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Abstract

In this paper we present a new approach to plan understand-
ing that explains observed actions in terms of domain knowl-
edge. The process operates over hierarchical methods and uti-
lizes an incremental form of data-driven abductive inference.
We report experiments on problems from the Monroe corpus
that demonstrate a basic ability to construct plausible expla-
nations, graceful degradation of performance with reduction
of the fraction of actions observed, and results with incremen-
tal processing that are comparable to batch interpretation. We
also discuss research on related tasks such as plan recognition
and abductive construction of explanations.

Introduction
In Plato’s famous Parable of the Cave, a person is trapped
in a cave where he can perceive only the vague shapes of
objects that pass in front of a fire, as flickering shadows cast
on a wall. The fundamental forms of these entities are not
directly accessible to the viewer; rather, he must infer them
from the available evidence. We wish to borrow two points
from this allegory: the perceiver must use vague shadows
to infer the nature of the entities casting them, and, given
the imperfect and incomplete nature of these inputs, he must
sometimes take a ‘leap in the dark’.

Plato’s parable is more relevant to everyday experience
than usually acknowledged, in that we must regularly inter-
pret the goals, beliefs, and intentions of others based on their
observed behaviors. We refer to this general task as plan
understanding. We will discuss related work later, but here
we note this problem has received far less attention in the
literature than tasks such as activity recognition (Aggarwal
and Ryoo 2011), which assigns observed behavior to some
known category, and plan recognition (Goldman, Geib, and
Miller 1999), which infers an agent’s top-level goals.

In contrast, plan understanding involves the explanation
of an agent’s behavior in terms of its broader mental state.
More formally, we can state the task as:
• Given: A sequence S of actions that agent A is observed

to carry out;
• Given: Knowledge about concepts and methods, orga-

nized hierarchically, that are available to agent A;
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• Infer: An explanation, E, organized as a proof lattice, that
accounts for sequence S in terms of agent A’s goals, be-
liefs, and intentions.

As its name suggests, plan understanding is a close ana-
logue to language understanding, in that analysis provides
a connected account of the input. However, the observation,
rather than being a sequence of words, is a sequence of rela-
tional actions or events, and the knowledge, rather than be-
ing grammatical rules, takes the form of a hierarchical task
network (Nau et al. 2001) that comprises a set of concep-
tual predicates for specifying states and a set of methods that
transform them. Moreover, the explanation may not take the
form of a proof tree with a single root, but rather a set of
interconnected trees that form a lattice.

In the next section, we provide a motivating example that
clarifies the task of plan understanding and introduces the
challenges it raises for both humans and computational sys-
tems. After this, we describe a novel approach to plan un-
derstanding, along with an abductive reasoning system that
implements its basic tenets: Understanding Mechanism for
aBductive Reasoning Agents, or UMBRA. Next we present
some claims about UMBRA’s capabilities and some exper-
iments that support them. In closing, we discuss related
work on abduction, plan understanding, and connected top-
ics, along with directions for future research. Although oth-
ers have reported frameworks for plan understanding, we be-
lieve that our approach incorporates novel features that con-
tribute to our understanding of this important problem.

A Motivating Example
We can clarify the task of plan understanding through an
illustrative example. Consider a sequence of observations
from the Monroe County corpus (Blaylock and Allen 2005):

Truck driver tdriver1 navigates the dump truck
dtruck1 to the location brightondump, where a haz-
ard team ht2 climbs into the vehicle. tdriver1 then
navigates dtruck1 to the gas station texaco1, where
ht2 loads a generator gen2 into dtruck1.

Based on these observations and on knowledge about the
types of goals and activities that arise in such settings, we
want to not only infer the top-level activities being pursued,
but also to explain how these activities relate to sub-activities
and how the latter depend on the situations that occur along



the way. We will assume that an explanation comprises an
interconnected set of conceptual and method instances that
are organized in a lattice. Any input observation that partici-
pates in this lattice is thereby explained; an observation that
is connected to more parts of the lattice is more integral to
the explanation.

Table 1 presents one explanation for the observations in
the example given above. We mark the input actions with
italics (the climb-out action, marked with an asterisk, is a
case of partial input requiring an additional assumption).
Thus, a substantial portion of the plan’s details must be in-
ferred. Elements such as person(tdriver1) must be inferred
from taxonomic axioms stating that objects that are drivers
are adults and objects that are adults are people. Even given
such axioms, there are necessarily gaps in this explanation.
For instance, the input does not specify the starting location
of dtruck1 before it is driven to brightondump.

This example raises a number of issues that deserve at-
tention. First, the inputs includes information about both ac-
tions and states. For instance, dtruck1 may be observed at
brightondump in addition to the navigate-vehicle action
that got it there. Second, as we mentioned, some actions may
not be observed; in this case, the sequence omits the action
(ht2 climbs out of dtruck1 at texaco1). Finally, there may
not be enough information to infer a single, top-level goal
or activity. In this example, one might conclude that the task
get-in(gen2, dtruck1) has been carried out, but not where
the generator is being moved to or for what purpose. To-
gether, these factors impose constraints on the task of plan
understanding. We will return to such issues as we present
our approach to this problem, to which we now turn.

Plan Understanding through Abduction
Our scientific aim is a computational account of plan un-
derstanding on tasks like the example just presented. In this
section, we describe UMBRA, an implemented system that
addresses this class of tasks. After stating our core theoret-
ical assumptions, we consider the content of the system’s
working memory and knowledge base. After this, we exam-
ine the mechanisms that operate over them, including the
manner in which they guide search through the space of al-
ternative explanations.

Theoretical Tenets
In general, we may distinguish a theoretical framework from
its particular implementations. We can characterize our the-
ory of plan understanding in terms of four key assumptions
that differentiate it from approaches to plan recognition:

• Plan understanding involves inference about the partici-
pating agents’ mental states. These states include not only
agents’ beliefs and goals about activities and actions, but
also about the environmental situations.

• Plan understanding involves the generation of plausible
explanations, and thus is inherently abductive in charac-
ter. That is, it posits default assumptions about agents’
beliefs and goals that, together, account for observations.

Table 1: Sample explanation for a get-in(gen2, dtruck1) sub-
plan. Italicized elements are operator-level actions, with as-
terisks marking actions that are elided in the input sequence.

get-in(gen2, dtruck1)
← get-to(ht2, texaco1)
← get-to(dtruck1, br-dump)
← drive-to(tdriver1, dtruck1, br-dump)
← at-loc(dtruck1, )
← at-loc(tdriver1, )
← navigate-vehicle(tdriver1, dtruck1, br-dump)
← person(tdriver1)
← vehicle(dtruck1)
← can-drive(tdriver1, dtruck1)
← at-loc(dtruck1, br-dump)
← at-loc(tdriver1, br-dump)

← get-in(ht2, dtruck1)
← not(non-ambulatory(ht2))
← person(ht2)
← climb-in(ht2, dtruck1)

← at-loc(ht2, br-dump)
← at-loc(dtruck1, br-dump)
← fit-in(ht2, dtruck1)
← at-loc(ht2, dtruck1)

← get-to(dtruck1, texaco1)
← drive-to(tdriver1, dtruck1, texaco1)
← at-loc(dtruck1, br-dump)
← at-loc(tdriver1, br-dump)
← navigate-vehicle(tdriver1, dtruck1, texaco1)
← person(tdriver1)
← vehicle(dtruck1)
← can-drive(tdriver1, dtruck1)
← at-loc(dtruck1, texaco1)
← at-loc(tdriver1, texaco1)

← get-out(ht2, dtruck1)
← not(non-ambulatory(ht2))
← person(ht2)
← climb-out(ht2, dtruck1) *
← at-loc(ht2, dtruck1)
← at-loc(dtruck1, texaco1)
← at-loc(ht2, texaco1)

← can-lift(ht2, gen2)
← load(ht2, gen2, dtruck1)
← at-loc(gen2, texaco1)
← at-loc(dtruck1, texaco1)
← at-loc(ht2, texaco1)
← fit-in(gen2, dtruck1)
← at-loc(gen2, dtruck1)

• Because observations about agents’ activities arrive se-
quentially, abduction operates in an incremental fashion.
Thus, only a few observations are interpreted at a time,
with later inferences building on ones introduced earlier.1

• Because plan understanding arises from observations
about agents’ activities, the abduction process operates in
a data-driven manner. That is, inference mainly involves
‘bottom-up’ chaining off observations, rather than being
driven by ‘top-down’ chaining from queries.
1The experimental studies in a later section use batch process-

ing to provide a baseline, but we will see that our system supports
incremental processing.



Combined with the task-related challenges discussed earlier,
these four assumptions place constraints on our computa-
tional account of plan understanding.

In the remainder of this section, we describe UMBRA,
an implemented system that incorporates these theoretical
tenets. We have implemented the system and knowledge
base in SWI-Prolog (Wielemaker et al. 2012) because it en-
ables reasoning over relational and hierarchical structures,
and because its ability to track dynamic global variables sup-
ports a working memory that changes over time.

Representational Assumptions
UMBRA incorporates a knowledge base that it encodes as
a set of rules stated in predicate logic, and a working mem-
ory that contains a set of ground literals. Knowledge takes
the form of a hierarchical task network that describes both
primitive operators and decomposition rules in a STRIPS-
like (Fikes and Nilsson 1971) notation, with each of the lat-
ter specifying a task and a body that contains conditions,
invariants, subtasks, and effects. For instance, UMBRA’s
knowledge may include multiple methods for decomposing
the task remove-wire into subtasks in different situations.
The system encodes these hierarchical structures as Prolog
clauses. Primitive tasks correspond to operators that achieve
their effects without further decomposition. The knowledge
base also contains inference rules that specify high-level
state predicates in terms of lower-level ones, including tax-
onomic rules, such as vehicle(X)← ambulance(X).

Working memory in UMBRA consists of beliefs held
by the primary agent that is attempting to understand oth-
ers’ behaviors. For example, the working memory element
belief(agent1, hospital(park-ridge)) denotes that agent1
believes park-ridge is a hospital. The agent may also hold
negated beliefs. In addition, each working memory element
has a start time that indicates when the agent adopted it and
an end time that indicates when it was discarded.

UMBRA takes as input a sequence of observations en-
coding the primary agent’s beliefs that particular activities
or state literals have occurred, along with their start and end
times. For example, the agent may observe that another per-
son has received emergency treatment at a hospital or that
a site does not have electricity. These typically involve low-
level actions or relations, although the system can be told
that higher-level tasks or relations have taken place. Initial
working memory also includes common domain facts, such
as particular objects being people, snow plows, or food.

The system’s output is an explanation of the observations.
This account takes the form of interconnected inferences in
working memory, many of which constitute default assump-
tions, along with information about the rule instances that
produced them. The inferred literals correspond to instan-
tiated versions of rule heads, conditions, effects, invariants,
and subtasks. Some literals include Skolem terms reflecting
variables that were unbound when the belief was generated.

Generating Extensions to Explanations
UMBRA utilizes its knowledge in an iterative, data-driven
manner that constructs an explanation of observations incre-
mentally as they enter working memory. This process is ab-

ductive in character in that, when applying an inference rule,
it can introduce default assumptions that are not deductively
valid but are nevertheless plausible.

The system operates in a series of observational cycles,
on each of which it receives zero or more observations (with
associated time stamps) that are followed by zero or more
inference cycles. This process continues until no inputs ar-
rive, at which point it halts. During each observational cycle,
UMBRA applies inference rules sequentially until it exceeds
a cost threshold Tcost (described below). By the end of each
observational cycle, the system has selected zero or more
rules to apply, partially matched them against elements in
working memory, and added default assumptions – based on
unmatched literals in the rules’ heads and antecedents – to
the same memory.

On each inference cycle, UMBRA attempts to instanti-
ate and apply rules to extend its current explanation. To this
end, it identifies every rule R with antecedents that unify
with some element E that is either an input or an inferred
rule head. For each such pair, UMBRA generates a partially
instantiated head for R based on its antecedents’ bindings to
E. Each instantiated head serves as a seed for a candidate
rule application.

The system expands each seed by finding which of the
rule’s antecedents unify with elements in working memory,
considering all maximal partial matches if more than one
exists. For every partial match, UMBRA generates tenta-
tive default assumptions to fill in the remainder, rejecting
any candidates that would introduce more assumptions than
a user-specified maximum. We will refer to each candidate
that meets this criterion, including the instantiated head, the
set of matched antecedents, and the set of unmatched as-
sumptions, as a rule extension. Each extension corresponds
to one way that UMBRA might elaborate its current expla-
nation, but it must still select which of them to utilize on the
current inference cycle.2

Evaluating Candidate Extensions
UMBRA employs a measure of cost C to select among
its candidate rule extensions, with lower scores being more
desirable. This evaluation function has three components
which penalize:

• candidates with antecedents and heads that unify with
fewer elements already present in working memory (E);

• alternatives that would introduce more new default as-
sumptions (D); and

• rule extensions that unify with working memory elements
that were, on average, less recently added (R).

UMBRA combines these component measures in an arith-
metic function, with the weight on each factor specified by
the user. In the runs reported in this paper, we used the func-
tion C = 10 ·E+D+R/200. This gives the greatest weight
to incorporation of working memory elements into the ex-

2We can contrast this approach with that taken by AbRA
(Bridewell and Langley 2011), which explicitly picks a particular
literal or ‘focal belief’ from which to chain before it selects a rule
instance through which to chain.



planation and the next highest to the number of default as-
sumptions, with recency used only to break ties.

We should note that the first two components bias the sys-
tem toward more coherent explanations, in the sense that Ng
and Mooney (1992) propose. These also reflect Thagard’s
(1978) criteria of consilience, which favors explaining as
much as possible, and simplicity, which favors as few as-
sumptions as possible. The third component gives the sys-
tem a recency bias similar to that in some production-system
architectures (e.g., Forgy 1981).

Applying Selected Rule Extensions
Once UMBRA has generated and evaluated a set of rule ex-
tensions, the final step in each inference cycle applies the
selected candidate. However, before this occurs, the system
compares the cumulative cost if the rule instance were ap-
plied to the system’s cost threshold Tcost. This threshold
places a limit on the total number of assumptions UMBRA
will make on a single observable cycle. If the number of
default assumptions associated with a rule instance would
cause the total to exceed Tcost, the system does not apply
the rule and it ends the observational cycle.

Otherwise, UMBRA applies the rule instance, which in-
volves adding both the associated head and default assump-
tions to working memory. On the next inference cycle, these
new elements are available to unify with candidate rules. In
this way, the explanation process is driven not only by ex-
ternal content, but also by new inferences. This process can
also lead the system to replace variables in existing working
memory elements with constants that appear in other literals,
as new information becomes available about variable bind-
ings. Thus, over time, UMBRA elaborates its explanation to
cover an increasing number of external inputs.

At any given point, there is no guarantee that UMBRA
has inferred a top-level task or goal. By default, the system
runs until it receives no further inputs. Each observational
cycle continues until Tcost is reached, at which point it is
reset for future inputs. However, UMBRA also incorporates
a pause condition that halts abductive reasoning temporarily
when all inputs are covered and when it has inferred at least
one top-level task. This immediately ends the current obser-
vational cycle, so the system performs no more processing
until it receives more inputs. The purpose is to prevent the
abduction engine, upon reaching a sufficiently full explana-
tion, from needlessly extending it with further assumptions.

Empirical Evaluation
Although we maintain that UMBRA reflects a novel and
promising approach to plan understanding, whether it per-
forms this task effectively is an empirical question. In this
section, we report experiments that evaluate three distinct
claims about the system:

• Given observed actions and relevant knowledge, UMBRA
generates reasonable inferences that explain these actions
in terms of high-level tasks;

• UMBRA’s ability to generate reasonable explanations de-
grades gracefully as one reduces the percentage of ob-

served actions given as input, so that it can still make rea-
sonable inferences from partial information; and

• Incremental processing of observations that arrive se-
quentially leads to explanations that are comparable to
ones produced by batch processing when all observations
are available at the outset.

To make these hypotheses operational, we must specify per-
formance measures that let us evaluate the system’s perfor-
mance. Because we are interested in the entire explanation
that UMBRA produces, not just the top-level action, we have
adopted the common measures of precision and recall.

Given a generated explanation with N elements and a tar-
get explanation with M elements, where elements are those
literals in the structure other than inputs, we can calculate
the number of true positives T , the number of false nega-
tives or errors of omission as O = M − T , and the number
of false positives or errors of commission as C = N − T .
We can then compute the precision as T/(T + C) and the
recall as T/(T +O). We believe that finer-grained measures
of this sort are more appropriate for plan understanding than
the accuracy metric that is typically reported in the litera-
ture on plan recognition, which focuses exclusively on the
top-level goal.

Following Raghavan and Mooney (2010), we calculated
true positives by awarding one point for inference of a cor-
rect predicate and additional points for each correct argu-
ment within a correct predicate. We computed false nega-
tives by awarding one point for each variable in a correct
predicate and, for entirely missing predicates, one point plus
the arity of the predicate. Following Bridewell and Langley
(2011), we extended this scoring system to all tasks in the
plan structure, not just the top-level predicate. We did not
include state literals in the scores, only tasks and operators.

The Monroe County Domain

For our preliminary tests of these hypotheses, we used the
Monroe domain (Blaylock and Allen 2005), which was de-
signed for plan recognition and which is familiar to many
researchers in the area. Typical elements include blocked
roads, environmental hazards, injuries, humans (police units,
victims, different types of work crew), and various purpose-
specific vehicles. The domain includes many types of loca-
tions, from towns to hospitals and from roads to gas stations,
along with abstract entities such as power or water suppliers.

Hierarchical knowledge for this domain consists of 51
methods for decomposing 38 distinct tasks, and 41 primitive
operators. There are ten top-level tasks: setting up a shel-
ter; fixing a water main; clearing a hazard such as a chemi-
cal spill from the road; clearing a wrecked vehicle from the
road; clearing a fallen tree from the road; plowing snow from
a road; quelling a riot; providing temporary heat to a per-
son; fixing a power line; and providing an injured person
with medical attention. The methods specify ways (possibly
more than one) to decompose these tasks into subtasks, in
a hierarchical manner that terminates in the operators. The
knowledge base also includes 55 taxonomical rules, such as
“an object X that is a member of a work crew is an adult”.



Figure 1: Comparison of the precision and recall scores for
each problem over ten ‘batch’ experimental runs.

Experimental Design
For our initial experiments, we selected ten problems from
the Monroe domain, one for each of the ten top-level plan
predicates in the corpus. We ran UMBRA with a cost thresh-
old Tcost of 30, a default assumption cap of 20 per inference
cycle, and the simple evaluation metric that we described in
the previous section.

Our first study involved running the system in batch
mode, with all of the actions available, on each example
problem, and recording the precision and recall for each
task. In our second experiment, we varied this procedure by
removing increasing portions of the input sequence, follow-
ing Raghavan and Mooney’s (2010) scheme. More specifi-
cally, we provided UMBRA with the first 100%, 75%, 50%,
and 25% actions as input. In the third study, we compared
the system’s behavior when provided with all actions (batch)
with the same observations presented sequentially and pro-
cessed incrementally. Here we allocated the same amount of
processing effort (in terms of number of inference cycles)
for both conditions.

Experimental Results
Our initial experiment with UMBRA produced reasonable
results on the basic plan understanding task. Each test cov-
ered between five and 22 observational cycles, depending
on the number of inputs given. The explanations generated
as output had a mean precision of 79.8% and mean recall
of 44.1% based the true plan skeletons. UMBRA behaved
somewhat differently on different top-level plans; in the
worst case, its scores were 33.3% for precision and 23.5%
for recall. Because of the way that UMBRA builds explana-
tions, all rule applications inferred the accompanying condi-
tions for those rules, with Skolem variables as needed.

Table 2: Precision and recall for the non-incremental and
incremental cases. Measurements are presented as percent-
ages, with standard errors following them.

Input Precision Recall

Batch 100% 79.8 ± 8.3 44.1 ± 4.3
Batch 75% 79.4 ± 9.8 41.4 ± 4.9
Batch 50% 70.4 ± 11.5 29.0 ± 4.7
Batch 25% 55.2 ± 12.6 16.4 ± 2.3

Incremental 70.6 ± 10.2 53.6 ± 4.3

Figure 1 plots precision against recall for each test prob-
lem. Note that, for half of them, UMBRA achieved 100%
precision, in that it generated no false positives. Combined
with the low recall rate, this suggests this system errs in be-
ing overly conservative. Note also that there is some corre-
lation between our two performance measures; some plans
were simply harder to understand than others. Analysis sug-
gests that this may result from details of the Monroe knowl-
edge base, in which some domain predicates lack the argu-
ments needed for complete plan understanding.

Our second claim was that UMBRA’s performance would
degrade gracefully as one reduced the percentage of obser-
vations available. The precision and recall scores in Table 2,
for varying amounts of elided input, generally support this
hypothesis. Note that UMBRA performs nearly as well, on
both dependent measures, with 75 percent of the actions as
with full sequences, suggesting that its abductive inference
mechanisms are working as intended. Even when only 25
percent of the actions are known, precision remains at the
55 percent level, although recall drops to only 16 percent.

The final claim was that UMBRA’s performance with in-
cremental processing is comparable to that in batch mode.
The results at the bottom of Table 2 are roughly consistent
with this claim, with the precision for incremental abduction
being somewhat lower and recall somewhat higher. How-
ever, standard errors are high, presumably due to differences
in problem difficulty. The plots in Figure 2 provide more
insight and show that both scores are generally comparable
but that, indeed, the incremental version has slightly lower
precision and slightly higher recall.

One plausible account for this behaviour is related to
UMBRA’s bias toward fewer default assumptions, and thus
toward applying inference rules with fewer unsupported
antecedents. Such rules have a lower chance of selection
throughout a run in batch mode, but they have a higher
chance during early stages of incremental processing, when
very few rules may match at all against the current input.
Thus, the incremental version may have more effective re-
call when plans include rules with many conditions.

Additional Analyses
In order to better understand UMBRA’s behavior, we car-
ried out additional analyses. For instance, we were inter-
ested in the number of rules the system applied correctly but



Figure 2: Comparison of precision (left) and recall (right) for ten incremental and nonincremental runs, with the line x = y
shown for comparison. Incremental processing in UMBRA typically leads to lower recall but higher precision.

with incorrect assumptions. This occurred fairly often in the
Monroe domain, where rule heads are sparse and unspeci-
fied world states lead to many free variables in rule bodies.
For this purpose, we defined false positives as rule instances
with at least one state or action condition that does not ap-
pear in the target plan. We measure these as a percentage of
the number of rules successfully applied in a run.

We are interested in these for two reasons. First, applied
rules may make poor assumptions in their bodies yet still
have correct rule heads. Second, these spurious rules provide
a metric for understanding, as opposed to overall and head-
level classification. Table 3 shows results with this revised
metric. Note that the number of rules inferred decreases as
less input becomes available to chain off. The number of
spurious rule applications appears to be relatively stable: re-
moving inputs does not make the system any more likely to
make guesses.

In addition, we varied the parameters that regulate the
number of times UMBRA may make assumptions: the cost
threshold Tcost and the default assumption cap. Decreasing
these values tends to reduce the number of rules applied, and
thus reduces the number of false negatives. Increasing them
drives the system toward inferring an entire plan, but only
at the cost of increased run time and diminished solution
quality. In batch mode with unbounded resources, the sys-
tem often constructs a complete explanation the top level on
a single cycle, populated more or less entirely by assump-
tions and Skolem variables.

We also discovered that UMBRA found certain things
more difficult to make good inferences about. For example,
the three plans on which the system performed worst fea-
tured the ‘call’ action, which denoted a phone call to some
entity. An agent can use this to shut water or electricity on
or off, or to declare a curfew, at many different locations that

the call predicate does not actually specify. Combined with
the fact that most of the rules involving call have few condi-
tions and thus relatively few extra assumptions, this resulted
in a substantially increased rate of false positives.

However, UMBRA also did well on some additional
tasks. Informal studies with interleaved plans suggested that
explanation quality was similar to situations in which the
system observed the two plans separately, although the run
time was considerably longer. This merits further investiga-
tion, as one of UMBRA’s key features is the ability to con-
struct explanations that lack a single root node.

In summary, our experiments suggest that our system can
generate coherent explanations of observed action sequences
from hierarchical knowledge, that it forms reasonable expla-
nations even when some observations are withheld, and that
incremental processing produces explanations of compara-
ble quality to those generated from batch analysis.

Related Research
Our approach to plan understanding builds on a large body
of related research in the related areas of plan recognition
and abductive inference, but it also incorporates some dis-
tinctive features that contribute to this extensive literature.
Space prevents us from covering all work in these two areas,
so here we review the most closely related efforts.3

One recurring theme that UMBRA incorporates is the hi-
erarchical representation of activities. For example, Blay-
lock and Allen’s (2005) Monroe corpus assumes that plan
knowledge is encoded as a hierarchical task network, and
their approach to plan recognition operates over these struc-

3We will not discuss work on activity recognition (Aggarwal
and Ryoo 2011), as it typically adopts non-relational representa-
tions, and it seldom incorporates hierarchical activities.



Table 3: Rates of false assumption used as support. The table
reports, for the batch and incremental cases, the mean num-
ber of rules the system successfully inferred, and the per-
centages of these rules whose conditions contained at least
one false positive, along with the standard errors.

Mean number of Rule bodies with
rules inferred false assumptions

Batch 100% 14.8 58.1% ± 7.5
Batch 75% 11.9 42.0% ± 9.7
Batch 50% 7.9 46.8% ± 12.2
Batch 25% 5.3 54.7% ± 12.9

Incremental 17.8 52.8% ± 6.9

tures. Other researchers (Kautz and Allen 1986; Goldman
et al. 1999; Raghavan and Mooney 2010) have adopted sim-
ilar notations, so that inferences about agent intent often take
the form of a proof tree.

As we have noted, most work has focused on inferring the
top-level goal or activity, whereas UMBRA instead posits an
interconnected explanation that includes intermediate states
and activities. However, this emphasis may have resulted
partly because it is easier to measure the accuracy in terms
of top-level goals than evaluating complete explanations. We
believe some existing methods for plan recognition could be
extended to support plan understanding as we define it.

Many approaches to plan recognition, at least ones that
operate over hierarchical activities, adopt query-driven or
top-down methods. This is a natural response given the clear
analogy between hierarchical task networks and logic pro-
grams, which are often associated with query-driven inter-
preters. In contrast, UMBRA incorporates a data-driven ap-
proach that chains off observations and constructs an ex-
planation from the ‘bottom up’. It shares this behavior with
Bridewell and Langley’s (2011) AbRA, which served as an
inspiration for our work. One advantage of this method is
that it directly supports explanations that do not involve a
single top-level activity, either because there is not enough
information to infer it (e.g., at an early stage in incremental
processing) or because the observations reflect a number of
distinct interleaved plans.

Another common technique is to propositionalize or oth-
erwise transform the domain at compile time – for instance,
by enumerating all possible ground literals (Kautz and Allen
1986; Appelt and Pollack 1992; Ramirez and Geffner 2009,
2010). The advantage is that this lets one utilize estab-
lished methods for probabilistic inference, which easily han-
dle missing information, over the resulting structures. The
disadvantage is that the number of possible ground literals
grows exponentially with the number of predicates and ob-
jects, raising problems with scaling to large domains. In con-
trast, UMBRA generates candidate ground literals in a local,
limited way at inference time. This should scale much bet-
ter than enumerative methods, and our experimental studies
suggest it remains effective at generating explanations.

We have been strongly influenced by previous research
on abductive reasoning. Hobbs et al. (1988) focused on sen-
tence interpretation rather than plan understanding, but their
approach introduced plausible assumptions to produce ex-
planations of input. Ng and Mooney (1992) introduced the
use of coherence to guide search for candidate explanations,
an idea that we have incorporated into UMBRA. And we
have already noted our indebtedness to Bridewell and Lang-
ley’s AbRA, which also adopted an incremental, data-driven
approach to abduction that constructs coherent explanations.
UMBRA differs from its predecessor mainly by omitting a
separate step for selecting a literal to chain off, by utiliz-
ing Prolog’s mechanisms for unifying variables and Skolems
during the inference process, and by using more limited
lookahead during its search for an explanation.

Other work somewhat close to our own is that of Gold-
man, Geib, and Miller (1999), whose framework can han-
dle partially-ordered plans and plan interleaving, informa-
tion from ‘context’ (i.e., state-related literals), and actions
by multiple agents. Also, Appelt and Pollack (1992) used
abductive inference to generate complete explanations of
agents’ observed behavior; their system associates weights
with each rule’s antecedent while ours uses an evaluation
measure for particular rule extensions, but both attempt to
find low-cost proofs that explain observations with default
assumptions as needed. We should additionally mention
Waern’s (1994) theoretical work on incremental approaches
to plan recognition, which shares with UMBRA the treat-
ment of early default assumptions as givens for later pro-
cessing. Finally, the early work of Kautz and Allen (1986)
in plan recognition emphasizes the usefulness of a system
that can generate partial plans, and supports cases where an
action is performed as part of multiple concurrent plans.

Plans for Future Work
Although our experiments with UMBRA produced encour-
aging results, there are several areas in which we should ex-
tend it. One obvious direction involves demonstrating the
system’s generality on a number of different domains. We
should also test the program’s behavior when we provide it
with sequences of environmental states rather than actions,
as this more closely models the setting in which humans
carry out plan understanding.

Another limitation is that, although UMBRA already as-
sociates start and end times with action and state literals, it
currently uses them only in checking the immediate applica-
bility of rules. In future work, we should extend the system
to support temporal reasoning that can be revised in the case
of acquisition of new information about temporal or ordering
constraints. In addition, we should incorporate support for
belief revision, so that UMBRA can handle cases in which
it makes incorrect default assumptions that it must later re-
tract when it leads to contradictions. This should improve
the system’s ability to carry out incremental construction of
explanations.

Furthermore, we should extend our system to incor-
porate weights on domain predicates to support different
costs for default assumptions, as already done by Appelt



and Pollack’s (1992) weighted abduction and by Gold-
man et al.’s (1999) probabilistic abduction. We should also
explore adding weights to inference rules themselves, as
Waern (1994) has proposed, to reflect the costs or proba-
bilities of alternative decompositions.

Finally, we hope to extend our framework to explain inter-
actions among agents. We are especially interested in plan
understanding that involves social cognition. This will re-
quire not only making inferences about participating agents
beliefs about the environment, but about their beliefs about
others’ beliefs. An augmented version of UMBRA should
represent and understand plans that involve social interac-
tions with deception, persuasion, and even instruction.

Concluding Remarks
In this paper, we reviewed the task of plan understand-
ing, which involves generating an explanation of observed
agents’ actions, not only in terms of their top-level activi-
ties but in terms of intermediate activities and their associ-
ated states. We noted a number of challenges that this task
presents and outlined a theoretical framework for addressing
it. We then described UMBRA, an implementation of this
framework that utilizes incremental, data-driven abduction
to plan understanding.

In addition, we reported experimental studies of the sys-
tem’s operation on action sequences from the Monroe cor-
pus. These suggested that UMBRA makes reasonable infer-
ences when the entire sequence is provided, that its perfor-
mance degrades gracefully as one reduces the percentage
of observed actions, and that incremental processing fares
nearly as well as batch processing. We compared UMBRA
to earlier work on related tasks such as plan recognition and
abductive inference, and we proposed some avenues for ad-
ditional research. Our analyses suggest that, although our
approach has much in common with previous efforts, it also
incorporates some distinctive features that hold potential for
robust and scalable plan understanding.
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