
A Testbed for Evaluation of Architectures for Physical Agents

Dongkyu Choi, Michael Morgan, Chunki Park, and Pat Langley
Computational Learning Laboratory

Center for the Study of Language and Information
Stanford University, Stanford, California 94305

{dongkyuc, mmmorgan, lovelive}@stanford.edu, langley@csli.stanford.edu

Abstract

While cognitive architectures provide excellent infras-
tructure for research stretching over various fields, the
integrated nature consisting of multiple modules makes
their evaluation extremely difficult. Due to the lack
of analytical criteria, the cost of general demonstra-
tions, and varying specifications among different ar-
chitectures, deriving any general evaluation methods
is a complicated task. In this paper, we propose a
method for empirical evaluation, using a testbed within
an in-city driving environment. With its familiar but
challenging missions cast in a rich setting, the testbed
provides a uniform and competitive environment for
agents, for evaluation of cognitive architectures that em-
bodied them.

Introduction
Cognitive architectures combine ideas from psychology,
computer science, and other fields, and support research of
general intelligence. They usually incorporate many differ-
ent components that operate in combination to perform rea-
soning and problem solving, and learn new knowledge. For
this reason, they provide excellent infrastructure for there-
search. However, it also makes evaluation of these architec-
tures extremely difficult, partly due to the lack of analyti-
cal criteria and the cost of general demonstrations. In addi-
tion, different architectures have different specifications that
support distinct capabilities, further complicating systematic
evaluation.

Therefore, researchers in this field have mainly focused
on empirical evaluation, based on performance and learn-
ing results of their architectures in several different test do-
mains. Although this provided a way to estimate the capa-
bilities of individual architectures, each group of researchers
uses its own favorite domains, often developed in-house, and
it has been very difficult to compare different architectures
in terms of their capabilities and performance. There have
been some efforts in the literature to resolve this issue, Gen-
eral Game Player (Love et al., 2006) and RoboCup (Kitano
et al., 1997) being excellent examples. However, the for-
mer encodes knowledge in strict logical terms, making its

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

application to physical domains extremely hard. The lat-
ter inherently focuses on physical aspects, but showed its
shortcomings recently as participants tend to concentrateon
details of particulars of the game.

In this paper, we propose a testbed for empirical evalu-
ation that provides a uniform environment to test architec-
tures for physical agents. The testbed also provides a com-
petitive environment that supports side-by-side performance
comparisons. Unlike the General Game Player which pro-
vides puzzle-like games, the testbed is designed specifically
for architectures for physical agents. Also, thanks to the
richness of the driving environment in a downtown setting,
the testbed will allow agent developers to focus on high-level
strategies that are interesting, once the basic driving behav-
iors are programmed properly. In the following sections, we
will review and justify our motivations behind selecting the
environment as our test domain, and provide an overview
of the testbed. Next, we will provide detailed explanations
on various evaluation criteria available. Then we will review
related work and sketch our future plans before we conclude.

Motivations for an In-City Driving Domain
Many people make their living by driving for a variety of
purposes. Some drive to commute, while others do to deliver
packages, or to shuttle around people. Driving takes such
an important part of our life, so we even saw a commercial
for an automobile company that depicted how people’s life
begin with rides to hospitals right before their birth and end
with rides to cemeteries for funerals. On the other hand,
there are rules and common sense to follow in driving, for
example, we only drive on paved or unpaved roads, not into
buildings. Therefore, the domain is very familiar to people
and very rich, but highly constrained.

Our motivation for a simulation of driving comes for this
reason. For driving, there are so many different reasons
and goals, and drivers encounter various situations involv-
ing many objects. In particular, in-city driving tasks require
tremendous amounts of attention to even more factors, when
compared to highway driving or even flying a small aircraft
with much less traffic. Therefore, we chose a simulation of
typical driving situations in downtown as our research do-
main. Here, we have various objects, including pedestrians,
traffic signals, and other vehicles moving in different direc-



Figure 1: A screenshot of the in-city driving domain.

tions, to name a few. A driving agent needs to be attentive
to these objects at all times while still maintaining safe and
legal behavior. However, the domain does not require com-
plicated manipulations, and necessary sensors are relatively
simple.

This is why the in-city driving domain provides an inter-
esting and rich environment to test different capabilitiesof
agent architectures, while still being practical and feasible.
Also, it is a very familiar environment to agent developers
as they encounter similar situations everyday.

A Testbed for Evaluation of Architectures
Previously, we developed a two-dimensional version of an
in-city driving domain, and used it as a testbed for our
ICARUS agent architecture (Langley and Choi, 2006). Al-
though the visualization was not up-to-date to satisfy the
crowd used to three-dimensional games, it provided a rich
environment with various objects an agent can interact with,
including streets with lane lines, sidewalks, buildings with
addresses, traffic signals and drone cars. The agent was
given the task of driving a car in the city, working for goals
like package delivery.

Although the domain provided an excellent testbed for
our initial research purposes, we soon discovered its short-
comings, especially in its description of vehicle dynamics
and the visualization of the environment. In this context,
we started the design and implementation of our new in-city
driving domain.

Implementation
To build this new testbed shown in Figure 1, we usedTorque
Game Engine(TGE), a three-dimensional game engine de-
veloped by GarageGamesR©. It provides convenient and
well-built templates for three-dimensional games, as well
as robust networking capabilities, a C++-like scripting lan-
guage, a terrain generating tool, and other powerful tools
for game developers. Also, the game engine allows us to de-
velop new games in cross-platform computing environments
including Linux, Mac OS X, and Windows.

The game engine provides a ready-made physics module
for vehicles, that not only has realistic default parameters

Table 1: An example of object information an agent receives
in the environment.

((SELF ME SPEED 0.0 WHEELANGLE 0 THROTTLE 0
LIMIT 25 BRAKE 0 SEGMENT S1734 HITS 0)

(STREET FIRST) (STREET SECOND) (STREET B)
(INTERSECTION S1812 STREET B CROSS FIRST
DIST 5.73842)

(SEGMENT S1734 STREET B DIST 88.986)
(SEGMENT S1767 STREET FIRST DIST 19.7416)
(BUILDING B1659 ADDRESS 8 STREET FIRST
C1ANGLE 82.8411 C1DIST 33.6707
C2ANGLE 58.9024 C2DIST 40.6854)

(BUILDING B1682 ADDRESS 1 STREET B
C1ANGLE 45.4169 C1DIST 35.197
C2ANGLE 32.5563 C2DIST 49.2716)

(LANE-LINE WHITE1 COLOR WHITE
DIST 11.65 ANGLE -84.8146 SEGMENT S1767)

(LANE-LINE YELLOW2 COLOR YELLOW
DIST 5.814 ANGLE 4.83383 SEGMENT S1734)

(PACKAGE P1 ADDR 5 STREET A DELIVERED N)
(PACKAGE P2 ADDR 1 STREET B DELIVERED N))

Table 2: Sample actions an agent can execute in the environ-
ment.

(*cruise) : NO OP
(*gas %pedal) : push the gas pedal

at the given amount
(*brake %pedal) : push the brake pedal

at the given amount
(*straighten) : straighten

the steering wheel
(*steer angle) : steer

at the given angle

but also allows user-defined settings. We usedTorqueScript,
a scripting language the game engine provides, for the inter-
face between the new domain and our Lisp-based architec-
ture, as well as several customized mission maps. The lan-
guage supports sufficient complement of functions includ-
ing mathematics, standard input/output, basic object manip-
ulation, and other helper functions. Scripts written in this
language does not need to be compiled with the main game
engine, providing flexibility for many different applications.

Since our simulation is based on TGE, architectures can
directly connect to the testbed in C++ language. However,
the testbed also provides an interface for Lisp-based archi-
tectures. Through the interface, agent architectures can re-
ceive information on perceived objects in the environment,
and execute actions in the world. Table 1 shows an exam-
ple of such perception an agent can get from the world, and
Table 2 gives some sample actions available in the environ-
ment.



Missions Supported
As people experience everyday, an agent in the domain can
be given many different tasks. We can have it simply drive
around without hitting any pedestrians crossing streets, or
give additional tasks including,

• delivering packages to multiple addresses,

• picking up passengers and dropping them off at vari-
ous destinations,

• chasing another car and issuing tickets like cops,

• driving an ambulance to hospitals, or

• joy-riding in a sports car as fast as possible.

These different missions require different parameters like
mass, height, engine torque, and braking capability of the
vehicle an agent will drive, and the testbed supports easy
changes of these parameters through the interface provided.

All of these missions are intended to test capabilities of
agents ranging from sensory-motor control to high-level de-
cision making strategies. Also, some of them may show the
effect of habitual or emotional behaviors in agents, just as
people typically get affected by such factors while driving.

Evaluation Criteria
Anytime an agent is driving in the simulated city, the testbed
stores key variables like the location, velocity, and heading
of the vehicle at predefined intervals. Also, it records the
numbers of mishaps like,

• running over pedestrians,

• collisions with other vehicles and buildings,

• speeding,

• driving on the wrong side of road, and

• traffic signal violations.

During post-processing, the basic driving behavior can be
evaluated using these traces, providing fundamental mea-
sures of the quality of the agent’s driving. In addition, the
testbed supports one or more mission-specific evaluation cri-
teria. Some of these are,

• delivery time and the number of delivery errors,

• time between pick up and drop off and the number of
errors,

• time until the capture of other vehicles and the number
of tickets issued,

• time between pick up and drop off of emergency pa-
tients

• average speed and the number of tickets received.

These criteria are designed to measure how successful the
agent was during the missions in both continuous and dis-
crete scales, providing additional evaluation measures for
architectures.

Related Work
There have been efforts in the literature to provide testbeds
for empirical evaluation of architectures. One of the most
successful is RoboCup (Kitano et al., 1997), that started as
an interesting testbed for artificial intelligence and robotics
research. It has promoted research in these areas and held its
own competitions for a decade. However, as the competition
grow larger, the recent focus has been more towards winning
techniques specific to the game, rather than fundamental re-
search issues that were originally pursued.

The General Game Player (Love et al., 2006) is a more
recent example, that has hosted competitions since 2005.
With its description language in logic, the testbed provides
complete descriptions of games to players, allowing them
to focus on decision making processes. It provides a se-
ries of puzzle-like games that are interesting, but it is diffi-
cult to use when evaluating architectures in physical settings
since it requires complete descriptions for physical simula-
tions that are more complicated and often times even non-
deterministic.

Future Work
Our work is still in its early stage, and we plan to contin-
uously improve the in-city driving domain and cast it as a
uniform testbed many developers can use for evaluation of
their own cognitive architectures in a competitive environ-
ment. There can be many additional features to be imple-
mented, but most important among them may be moving
towards a multiagent setting. Currently the domain supports
single agent missions only, restricting the scope of evalu-
ation. With multiple agents simultaneously running in the
world, possibly controlled by different architectures, more
competitive missions can be introduced. Racing to flags,
hide and seek other agents, and chasing each other are some
examples.

In a more broad sense, we may integrate other physical
domains to provide a variety of games and possibly promote
research for knowledge transfer among them. This will al-
low us to evaluate learning and transfer capabilities of archi-
tectures better. Also, agent developers will benefit from mul-
tiple test domains available through a uniform infrastructure,
by reducing the time and cost of test and evaluation across
different domains.

Conclusions
Cognitive architectures provide an excellent infrastructure
for research, but their integrated characteristics make their
evaluation extremely complicated with analytical methods.
For this reason, we proposed a testbed for empirical evalua-
tion, cast in an in-city driving domain.

The domain is a familiar, but challenging environment for
physical agents. Although it is rich with a lot of objects and
many possible tasks, it is reasonably constrained for research
purpose, with a small set of manipulators and relatively sim-
ple sensors. The domain allows various goal-oriented behav-
iors with many maintenance goals imposed. With multiple
missions and corresponding evaluation criteria available, it



provides an excellent testbed for empirical evaluation of ar-
chitectures. We hope we can package the domain in a more
deliverable fashion, and make it available online in a near
future.

Acknowledgements
Authors would like to thank GarageGames for allowing the
free use of its products, including Torque Game Engine 1.4.2
for Linux, BTCP Car Pack, and Urban Pack 1.0.0 for our
development.

References

Kitano, H. Kuniyoshi, Y. Noda, I. Asada, M. Matsubara,
H. & Osawa, E. (1997). Robocup: A Challenge Problem
for AI. AI Magazine, 18, 73–85.

Langley, P., & Choi, D. (2006). Learning recursive con-
trol programs from problem solving.Journal of Machine
Learning Research, 7, 493–518.

Love, N. C., Hinrichs, T. L., & Genesereth, M. R. (2006).
General Game Playing: Game Description Language
Specification(Technical Report). LG-2006-01.


