
From Proceedings of the Eighteenth Annual Conference of the CognitiveScience Society (1996). San Diego: Lawrence Erlbaum Publishers.An Abstract Computational Model ofLearning Selective Sensing SkillsPat Langley1 (Langley@cs.stanford.edu)Robotics Laboratory, Computer Science Dept.Stanford University, Stanford, CA 94305AbstractIn this paper we review the bene�ts of abstract compu-tational models of cognition and present one such modelof behavior in a ight-control domain. The model's cen-tral assumptions are that di�erences among subjects aredue to di�erences in sensing skills, and that the mainform of learning involves updating statistics to distin-guish relevant from irrelevant features. We report animplementation of this abstract model of sensory learn-ing, along with a system that searches the space of pa-rameter settings in order to �t the model to observations.We compare the sensory-learning framework to an alter-native based on the power law, �nding that the latter �tsthe data slightly better but that it requires many moreparameters.Computational Models of BehaviorComputational models of human cognition date backto the 1950s, soon after researchers realized that com-puters had general symbol-processing capability. Earlycomputer models like GPS (Newell, Shaw, & Simon,1960) and Epam (Feigenbaum, 1963) were implementedin basic list-processing languages like IPL-V and thenin Lisp. Later models of human behavior were castin more theory-laden formalisms like production-systemand schema languages (Newell, 1973; Norman & Rumel-hart, 1975). Ensuing architectures such as ACT (Ander-son, 1983) and Soar (Newell, 1990) incorporated addi-tional knowledge about the human information proces-sor, forcing models stated within those frameworks tosatisfy further theoretical constraints.Many cognitive scientists view this progression asa positive development, leading toward what Newell(1990) has called uni�ed theories of cognition. Never-theless, computational models still require developers tointroduce many assumptions, many not central to theirtheories, before they can produce behaviors and predic-tions. Moreover, features of models that developers dohold central are often not the source of their models' abil-ity to explain psychological data. One example comesfrom Richman and Simon (1989), who argue that connec-tionist and discrimination-network explanations of word-recognition �ndings are due not to these models' coreassumptions of parallel versus sequential processing, butfrom the way both models structure the task.1Also a�liated with the Institute for the Study of Learn-ing and Expertise, 2164 Staunton Court, Palo Alto, CA 94306

These observations suggest that detailed computermodels of human behavior, though interesting from anAI perspective, may be misleading or at least unneces-sary to explain many interesting phenomena. At �rstglance, mathematical models seem a natural alternative,in that they describe behavior at a much more abstractlevel. However, computational models were originallydeveloped in response to perceived limitations of suchmathematical methods, which were constrained to sim-ple behaviors and often made restrictive assumptions oftheir own for the sake of analytical tractability.Recently, Ohlsson and Jewett (1995; in press) haveproposed a promising compromise between these twoparadigms, which they refer to as abstract models . Inthis framework, the scientist still implements a runningcomputer program that generates behavior, but the sys-tem omits details that are not essential to the phenom-ena one aims to explain. For example, to model learningin problem-solving domains, they suggest retaining theidea of search through a problem space, but removingdetails about the states and operators that de�ne thespace. Rather, one can describe the structure or connec-tivity of the space, and model the learning process usingmechanisms that add connections or alter the probabil-ity of moving toward a goal state.The idea of abstract computational models is not en-tirely new. For instance, Shrager, Hogg, and Huber-man (1988) present an explanation very similar to Ohls-son and Jewett's for the power law of learning, whichthey coupled with a mathematical analysis. Rosenbloomand Newell (1987) present a di�erent account of power-law learning, describing both a detailed computer modeland an abstract model of this well-known phenomenon.Ohlsson and Jewett's contribution is the realization thatneither the mathematical analysis nor the detailed modelare necessary, and that researchers may often �nd it use-ful to work entirely at the level of abstract models.However, work on abstract models remains rare, andOhlsson and Jewett's research program has focused oncognitive tasks. In this paper, we adapt the approachto domains that have a signi�cant sensory-motor com-ponent. Below we outline the Phoenix domain, whichinvolves control of a simulated airplane. After this, webriey review Icarus, a theory of the human cognitivearchitecture, and incorporate its core tenets into an ab-stract model of behavior on the Phoenix task. Nextwe describe a variant model that addresses the inuence



An Abstract Model of Sensory Learning 386of domain knowledge on sensing strategies, along with asimple account of sensory learning. Finally, we considerthe model's �t to human behavior and compare its accu-racy to that of an alternative account of learning, thendiscuss some broader issues that our approach raises.The Sensory-Rich Phoenix DomainGoettl (1993, 1994) has described the Phoenix domain,a simulated training environment that involves ying asimulated airplane through a series of rectangular gatesthat constitute a three-dimensional slalom course. Theaim is to navigate the plane through these gates, prefer-ably following as direct a route as possible. A cockpitwindow gives subjects information about the size, loca-tion, and orientation of the nearest gates as they wouldappear from an actual plane, along with a horizon linethat reects the plane's pitch and roll. The console dis-play also gives numeric information on the ight speed,thrust, and altitude.The gates are suspended in air, perpendicular to theground and parallel to each other. The Phoenix taskbegins with the plane facing and heading roughly in thedirection of the nearest gate, but the subject must al-ter the plane's course to accomplish the task of yingthrough the gates in sequence. A joystick lets the sub-ject a�ect the plane's pitch and roll, and thus its altitudeand heading; additional controls can change thrust andthus ight speed, but this is less central to the basic task.Goettl (1993) has analyzed the Phoenix task into 19separate component skills, which involve subtasks suchas changing heading and changing altitude, which in turnbreak down into even more basic skills like altering theplane's pitch and roll. His experiments revealed a num-ber of regularities in subjects' behavior on this task. Forinstance, he found that ability on most of the componentskills identi�ed during the task analysis were closely as-sociated with ability on the overall slalom task. He alsonoted major di�erences in performance, especially be-tween men and women, but also among subjects of thesame sex. Determinants of task di�culty included thesize of the gates and their distance apart.Naturally, subjects improve their ability to y theslalom course with practice. However, Goettl also foundthat part-task subjects (trained on the component skills)learned more slowly than those in the whole-task group(trained on the overall task), though the former did showpositive transfer from practice on the component prob-lems. In studies of a related task that involves shoot-ing stationary targets, Goettl (1994) found that subjectstrained on component tasks outperformed those trainedon the whole task, provided they get interleaved practiceon the components (i.e., one trial on each component perblock), but not when they get segregated practice.We will not attempt to explain all of the above phe-nomena here; for now we will focus on the basic fact ofimprovement with experience. However, the variety ofresults suggests the fertility of this domain for exploringbehavior on complex sensory-motor tasks, which recom-mends it as a testbed for our ideas on abstract models.

A Model of Unskilled SensingOur approach to modeling human behavior in thePhoenix domain builds on the Icarus architecture(Langley, 1996), in which the basic unit of knowledgeis the qualitative state. Each state S speci�es a set ofconditions that must hold for S to be active, along withoptional information about actions to be performed dur-ing S, the e�ects of these actions, and likely successorstates. The architecture operates in cycles, checking theconditions of the current state if one is active and se-lecting a new state from long-term memory otherwise.Constraints on perceptual attention limit the number ofsensors updated on each cycle, with the system assumingthat the values of unsensed features remain unchanged.When Icarus detects that the activation conditions forthe current state no longer hold, it checks to determinewhich successor state should become active or, if nonehold, which other state seems most appropriate.For this study, we assume that the agent has alreadymastered the basic skill of ying through a series of gates,which involves both knowledge of the component skills(states) and the order in which they should occur. Fig-ure 1 shows one possible sequence of states involved intraversing a single gate, and the resulting ight path seenfrom above the plane. This sequence involves rolling theplane to the left, continuing the roll at the maximumallowed for some period, unrolling the plane right, andtaking no action once the plane is aligned with the gate.This sequence assumes the plane is already aligned ver-tically; if the plane were below the gate, the sequencewould also include states for altering the pitch to ascendfollowed by another state to level out. Alternative lo-cations relative to the gate would produce similar pathsbased on analogous states, such as decreasing pitch androlling right. We will not assume this precise decompo-sition of the slalom task, as other decompositions intostates are possible, but we will posit a small number ofstates for each gate traversal.Our model of behavior on the slalom task abstractsaway from the details of Icarus and the domain, andfocuses on only a few essential parameters. In particu-lar, we suppose that ying through each gate requiresa sequence of s states and that each state has r + i ac-tivation conditions that involve sensing, but that onlyr of these conditions actually di�er between each stateand its successor. This means that, in order to detectthat the current state is no longer active, the agent needonly sense one of these r relevant features. However, ifthe agent does not know which features to sense, its de-tection of state failure may be delayed, and thus it maycontinue carrying out the current actions longer thanappropriate.Our explanation of errors in this framework revolvesaround the idea that the agent must reach the �nal `FlyToward' state, in which the plane is aligned with thegate, before passing the gate's location. For a given lo-cation of the plane with respect to the gate at the outsetof the state sequence, there will be a minimum numberof time steps, ignoring time for sensing, for the agentto enter this �nal state. We will use t to represent the
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Figure 1: A four-state sequence that takes a plane through a gate when already vertically aligned. Each statecontinues for a number a time steps, until its activation conditions are no longer satis�ed.number of additional time steps available, beyond thisminimum, before the plane passes the gate. Thus, theparameter t corresponds to the amount of `slack' in aparticular slalom task, with smaller values making theproblem harder and larger ones making it easier.According to this account, an agent that knows howto y through a gate can still make errors because thenumber of time steps needed to detect a state shift mayexceed the slack parameter t, causing the plane to missthe gate. We assume that the agent can sense only onefeature on each time step, so that whether it notices astate shift depends on whether it senses relevant or irrel-evant features. Lacking any knowledge of which featuresare relevant, we assume that the true novice has a prob-ability p = rr + iof selecting a relevant feature on each time step, and thusthe same probability of noticing a state shift, once sucha change occurs.This model appears to have four parameters but ac-tually has fewer. Note that the important factor is notthe overall slack parameter t, but rather than amountof slack per state, d = t=s. Also, the actual numberof relevant features r and irrelevant ones i matters lessthan p, the probability of detecting a state shift whenone occurs. However, this quantity is determined not byr and i but by their ratio, u = i=r, which givesp = 11 + u :Taken together, the parameters d and u specify ourabstract model of novice behavior on the Phoenixslalom task, though it should apply equally well to othersensory-rich domains.

A Model of Skilled Sensing and LearningThe above model posits that the agent samples fromamong the r + i state activation conditions from a uni-form distribution, which produces the probabilityp = rr + i = 11 + uof detecting a state shift on each time step after the shiftoccurs. However, if the agent has additional knowledgeabout the probability of each condition ceasing to hold,it can use a more selective strategy, based on nonuniformsensing, that produces a higher probability of detectinga state change when one occurs.In order to model such skilled sensing behavior, weneed some additional assumptions. The Icarus archi-tecture assumes that the agent associates a probabilitywith each activating condition f of a state s, such that,when s is active and f is true, f will still hold on the nexttime step. Based on these estimates, Icarus computesthe probability that each activation condition (feature)of the current state has changed. Having limited at-tentional resources, the architecture must choose whichfeatures to sense. Here we assume that subjects use aprobability matching strategy , which samples from amongthe available features in direct proportion to their esti-mated probability of changing when a state shift occurs.Probability matching has been implicated in a variety ofdecision tasks, making it a plausible candidate here.We can model a subject's knowledge about the rele-vance of features with one additional parameter, k, thatrepresents the number of times the subject has observeda particular state transition in which the relevant fea-tures have changed and the irrelevant ones have not. Wecan incorporate this information into the probability of
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Figure 2: The probability of detecting a state shift as a function of (a) parameters k and u in the novice model and(b) parameters n and c, when u = 4, in the skilled model.selecting a relevant feature, which becomesp = k � rk � r + i = kk + u :This expression is equivalent to the novice quantity,1=(1 + u), when k = 1, but the ratio approaches 1 ask goes to in�nity. Figure 2 (a) shows the e�ect of k onp for di�erent values of i=r = u.Naturally, we do not claim that k remains constant,since subjects learn from their experience in the domain.Here we assume that the subject simply increments thevalue for k by 1 each time he observes a shift from onestate to another, thus increasing the probability p ofsensing a relevant feature. This suggests that we letk = n, where n is the number of times the subject hasencountered the task. However, inspection of data forthe slalom task reveals that some subjects start withmuch higher success rates than others. We can modelthese di�erences by introducing another parameter, c,that determines each subject's initial probability of sens-ing irrelevant features. In this revised model, we havek = c+ n, so thatp = (c+ n) � r(c+ n) � r + i = c+ nc+ n+ u ;where the value for c partly determines the intercept ineach subject's learning curve. Figure 2 (b) shows thee�ect of n on p for di�erent values of c when u = 4.Let us review the model and its structure. We haveone parameter, d = t=s, that represents the di�culty ofthe task. We have a second parameter, u = i=r, that in-dicates the ratio of irrelevant to relevant features. Bothd and u take on the same value for all subjects, since theyare characteristics of the domain. However, we have athird parameter, c, that is speci�c to each subject, repre-senting that person's initial bias toward sensing relevantfeatures. The variable n also plays a role in the model,but we assume this represents the number of problems

the subject has solved.2 Thus, given v subjects with wobservations each, we must �t a model with v+2 param-eters to v � w data points. For the slalom task, we have46 subjects and 8 measurements each, giving 46 �8 = 368values to constrain 46 + 2 = 48 overall parameters.Fitting the Model to ObservationsIn principle, we might derive a set of equations that fol-low from our model and use established statistical meth-ods to determine the best-�tting values for each param-eter. However, we have not found any closed-form solu-tions for the model, which rules out this approach. Butit does not preclude us from incorporating the model'sassumptions into an abstract computer program, usingthis program to predict results for given parameter set-tings, and searching the space of settings to �nd a good�t to the data.We implemented the assumptions of the model in sucha program, which we embedded in another program de-signed to search the space of parameter settings. Therunning model accepted the four variables described ear-lier { d, u, c, and n { as input and applied the strategy forselective sensing 1000 times to estimate the probabilityof successfully traversing a gate. The higher-level systemcomputed the squared di�erence between the predictedand observed probability for each combination of sub-ject and practice level. For the parameter d we told thesystem to consider only settings between 1 and 3; for uit examined settings from 1 to 20; and for c it consideredvalues from 1 to 10.The search program involves a number of iterativeloops, the outermost devoted to �nding the best d valueand the next to �nding the u setting. The three inner-most levels iterate through the set of subjects, through2Actually, each subject score is an average over 16 three-minute trials that involved separate passes through theslalom course, but these hold across subjects and thus areconstant factors.



An Abstract Model of Sensory Learning 389Table 1: (a) Sample parameter settings for the abstractsensory-learning model and the variance they explain(r2) on data from the slalom task, along with (b) theparameters and r2 for the power-law model. The best�t for the sensory-learning model (d = 2, u = 19) ac-counts for less variance than the power law but involvesmany fewer parameters.(a) Sensory-learning ModelDifficulty d Ratio u Init. bias c r21 4 [1{8] 0.1111 12 [1{10] 0.6512 12 [1{10] 0.5802 19 [1{10] 0.6803 12 [1{7] 0.3173 20 [1{10] 0.652(b) Power-law ModelSlope a Intercept b r2[-1.17{0.07] [-1.63{0.57] 0.827values of n, and through settings for c. Inspection of themodel's behavior over this parameter space suggestedthat, when only one parameter varies, the model's �t tothe data follows a U-shaped curve. Thus, the system lim-ited search somewhat by starting with a small parametervalue and incrementing it only as long as this improvedthe �t, at which point it halted, having reached a localoptimum given the values of other parameters.Table 1 shows the variance explained (r2) for a num-ber of parameter settings, including the one that pro-vides the best �t for Goettl's 46-subject data. The tableincludes a range of values for c, since this parameter var-ied across di�erent subjects. Note that the best settingfor u is 19, accounting for 68 percent of the variance,which implies that subjects considered 19 times as manyirrelevant features as relevant ones. The Phoenix ightsimulator does have a complex display, so this value isnot impossible, though it is higher than we expected.One natural issue concerns how well our sensory-learning model compares to alternative explanations ofthe data. We plan to explore this question at lengthin future work, but we have already done some initialstudies along these lines with a popular model that as-sumes learning obeys a negatively accelerated power law.Rosenbloom and Newell (1987) and Shrager et al. (1988)have shown that one can derive this law from assump-tions about the task environment and learner, but bothanalyses deal with reaction times rather than error rates.Here we simply assume that learning follows a powerlaw of the form E = bN�a, where E is the percent errorafter N training experiences, and where a and b are pa-rameters speci�c to each subject. Taking the log of bothsides gives the linear relation log(E) = log(b)�a�log(N),which we can �t to the data using linear regression.

Table 1 also shows the parameter ranges and the r2that result from this process. The power law explainssomewhat more variance (83 percent) than the sensory-learning model but includes nearly twice as many param-eters; thus, we cannot claim that either is superior to theother on these data, and additional studies would appearnecessary before we can draw any �rm conclusions.Preliminary analyses of results from another Phoenixstudy, involving part-task training, suggest that rapidlearners are less a�ected by the introduction of irrelevantfeatures than slow learners (Goettl, personal communi-cation, 1996). This appears consistent with our sensory-learning theory, but developing a detailed model for thisexperimental situation, and �tting it to the data, mustawait future work. DiscussionBefore closing, we should reexamine the theoretical sta-tus of our model and its relation to alternative frame-works. We have noted our debt to Ohlsson and Jew-ett for the notion of an abstract computational model,but our application of this idea di�ers somewhat fromtheir own. We have used our abstract model, combinedwith a search engine, to �t data on particular subjects,whereas Ohlsson and Jewett instead explore how alter-native models react to variations in parameter values,in order to determine whether their ability to cover phe-nomena depends on the underlying mechanism or on for-tuitous parameter settings. These two approaches arenot antithetical, but they do emphasize di�erent issues.Some readers will detect that our model of sensorylearning has features in common with Estes' stimulussampling theory, the basis for a wide variety of math-ematical learning models. The two accounts both as-sume that subjects' decisions are probabilistic in nature,that they invoke a probability matching strategy, andthat learning follows from simple changes to probabilitydistributions. However, the details of the equations forperformance and learning di�er considerably, as do theunderlying accounts that accompany the expressions.Another issue concerns the degree to which our model,and others like it, explains the data or merely describesit. We hold that the model's processes and associatedequations provide explanatory structure, whereas the pa-rameter settings handle description within the structure.A more interesting question concerns the extent to whichvarious model assumptions are necessary or merely suf-�cient to produce the data. A su�cient assumption canbe replaced by another one that, with di�erent parame-ter values, gives nearly the same results. In contrast, anecessary assumption seems required, in that no alterna-tives can �t the data, regardless of parameter settings.We have not yet attempted to analyze our account inthis fashion, but abstract models seem well suited forsuch studies, as Ohlsson and Jewett have shown.A �nal matter involves the generality of the abstractapproach to modeling behavior. Our treatment has ig-nored many details of the Phoenix task, such as par-ticular sensory variables and component skills (states),and Ohlsson and Jewett have followed a similar line.



An Abstract Model of Sensory Learning 390However, we might instead have developed an abstractmodel that included a separate parameter for each skill,provided data were available (e.g., from part-task stud-ies) to estimate expertise on each. This approach tocontent-oriented abstract models might even let one dis-tinguish between classes of knowledge, such as functionaland structural (e.g., Stroulia & Goel, 1992), given theseclasses have di�erent implications for subject's behavior.Concluding RemarksIn this paper we reviewed an approach to cognitive sim-ulation that Ohlsson and Jewett (1995) have called ab-stract models . We considered the advantages of this ap-proach over traditional AI models of human behavior,which force one to specify a complete procedure that op-erates in the task domain even when the data provide in-su�cient constraints to justify such detail. We describeda domain of this sort, studied by Goettl (1993, 1994), inwhich subjects must y a simulated aircraft through athree-dimensional slalom course. Although we have im-plemented an AI system for this task, cast within theframework of a cognitive architecture, we found this sys-tem too complex for useful modeling of available data.In response, we developed an abstract model of behav-ior on this task that incorporated parameters for taskdi�culty, the ratio of irrelevant to relevant features, andinitial subject knowledge. The model's central assump-tions are that skilled performance on this task involvesselective sensing of relevant rather than irrelevant fea-tures, and that improvement comes from simple statisti-cal learning about feature relevance. We implemented aprogram to search the space of parameter settings, and inthis way found an instantiated form of the model whichapproached the �t for a power-law model that had twiceas many parameters. These results do not prove thatour sensory-learning account is the correct one, but theyencourage us to continue exploring this class of models.In future work, we plan to evaluate our abstract modelon more detailed data that Goettl has collected for thePhoenix domain, as well as compare it to other alter-natives besides the power law. We also plan to draw onmore sophisticated methods, some available in the sta-tistical literature, for searching the space of parametersettings, and to produce more general tools that can beused with a broad class of abstract models. In the longerterm, we hope to use the resulting system to develop andevaluate abstract models for a variety of learning tasks,in an e�ort to understand the potential of this approachto cognitive simulation.AcknowledgementsThis research was supported by Grant F49620-94-1-0118from the Computer Science Division of the Air ForceO�ce of Scienti�c Research. We owe thanks to BarryGoettl for useful discussions about the Phoenix domainand for making his experimental data available, to Stel-lan Ohlsson, Wes Regian, and Je� Shrager for their in-sights about abstract models, and to Stephanie Sage for�tting the power law to the ight-control data.
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