli Billman andD�avila used to test this hypothesis, using a cover storyin which subjects classi�ed animals from an alien zooand received feedback after each guess. Both conditionsinvolve three classes and six attributes with three valueseach; moreover, all target concepts involve a conjunctionof two relevant features. However, in the consistent con-dition, the same attributes are relevant to recognizingcases from all three classes, whereas in the inconsistentcondition, a di�erent pair plays this role for each class.The learning curves in Figure 1 (a) show a clear dif-ference between the two experimental conditions. Sub-jects who dealt with consistent contrasts improved veryrapidly, achieving over 90 percent predictive accuracy af-ter only ten training stimuli. Subjects in the inconsistentcondition hovered around 50 percent during most of the45 instances, better than the 33 percent that results fromrandom guesses, but far below the accuracy for the con-sistent subjects. Separate tests on novel stimuli, somethat matched the intended category de�nitions and oth-ers that did not, showed that subjects in the consistentcondition were much more accurate at this task as well.Naturally, Billman and D�avila attempted to explainthis phenomenon using existing computational modelsof category induction. However, simulation runs withKruschke'sAlcove predicted no di�erences between the

two conditions, and similar studies with Anderson's RAindicated a slight advantage for the inconsistent con-dition. Even runs with Martin and Billman's Twilix,which they had expected to re
ect the observed dif-ferences, failed to produce the desired result. Furtheranalysis suggested that all three models lack a strongbias toward category descriptions incorporating fewer at-tributes overall, which seems the obvious explanation forthe large di�erence in learning rate.Of course, we could incorporate such an inductive biasinto yet another concrete simulation of category learn-ing, based on one of the above models or embedded ina new one entirely. But this would require us to adopta position on the representation of knowledge, to selecta complete performance element, and to propose a de-tailed learning algorithm. Yet the above account statesthat none of these factors are important in explainingthe consistent contrast phenomenon. Rather, the keyissue is whether learners are biased toward category de-scriptions that, across concept boundaries, require fewerfeatures. Thus, this seems like an ideal context in whichto illustrate the notion of abstract models.An Abstract Model of Contrast E�ectsWe want our abstract model to make as few assumptionsabout representation, performance, and learning as nec-essary to account for the phenomena at hand. However,we can view all induction methods as constructing de-cision regions that partition a multi-dimensional spaceof instances or stimuli. Moreover, all basic induction al-gorithms incorporate some type of locality bias, so theyare typically more accurate on test cases that fall nearto observed training cases in this space. We would like amodeling framework that re
ects this bias without com-mitting to a particular encoding of learned knowledge.For discrete domains like the one in Billman andD�avila's study, we can model conceptual knowledge as atable with c columns (one per attribute) and r rows, witheach row specifying a unique combination of attributevalues. We also need one extra column to specify thecategory or class associated with each value combinationor to state that the class is unknown for this situation.This notation lets us describe arbitrary contrasting con-cepts that map from combinations of discrete values toclass labels. Given a attributes with v values each, wecan have a table with a + 1 columns and va rows, butmany concepts are much simpler in nature. For example,if only c attributes are relevant, we need only include ccolumns, which means we need at most vc rows. And notall possible combinations of values may occur in practice,which lets us reduce the number of rows still further.Our performance and learning elements are similarlyabstract. Given a test stimulus, described as a attributesand their values, we assume the subject �nds the table'srow whose c attribute values match this instance. If the
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Figure 1: (a) Learning curves that Billman and D�avila's observed for subjects in conditions involving consistent andinconsistent contrast; and (b) learning curves that the abstract model predicts for the same conditions when p = 0:3.row has an associated class, then the subject predictsit; otherwise he selects a class at random from a uniformdistribution. We posit two distinct learning mechanisms,one that selects relevant features and another that as-signs class labels to rows in the table. We assume thatfeature selection happens early in the learning process,and thus we model only its result in terms of the num-ber of columns c in the table. For labeling, we assumethat each time the subject sees a training instance thatmatches a given row with an unknown label, he stores,with probability p, the label observed with that stimulus.When we instantiate this model for Billman andD�avila's two conditions, we see that it should predictquite di�erent behavior. For the situation involving con-sistent contrast, we have two attributes that are rele-vant across all categories, giving a table with only twocolumns. Moreover, since di�erent values on the otherfour attributes do not matter, we need only three rowsin the table, one for each co-occurring pair of relevantvalues. On the other hand, the table for the inconsistentcondition requires six columns, since all six attributesplay a role in some concept description; this means wemust have 12 rows, one for each combination of valuesin the training set. Even ignoring the stage of featureselection, which we do not model, subjects should takelonger to master categories that require the larger table.We implemented this abstract model as a simple Lispprogram that accepts as input the number of simulatedsubjects, rows, classes, and training items, along withthe probability p of learning on each trial. Figure 1 (b)shows the behaviors that the model generates when weset p to 0.3 and averaged over 1000 simulation runs. Asintended, there is a clear di�erence between simulatedsubjects under conditions of consistent and inconsistentcontrast, with the former learning much more rapidlythan the latter. The match to Billman and D�avila's re-

sults is only qualitative, as the simulated learning curvefor the consistent condition is slower, and the one forthe inconsistent condition higher, than they observed.2Altering the parameter p does not help, since this speedsor slows the curves for both conditions. However, Bill-man (personal communication, 1998) reports that usingstimuli with di�erent within-class similarity reduces theseparation between the two curves. An extended modelmight incorporate such additional factors, but the cur-rent one still produces the basic e�ect intended.We can contrast this qualitative behavior with thatfor a di�erent abstract model that operates in the samemanner but that does not include feature selection. Wecan simulate this situation by assuming that the tablesencoding the learned knowledge have the same numberof columns and rows for both the consistent and incon-sistent conditions. Thus, they predict identical behaviorfor subjects in both situations. As such, it constitutesan abstract version of the concrete models developed byMartin and Billman, Anderson, and Kruschke. But, toreiterate, we need not descend to their detailed level toexplain the consistent contrast e�ect.Closing RemarksIn the preceding pages, we reviewed the main researchparadigms in machine learning and their links to compu-tational models of human learning. We also argued that,for purposes of both developing artifacts and matchinghuman behavior, one can usually achieve very similarresults with each of the various approaches. Moreover,we claimed that the source of explanatory power often2On novel test items, the model also predicts very high ac-curacy for the consistent situation and chance for the incon-sistent condition. In this case, the experimental di�erencesare smaller than the model predicts, but the behaviors againmatch at the qualitative level.



Abstract Models of Category Learning 293lies not in whether one uses rule induction, neural net-works, exemplar models, decision trees, or probabilisticschemes, but rather in the features used to describe ex-perience, the formulation of the problem, and the natureof the training items. Our response was to recommendthe use of abstract computational models to explain phe-nomena, rather than the concrete models that have di-rect analogs in machine learning. We reviewed some ex-amples of abstract models and applied this approach tospeci�c experimental results in category learning.Before closing, we should examine some likely criti-cisms of abstract models. For example, one might claimthat such models merely `describe' the data rather thanexplain them. But the models we have reported all positexplicit (although abstract) processes, and thus embodysome form of explanatory structure. A more interestingquestion concerns whether such models' assumptions arenecessary or merely su�cient to explain the phenomena.Since we reviewed three abstract models of the powerlaw, each making somewhat di�erent assumptions, theyclearly constitute the su�cient variety, but necessity isa di�cult hurdle to leap in any science.A deeper criticism is that, to date, abstract modelinge�orts have focused on explaining isolated phenomena.Clearly, we do not want to develop 20 unrelated modelsof category learning, one for each robust phenomenon inthe literature. A more desirable approach would imitateolder sciences like physics, which devise separate modelsfor each phenomenon but constrain them with links todeep theoretical principles. The concrete modeling com-munity has made some progress on this front, as in usingdiscrimination networks to explain diverse memory phe-nomena (H. A. Simon, personal communication, 1998),but the same strategy should work for abstract models.In the long term, these two frameworks need not re-main antithetical. As we gradually extend abstract mod-els to cover more phenomena, we must place ever moreconstraints on them to ensure consistency with previ-ous accounts. At some point, we may even have enoughconstraints to take defensible positions on issues like theunderlying representation of knowledge, the performancemechanisms that operate on that knowledge, and thelearning processes that generate it. Eventually, we mayhave enough data to justify the construction of concretemodels or even a uni�ed theory of the cognitive architec-ture that covers behavior in many domains. However, wedo not feel the study of human learning has reached thatstage, and abstract models, even isolated ones that focuson speci�c results, seem worthy of increased attention.AcknowledgementsWe owe thanks to Dorrit Billman and Michael Pazzanifor discussions that led to many of the ideas in this paper,and to Dorrit Billman for making available the results ofher experimental study.
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