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Abstract

Many high-level cognitive tasks involve understanding – the
mechanisms by which an agent attempts to construct accurate
mental representations of its world. In this paper, we discuss
two such processes: explanation and question answering. We
propose four theoretical assumptions about representation and
processing that arise in these tasks: both involve inference, this
inference requires making default assumptions, it occurs in an
incremental manner, and it produces structures that can be ex-
pressed as directed graphs of conceptual ground literals. We
analyze two models of explanation and question answering in
terms of these commonalities and evaluate experimental claims
about them using reading comprehension passages. In closing,
we discuss our findings in light of related research.
Keywords: abductive inference; cognitive systems; explana-
tion; question answering; symbolic reasoning; understanding

Introduction
Understanding is a primary component of high-level cog-
nition. Many cognitive tasks require an agent to update
its model of the world based on inferences it makes about
connections among its sensory inputs, existing beliefs, and
knowledge. Explanation is one understanding task, in which
an agent assembles its perceptions of the world into structures
that integrate coherently into some model. Question answer-
ing is a similar task, in which an agent maps a query about the
world onto a model, extending it as needed to produce a plau-
sible answer. In this paper we report an integrated account of
behavior on these two tasks.

As a motivating example, consider this passage from a first
grade reading comprehension book (Liscinsky, 2010):

[1] The spider wants food.
[2] She likes to eat bugs.
[3] So she makes a trap.
[4] The spider spins a sticky web.
[5] Then she waits.
[6] The web is hard for bugs to see.
[7] Whap! A bug flies into the web.
[8] The web shakes when the bug lands.
[9] The bug is stuck.

We can elicit several ideas from this extract. Some facts are
not overtly stated, but rather implied by others (e.g., the bug
has wings). The same holds for causal content (e.g., the spi-
der is going to eat the bug) and constraints (e.g., the condi-
tions under which a spider can ensnare a bug).

This suggests some reasonable questions to ask about the
domain. What is the spider going to eat? How did the spi-
der catch the bug? Does the bug have wings? Furthermore,

it suggests plausible structural components of explanation.
Content words (e.g., ‘food’, ‘spins’) indicate concepts and
relations that are organized in recognizable patterns which
constitute prior knowledge (e.g., ‘?x is an instance of ?y be-
ing stuck to ?z’). We can picture the elements as nodes and
knowledge as sets of labeled edges in a directed graph.

We build on these ideas in the following sections. First we
propose some theoretical principles about the connections be-
tween explanation and question answering as complementary
forms of understanding. We then describe two systems that
address these tasks, make empirical claims, and test them ex-
perimentally. We draw comparisons with related research and
conclude with plans for future work.

Theory and Commonalities
Take the illustrative example of the spider building a web to
catch a fly. Suppose an agent possesses a piece of structural
knowledge K, stating “a mobile entity that cannot detect an
object may touch it by accident”. The agent may infer that
the bug flew into the web by accident. Making the inference
requires the agent to (a) identify the rule K in its knowledge
base as one it can usefully apply, (b) instantiate the rule cor-
rectly (e.g., ?entity=bug & ?object=web) using known val-
ues, and (c) introduce the assumption that the bug is mobile.

Alternatively, we may ask the question: How did the bug
come to fly into the web by accident? The components – a
high-level query and a predictable output (a pattern of con-
cepts and events) – match the same piece of knowledge, K.
The agent may decide it is reasonable to make a single sup-
porting assumption, then assume that the bug is mobile, in-
stantiate the argument, and return the result as an answer.

The first example involves explanation: interpreting obser-
vations in terms of what is already known, filling in gaps as
necessary, and thereby incrementally adding higher-level pat-
terns. The second concerns question answering: interpret-
ing evidence to fit a query by using the question as input
and undergoing an analogous process. Both are directed ex-
plorations that produce interconnected patterns by applying
knowledge to beliefs (when there are repeated iterations be-
yond the single step contained in the example above). We can
now define these tasks more precisely:

• Explanation is a cognitive task in which an agent is:
◦ Given a sequence of input observations and a corpus of

hierarchically organized knowledge, and
◦ Finds an explanation represented as a directed graph of

concepts and rule instances.



• Question answering is a task in which an agent is:
◦ Given a set of query elements, a corpus of hierarchically

organized knowledge, and zero or more initial facts, and
◦ Finds an elaboration of the query that expands an exist-

ing explanation to provide a coherent answer.

We have claimed that these tasks do not just bear surface sim-
ilarities, but have parallel structures. We will expand on this
idea by discussing their representational and processing com-
ponents – first defining the cornerstones of a computational
approach that incorporates these commonalities and then de-
scribing specific implementations. To this end, we have com-
posed four theoretical tenets that we argue are shared by ques-
tion answering and explanation.

1. Both tasks involve inference in that they generate a set of
interconnected beliefs about facts. Information is often in-
complete and must be extended by using knowledge. In
our example, the answer to the question “why did the spi-
der make a web?” is not stated, yet is ‘obvious’. In expla-
nation, inference is a largely bottom-up process of inter-
preting low-level facts and observations. Question answer-
ing instead is a top-down process that reconciles high-level
question elements with existing beliefs.

2. Inferred structures are organized into directed graphs of
working memory elements. Understanding requires the
ability to cache information in a short-term belief store that
tracks basic conceptual elements. Long-term knowledge,
comprising rules (patterns of generalized elements), is or-
ganized in a hierarchical manner. A rule relevant to the
bug’s flight into the web might be

is-a(?x, accidental-contact)⇐
is-a(?x, contact) &

attribute(?x, agent, ?a) & attribute(?x, recipient, ?r) &
attribute(?x, intentional, false) &

is-a(?y, cannot-see) &
attribute(?y, agent, ?a) & attribute(?y, recipient, ?r) &
attribute(?a, mobile, true)

where each attribute literal is a terminal node, contact and
cannot-see denote relations specified by other rules, and so
on. Both explanation and question answering produce the
same type of interconnected rule instances.

3. Inference requires the introduction of default assumptions.
Deductive proofs are typically viable only in abstract or
closed-world scenarios. In the real world, there may be
substantial but not conclusive support for a belief. We
hold that human understanding employs a form of every-
day reasoning that involves abductive inference (Bridewell
& Langley, 2011). Assumptions should be reasonable in
that they meet criteria such as consilience, parsimony, and
coherence. The spider is alive is more consistent with other
beliefs than the spider is a lifelike robot.

4. Inference occurs in an incremental, on-line manner. This
reflects the idea of a cognitive cycle (Young, 2001) that
involves processing of a single structure, such as applica-
tion of a rule, so that elements are added to working mem-

ory incrementally. Rule instances become interconnected,
with later questions being answered using inferences or as-
sumptions from earlier queries. For example, the element
the spider notices the bug is trapped in its web should re-
duce the search required for the the spider eats the bug.

Together, these four suppositions provide a theoretical frame-
work for understanding that supports both explanation and
question answering. We will now turn to two specific in-
stances of this theory that model behavior on these tasks, de-
scribing their representation and mechanisms.

Two Complementary Models of Understanding
We have developed two computational models that address
different but complementary aspects of understanding: UM-
BRA (Meadows, Langley, & Emery, 2013, 2014), an account
of explanation, and PHOS, a model of question answering.
We developed UMBRA to address the data-driven construc-
tion of explanations that occurs naturally as one observes a
stream of events, and we implemented PHOS to handle the
process of question answering that builds upon these expla-
nations.1 The two systems share the theoretical underpin-
nings just described, including representational assumptions
that we will review before discussing their mechanisms.

Representations for Understanding

We designed UMBRA and PHOS to operate over the same
representational structures. Each system has a working mem-
ory that contains beliefs encoded as relational structures
like ‘x is an instance of y’, ‘j has the attribute-value pair
<a,b>’, or ‘n and m are not equal’. These elements may
contain constants, identifiers for other elements, or skolem-
ized placeholders for unknown values. In our scenario, we
can express the bug becoming stuck with the elements is-
a(skolem1, trapped) & attribute(skolem1, agent, bug) & at-
tribute(skolem1, object, web) & attribute(skolem1, actor, spi-
der), much as in a semantic network (Gentner, 1975). More-
over, working memory organizes facts, inferences, and as-
sumptions into connected structures that we call explanations.

Questions are encoded in a similar manner, as sets of con-
nected, partially instantiated elements in working memory.2

For example, {is-a(?s, spider)} denotes ‘what spiders ex-
ist?’, while {is-a(?c, cannot-see), attribute(?c, agent, ?a),
attribute(?c, recipient, web1), attribute(?c, cause, ?y)} en-
codes ‘who cannot see web1, and why?’ A question typically
involves some informative elements (e.g., ‘spider’, ‘recipi-
ent’) and some unknown ‘answer’ values (e.g., ‘?s’, ‘?y’).
Answers are instantiations of questions whose constant val-
ues appear throughout the explanation graph produced by the

1Phos is the Greek word for light, which reveals what lies in the
shadows but also cast new shadows in the process.

2 Our work does not focus on natural language processing; we as-
sume that questions have already been translated into internal struc-
tures expressed as connected sets of elements. However, we do
not assume that word sense is provided, so our system must utilize
knowledge to interpret questions it encounters.



question-answering process. These answers may be partly
ungrounded if a complete answer is not found.

UMBRA and PHOS also draw on a common long-
term memory that contains relational knowledge structures.
Knowledge is encoded in a conceptual hierarchy in which
higher-level nodes are specified in terms of lower-level nodes.
Rule components include the patterns is-a(?x, ?type), at-
tribute(?x, ?label, ?y), (?a6=?b), and (?a=?b). We assume
that neither system will encounter attributes with multiple
values, such as attribute(?1, label, value1) & attribute(?2, la-
bel, value2) & (?value16=?value2)⇒ (?16=?2). The previous
section presented a simplified example of a conceptual rule
for accidental-contact.

A Model for Generating Explanations
UMBRA models the generation of explanations. We pro-
vide the system with conceptual knowledge and a sequence
of facts and observations in the notation just described. Ex-
planations are directed graphs comprising domain literals that
include input elements as well as other, similar, ones that
have been inferred or assumed. These elements may be only
partially instantiated, and they are connected by instances
of rules that have been applied. For example, the literal is-
a(web1, location) may appear in several different rule in-
stances – in defining a web, or waiting at a place, or a locus
of entrapment. In this way, an explanation can be structurally
cohesive.

UMBRA constructs its explanations through an incremen-
tal, data-driven form of abductive inference (Meadows et al.,
2014). This process operates through a sequence of high-
level ‘observation’ cycles, each of which begins with the ac-
quisition of new beliefs from observations and then expands
the explanation graph through a number of inference steps.
The system has a resource bound that limits the inference
steps it carries out on each observational cycle. Rules that
require more assumptions have higher cost, and the system
stops chaining when it exceeds a threshold.

On each inference step, UMBRA generates a set of can-
didate rule instances that match against at least one element
in working memory. It calculates the additional inferences
and assumptions needed for each rule, using this as the basis
for a cost metric. The system uses high-level control knowl-
edge to prune candidates that violate existing constraints, or
that would not sufficiently improve explanation consilience.
It evaluates each remaining rule instance according to the cost
metric and selects the least-cost remaining candidate. UM-
BRA applies this rule instance, introducing new elements (de-
fault assumptions) and extending the explanation.

A Model of Question Answering
We developed PHOS to model the process of question answer-
ing. We provide the system with conceptual knowledge, a
set of existing beliefs organized into an explanation structure,
and a question. It produces an elaborated explanation with ad-
ditional inferences that connects the question to prior beliefs
and provide an answer. An input explanation is not strictly

Table 1: Summaries of the five sample scenarios. Page num-
bers from the source (Liscinsky, 2010) are given in italics.

◦A hungry spider spins a web and a bug blunders into it. (44)

◦A zoo is described as containing various animals and activi-
ties, including mythical or anthropomorphized ones. (108)

◦ A hippo stays in water during the day when the sun is hot,
then comes out at night to eat. (51)

◦ Insects and spiders are compared and contrasted. (104)

◦ A pig enjoys rolling around in a cool mud puddle. (17)

necessary. The system may receive a set of beliefs that are
not linked by rule instances or, in extreme cases, it may re-
ceive no initial beliefs at all.

PHOS operates in a series of high-level query cycles, each
of which represents a discrete attempt to find a coherent an-
swer. These in turn comprise a number of inference steps. A
query cycle begins by initializing a set of candidate literals –
the fringe – with the contents of the original question. The
system then incrementally extends the current query graph.
On each inference step, PHOS selects an element from the
fringe to focus on, then enumerates the rule instances, as-
sumptions, or unifications with which it could be supported.
The system calculates a cost for each candidate. A coher-
ence heuristic uses these costs to select a candidate at random
with probabilities proportional to their fitness, thus provid-
ing search control that guides expansion of the query graph.
The inference step ends by adding the candidate’s elements to
working memory. In contrast to UMBRA, this process oper-
ates in a top-down manner. However, whenever the system
extends the explanation, new instantiations are propagated
back up the graph to the original query elements.

If PHOS processes every element in the fringe, then it has
found an answer and the query cycle ends. Otherwise, it halts
when the accrued total cost becomes too high. The system
retains the working memory elements and rule instances in-
volved in the answer’s elicitation. Importantly, this includes
the original questions, which very often carry implicit mean-
ing (e.g., asking “Did the hungry spider sleep?” introduces
the idea that there is some spider that is hungry), and thus
are useful resources for later, related questions. If a ques-
tion is repeated later, PHOS can unify its components with
the answer elements from the existing structure, resulting in
pattern-based retrieval.

We have shown how these two models of high-level un-
derstanding instantiate the theoretical basis that we outlined.
UMBRA uses an incremental, data-driven form of abduction
that introduces default assumptions in an effort to produce
a cohesive explanation. PHOS uses an incremental, query-
driven form of abductive inference to generate meaningful
answers that it incorporates into a new or existing explana-
tion. Now that we have shown how these models align with
our core theory, we turn to analyzing their behavior, in partic-
ular how the processes of explanation generation and question
answering interact.



Empirical Studies
UMBRA and PHOS are computational models that instantiate
the theoretical tenets we presented earlier. As such, we can
examine their behavior in particular scenarios to reveal inter-
actions between explanations and question answering. Our
aim is not to fit quantitative measures like error rates or reac-
tion times. Instead, we desire to demonstrate that, taken to-
gether, the two models produce behavior that is qualitatively
similar to that observed in humans. In summary, we adopt a
cognitive systems approach (Langley, 2012) that studies the
behavior of integrated computational artifacts.

Part of our evaluation involves running the explanation sys-
tem on observations and then asking questions about the al-
tered memory state. This approach follows Zelle et al. (1994),
who measured the performance of an integrated system for
language understanding in terms of its final outputs. By mea-
suring answer accuracy, we can quantify the success of our
two models operating in tandem. We are interested in how
explanation generation and question answering interact. We
make three main empirical claims:

1. Explanation construction and question answering are
complementary and commutative. Computational re-
sources spent on explanation can reduce the cost of sub-
sequent question answering activities and vice versa.

2. Question answering centrally involves inference. Re-
trieval processes are crucial to high-level understanding,
which in turn relies on processes like abductive inference.

3. Interference impacts understanding, but can be over-
come. Confounding information escalates the cost of pro-
cessing, increasing the cycles or resources required, but
one can still disregard superfluous facts.

Although we cannot provide details here, these claims follow
directly from our two models and they also parallel known
aspects of human understanding.

Experimental Design
Reading comprehension is a good task for evaluating under-
standing, in that passages contain elided information, utilize
conceptual knowledge, and have relevance to human cogni-
tion. We therefore worked with five scenarios from a first-
grade text for reading comprehension (Liscinsky, 2010).3 Ta-
ble 1 summarizes these passages.

We translated the five vignettes into logical literals, pro-
ducing scenarios with varying characteristics. For instance,
the comparing insects to spiders vignette describes only do-
main rules, with no initial facts, while another had 127 ground
facts; the mean was 45.4. We extracted content from the text
manually, encoded it using these literals, and then generated a
set of questions. For example, “Is there any insect with eight
legs?” translates to the conjunction is-a(?x, insect) & is-a(?p,
has-property) & attribute(?p, entity, ?x) & attribute(?p, prop-

3 We chose five passages that the author categorized differently
– ‘compare and contrast’, ‘fantasy and reality’, ‘prediction’, ‘main
idea’, and ‘what and how’ – to maximize the range of scenarios.

erty, limbs-legs) & attribute(?p, number, 8). We generated
three different questions for each scenario.

We measured PHOS’s performance by counting cases in
which the correct answer was returned and cases in which
spurious inferences occurred. We calculated precision and
recall scores from those metrics. We also estimated computa-
tion time per answer with the abstract cost thresholds used by
both UMBRA and PHOS. We measured cognitive cycles per
answer, but resource consumption predicted this metric very
closely, so we do not report it here.

Target answers varied in size from a single element (“no”)
to graph structures containing more than 50 elements. We
repeated each question twice to compensate for minor effects
from the nondeterministic heuristics, although in practice we
saw very few differences across repeated runs. In all cases,
we provided both systems with the full complement of 60
domain rules derived from all scenarios.

Claim: Understanding Tasks are Complementary
Our first claim was that the work done by explanation reduces
the amount of effort question answering requires and vice
versa. Intuitively, making more initial inferences may reduce
the effort required to find an answer later. This hypothesis is
informed by theories of different types of elaboration in hu-
man reasoning (e.g., Bradshaw & Anderson, 1982). In the
extreme case, question answering works without prior expla-
nation as long as it has sufficient computational resources.

To test this claim, we ran UMBRA on each domain, then
ran PHOS on its outputs. We systematically varied the re-
sources allocated to each system, running UMBRA at zero,
scarce, or plentiful levels, and PHOS with scarce or plentiful
levels.4 We ran the systems in sequence a total of 180 times,
ignoring UMBRA’s incorrect inferences (because these may
sometimes translate into inputs that PHOS regards as incon-
sistent, in which case the system halts). We found that, when
PHOS had scarce computational resources, recall scores in-
creased as UMBRA’s resources increased, from 0.17 to 0.33
to 0.37. When PHOS had plentiful resources, recall remained
at 0.55, consistently higher than the scarce case. We also
found that increasing UMBRA’s resources reduced mean cost
per answer by 40 to 60 percent. Together, these results sup-
port our first claim.

Claim: Question Answering involves Inference
Our second claim was that inference is central to the question-
answering process; understanding depends on the organiza-
tion of ground facts and supporting assumptions into known
patterns, so that reasonable answers can be produced by
common-sense reasoning where information is elided. We
tested this premise by removing PHOS’s abductive inference
capability, eliminating the step at which the model can choose
to construct a subquery by matching an element from the
fringe with a rule head. We ran it on the test scenarios with

4 The systems’ internal notions of ‘processing resources’ are not
identical, but they are directly analogous.



plentiful resources, expecting the lesioned system would be
unable to function effectively. In previous work, we have re-
ported similar studies with the UMBRA model in isolation
(Meadows et al., 2013).

In this case, we found that the system only succeeded on
13 percent of the runs, and then only because it defaulted to
‘false’, the correct answer for two questions. This is evidence
that it could not answer the questions with straightforward re-
trieval. PHOS was also able to perform more direct retrievals
after running UMBRA. These results support our hypothesis
that inference is crucial to effective question answering.

Claim: Interference Effects can be Overcome

Our final claim stated that confounding information necessi-
tates more processing to find answers. Intuitively, we expect
that trying to compensate for noise will impose overheads:
consider making the decision to ignore an improbable outlier
or separating relevant and irrelevant ground facts. To test this
premise, we combined the 227 initial elements from all the
scenarios. Running PHOS with plentiful resources, we found
that confounders reduced the mean recall score from 0.53 to
0.37, often due to finding an answer with faulty low-level
bindings rather than wrongly instantiating the top-level query
elements or not answering. This means the model sometimes
incorporates extra information in an unreasonable way.

The mean cost per answer, surprisingly, decreased from
1499.5 to 762.3, contradicting our hypothesis. Analysis re-
vealed that rather than requiring more cognitive cycles before
it found a suitable answer, PHOS often managed to incorpo-
rate confounders in ways that seemed consistent, reducing
the need for expensive default assumptions. For example, a
sparsely-grounded conceptual relation ?x might be inferred
to be an instance of not only eating, but also having a goal
– an inappropriate combination leading to a wrong answer,
but not specified in knowledge as a contradiction. Our third
claim, then, is partially refuted: the model was nontrivially
affected by confounders. We plan to ameliorate this effect by
providing it with more discriminating conceptual knowledge.

Remarks on the Evaluation

Overall, our combined model of explanation generation and
question answering behaved as expected. Our experiments
with UMBRA and PHOS supported our first two claims about
interactions among these two processes, although our third
study uncovered some surprises. Nevertheless, taken to-
gether, they suggest that our models provide a viable instance
of our computational theory of understanding.

Note that our measurements were conservative: we only
scored an answer as right or wrong, so a single low-level er-
ror produces a negative score even if the overall answer is
plausible. Top-level query elements could be perfect matches
and still be considered ‘misses’. Indeed, we observed that al-
most every spurious answer incorporated some literals from
the canonical answer; a finer-grained scoring system would
have reported higher accuracy.

Related Research

Our framework shares elements with previous research but
also has distinctive features. For example, work in the
paradigm of plan recognition (Goldman, Geib, & Miller,
1999; Bridewell & Langley, 2011) has focused on generat-
ing explanations of observed behavior, often inferring agents’
goals using abductive mechanisms on hierarchical knowledge
structures, but it has not addressed the related task of question
answering. Winston’s (2012) research on story understanding
has a similar flavor, encoding knowledge as rules and expla-
nations as elaboration graphs much like our structures, but,
again, has not addressed question answering.

At the other extreme, some computational models of hu-
man memory include accounts of question answering but do
not touch on explanation generation. Anderson and Bower
(1980) offer a detailed account for the retrieval of facts from
memory in response to questions, but their storage process
involves no inference. Graesser et al. (1991) report a more
sophisticated model of question answering that incorporates
criteria similar to ours, such as coherence. However, their
work assumes that all content used in this process is already
stored in memory. Waldinger et al. (2011) describe an ap-
plied system that, given access to online databases, com-
bines language processing with deduction to answer medi-
cal questions. Narayanan and Harabagiu (2004) present an
alternative that uses probabilistic inference to answer ques-
tions given predicate-argument descriptions of a large corpus
of sentences from the Wall Street Journal.

Research on natural language processing during the 1970s
and 1980s dealt with both capabilities, but with somewhat
different emphases. Lehnert (1978) and Dyer (1983) both
described models that constructed explanations of narratives
and that chained over the resulting structures to answer ques-
tions, but the latter processes did little to extend the explana-
tion.5 They adopt script-based representations for knowledge
and explanations that provide more structure than does our
formalism, but their systems also utilize a constrained variety
of abductive inference to generate explanations. Kolodner’s
(1983) model of reconstructive memory comes even closer
to our own, in that it makes many knowledge-based infer-
ences at the time of question answering. More recently, Bar-
bella and Forbus (2011) report a system that uses analogical
reasoning to generate inferences when answering questions;
this provides a form of abductive inference that operates over
cases constructed during reading rather than over rules.

In summary, the literature includes many efforts on gen-
erating explanations and on answering questions, but only a
small number of computational models that address both of
these cognitive tasks. Of these, even fewer carry out sub-
stantial inference during question answering, and those draw
upon different representations and processes than we have
proposed in our framework.

5 However, Dyer mentions in passing that answering a question,
his model can modify memory as an unintended side effect.



Concluding Remarks

In this paper, we argued that the cognitive tasks of generat-
ing explanations and answering questions are two comple-
mentary aspects of understanding that share many facets. We
introduced four theoretical assumptions about the representa-
tions and processes that underlie them, then described com-
putational models for behavior on each task that incorporate
these tenets. In addition, we reported experiments on reading
comprehension scenarios, showing that our abductive mecha-
nisms produce effective understanding and testing claims for
interactions between explanation and question answering.

In future work, we plan to build upon our initial results by
extending PHOS to better handle confounding information,
thus improving scalability, and to interact more dirctly with
UMBRA. Specific areas of interest include modeling word
sense disambiguation and the influence of inferences gener-
ated when answering an early question on responses to later
ones. We should also develop an approach to answering open-
ended questions, such as “what happens next?”, which our
current knowledge structures cannot handle.
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