An Adaptive Stock Tracker for
Personalized Trading Advice

Jungsoon Yoo
Computer Science Department
Middle Tennessee State University
Murfreesboro, TN 37132 USA

csyoojp@mtsu.edu

ABSTRACT

The Stock Tracker is an adaptive recommendation system
for trading stocks that automatically acquires content-based
models of user preferences to tailor its buy and sell advice.
The system incorporates an efficient algorithm that exploits
the fixed structure of user models and relies on unobtru-
sive data-gathering techniques. In this paper, we describe
our approach to personalized recommendation and its imple-
mentation in this domain. We also discuss experiments that
evaluate the system’s behavior on both human subjects and
synthetic users. The results suggest that the Stock Tracker
can rapidly adapt its advice to different types of users.

Categories and Subject Descriptors

H.5 [Information Systems Applications]: Information
Interfaces and Presentation

General Terms

Design, experimentation, human factors

Keywords

Adaptive user interfaces, machine learning, user modeling,
personalization, information filtering

1. INTRODUCTION

With the advent of the Internet, a wealth of information
awaits anyone within the touch of a few keystrokes. Un-
fortunately, the desired content is often buried in massive
amounts of irrelevant information and each user must cull
through the extraneous material. For example, online bro-
kerage firms now let one check stock prices and make trans-
actions through a Web browser. With all the stocks available
throughout the world, there are more opportunities to make
or lose money, but only if one has the time and energy to
follow those stocks. Tracking tens of thousands of stocks is
beyond the capability of any single user.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1UI’' 03, January 12-15, 2003, Miami, Florida, USA.

Copyright 2003 ACM 1-58113-586-6/03/0001..$5.00.

Melinda Gervasio and Pat Langley
Institute for the Study of Learning and Expertise
2164 Staunton Court, Palo Alto, CA 94306

{gervasio, langley1@isle.org

Information filtering systems address the problem of in-
formation overload by factoring out irrelevant content and
reducing the amount of information that the user must ex-
amine. Such systems could give an investor more opportuni-
ties to examine potentially profitable stocks by eliminating
obviously nonprofitable ones. This task of separating inter-
esting from uninteresting information can be viewed as a
classification task. However, since different people have in-
dividual tastes, information filtering should be personalized.
This can be achieved through user models or profiles that
embody the preferences of a user or group of users. More-
over, such profiles can be learned from traces of interactions
with individual users.

In this paper, we describe the Stock Tracker, an adap-
tive user interface that recommends stocks based on an in-
dividual’s trading profile. The system utilizes this profile
to rank stocks, and it revises the profile based on traces of
user behavior. We have evaluated this prototype experimen-
tally on historical records from the S&P 500 stock market
and obtained positive preliminary results. In the next sec-
tion, we define the stock tracking problem formally. We
then discuss our technical approach, including the overall
system architecture, engineering decisions, and implemen-
tation issues. After this, we present some hypotheses about
the Stock Tracker’s ability to adapt to individual users and
describe the systematic experiments we ran to test them. In
closing, we review related work and consider some directions
for future research.

2. THE PROBLEM OF STOCK TRACKING

Through the Internet, ordinary people can now access nearly
3500 companies that make up the New York Stock Ex-
change, almost 4500 securities in the NASDAQ composite,
and many more stocks are available through various Web
sites. The values of these stocks change continuously, while
news and trading information regarding a company’s finan-
cial status are available instantly. This makes it virtually
impossible for anyone to keep a close watch on more than a
handful of stocks.

Many commercial Web sites partially address this problem
by presenting buy recommendations on a small set of stocks.
However, few of them make complementary sell recommen-
dations, as this would require knowledge of each user’s port-
folio. Furthermore, different traders have different invest-
ment styles, in that some are aggressive risk takers and oth-
ers are more concerned with long-term returns. Existing
sites do not typically cater to such individual preferences.

(R
information Processing
R dati g 5
ecommendation g =
3 = .
o £
User Modeling B £
= e
interaction 5 4] Lser
fraces
Information
—— Management
SERER CLIENT

Figure 1: Architecture for the Stock Tracker.

Our goal is to build an adaptive stock tracking system that
acquires an individualized profile automatically through in-
teraction with a user, then utilizes this profile to generate
personalized trading advice. Adaptive stock tracking can
be viewed as a specialized case of the more generic task of
filtering events in a high-dimensional space. Given many
continuous variables that change over time and online data
for these variables sampled at regular intervals, the infor-
mation filtering task is to find trends or events in the data
that the user will find significant.

What is “significant” depends on the specifics of the prob-
lem domain. For example, if the task involves monitoring
events in a complex assembly plant, a significant event may
be a divergence from planned developments that reveals the
possibility of an accident. Significance can also depend on
the user, which suggests a clear role for personalization. For
instance, depending on a user’s expertise, an information
filtering system might alert the user at different times or
present information at different levels. By automatically
adapting its behavior to individual needs and preferences,
an information filter can further increase its utility as an
assistant in complex temporal domains.

We have built a prototype stock tracking system that
learns personal preferences cast within a decision framework
based on a pure technical analysis [1]. That is, the analy-
sis uses only temporal stock trading data (e.g., stock price,
trade volume), and not any financial information about the
company. Thus, we can state the stock tracking problem
formally as a temporal information filtering task:

Given: A user and his associated profile;
Given: A large set of stocks available to buy and sell;

Given: Online trading information for these stocks collected
at regular intervals; and

Given: Strategies for how to make a trading decision;

Find: A list of trading recommendations in an order that
reflects the user’s priorities.

To make personalized recommendations, the Stock Tracker
relies on user profiles that embody individual preferences.
These profiles are acquired automatically by calling machine
learning techniques on user interaction traces. The system
gathers data unobtrusively, taking advantage of an interface
design that obtains useful information from a user’s natural
interactions. In the next section, we present the details of
our approach to adaptive stock tracking.

3. AN APPROACH TO STOCK TRACKING

To reiterate, the Stock Tracker addresses the problem of
information overload through a personalized approach to
information filtering. By considering personal user prefer-
ences, the system filters trading information in an individu-
alized manner, presenting only information that a user finds
interesting. In this section, we present the details of the
Stock Tracker. After presenting the architecture, we elabo-
rate on the graphical interface, the recommendation module,
and the user modeling component.

3.1 System Architecture

The Stock Tracker is built on a client-server architecture,
with information filtering, record keeping, and adaptation
performed on the server, while the user interface and related
computing are done on the client, as Figure 1 depicts. The
server contains the data processing unit, recommendation
module, user modeler, information manager, and communi-
cation unit. The data processing unit converts raw input
(i.e., current stock readings and historical trading informa-
tion) into reports that contain buy and sell recommenda-
tions for the user. It relies on the recommendation module
to make appropriate suggestions for each stock based on in-
dividual user profiles. The user modeler constructs these
profiles based on user responses to previous recommenda-
tions. The information manager records traces of a user’s
interactions with the system and also keeps track of user
portfolios. Finally, the communication unit manages the
information into and out of the server.

A client contains a communication unit and a graphical
user interface (GUI) component. The communication unit
performs activities that correspond to the server’s communi-
cation unit. Meanwhile, the GUI presents all reports to the
user and accepts commands such as buying/selling stocks
and viewing portfolios, along with requests for additional
financial information on particular companies. The system
simulates trading using historical S&P 500 market data; it
mimics a real stock trading scenario by generating infor-
mation one (simulated) day at a time and letting a trader
decide the stocks, if any, to buy and/or sell on each day.

3.2 Interface for Unobtrusive Data Collection

The Stock Tracker includes a graphical interface, shown in
Figure 2, for presenting stock information, making recom-
mendations, and accepting the user’s trading requests. The
system’s ranked list of recommendations appears in the up-
per left. Details about the highlighted stock are presented
in the interactive graph in the bottom half of the window.
The upper right presents a summary of the current stock,
together with the system’s recommendation and action but-
tons for the user to buy or sell the stock. The user may
also, but need not, provide additional feedback on the rec-
ommendation, such as clicking on “Thank you” to indicate
agreement with a warning or specifying a desired alternative
in the case of an unacceptable recommendation.

Although we have not systematically tested this graphi-
cal interface for usability, we have tried to adhere to known
principles, such as Shneiderman’s [20] eight golden rules of
interface design and Karat’s [7] principles of usability. Since
the system alters its advice based on interactions with the
user, we were also particularly concerned about its meth-
ods for obtaining user feedback. Some approaches to per-
sonalization require users to state their preferences explic-

[Stock Tracker _ O] %]
ow |

WP [§104 Buy

imm| 6275 By J Showe My Portfalio! |

MEDI [§51.88 Buywarning

FEP |§4531 Buy

BMET 337.62 GSell

ADC [§31.44 Buy

EBC |§54.25 Buy

INBR $47.08 Buy
q

Proceedto the next day! |

LI Repart date 12Mm6/2000

BMET : $37.62

Recommendation: Sell Date: 12/06/2000

“What would you like to do?

|_’|LI Buy Nown | e Hown | Thanks for the recommendstion. |

Show stock | dont like your recammendation! |

3925 925
Symbol : BRET

vindow size [short @) =]
#pply the new setting

Legend

closing price

= short W&

— lang b

¥

12,62 | ! I} I [i1

01LO4/2000 O3AT/2000 053152000 08/11/20(00/415/2000 IO

33500 - yolume
233

faﬂdimuaﬁ’niiLﬁi.—‘u..i'i‘l‘uu.‘.iu'l..ﬁuﬁiﬁ%mﬂmm

Top chart shows elosing Price. Bottom chant shows trading Yolume

I.Java Applet Window

Figure 2: Graphical interface of the Stock Tracker.

itly through long questionnaires or indicate directly whether
each recommendation is good or bad. Instead, we prefer un-
obtrusive data collection techniques and have designed the
Stock Tracker’s interface so that it can obtain useful feed-
back through a user’s natural interaction. For example, a
user can provide positive feedback by purchasing a stock
that the system recommends he should buy. By selling the
same stock, the trader gives negative feedback. Because
more explicit feedback is also helpful, we also provide this
facility, but the Stock Tracker can adapt its behavior to users
even without such information.

3.3 Recommending Trading Actions

At the heart of the Stock Tracker are the personalized trad-
ing recommendations that it makes to each user. The system
bases these recommendations on a technical analysis called
Moving Average Convergence Divergence (MACD) [1] that
examines the difference between long-term and short-term
moving averages to identify crossing points. These points in-
dicate market turns and thus correspond to opportunities for
buying or selling stock. Specifically, the time to buy stock
is when both the long-term and short-term averages are in-
creasing and the short-term average has exceeded the long-
term average. Conversely, the time to sell is when the aver-
ages are decreasing and the short-term average has dipped
lower than the long-term average. We compute short-term
averages over nine days and long-term averages over 18 days.
We use MACD because it is a simple technique that is still
popular in stock market analysis.

We convert MACD into decision rules for recommending
five different actions: buy, buy warning, sell, sell warning,
and do nothing. The buy and sell rules correspond directly
to those just described. A buy warning occurs when a recom-
mendation to buy is likely in the near future—that is, both
averages are increasing but the short-term average remains
lower than the long-term average. Similar logic applies to

the sell warning, while all other situations correspond to
do nothing. Although MACD specifies the conditions for
each action, the Stock Tracker must still determine exactly
when to make each recommendation with respect to when
the short-term average crosses the long-term average. Dif-
ferent choices correspond to different risk levels and capture
different preferences about how soon to give buy and sell
warnings. The MACD technique gives, in some sense, ob-
jectively optimal buy and sell recommendations, but our pri-
mary objective in building an information filtering assistant
is to help users make their own decisions more efficiently,
rather than to make decisions for them.

Each decision rule consists of a set of numeric constraints
on temporal stock-trading attributes, such as the rate of
increase in the long-term moving average or the difference
between the long-term and short-term averages. A decision
rule applies when all of its constraints are satisfied—that is,
the value of each corresponding attribute satisfies the con-
straint. For example, we can encode “the long-term average
is increasing” with the constraint (LTA_slope > «). By us-
ing a parameter « instead of zero, we allow for differences in
how much a stock price must be increasing for an individual
to consider it. Thus, while MACD defines the form of the
constraints, the Stock Tracker can alter its recommendation
behavior by incorporating different threshold values.

3.4 Personalizing Stock Recommendation

The Stock Tracker achieves personalized recommendation
through the use of individual user profiles that capture trad-
ing preferences. A profile consists of four binary classifiers,
one for every action other than do nothing, each of which
renders a membership decision on each item (i.e., whether
it is a positive instance of the class). In the Stock Tracker,
each binary classifier embodies a MACD decision rule and
makes a recommendation if its constraints are satisfied. For
each stock, the recommendation module selects the recom-
mendation with the highest associated confidence value, or
do nothing if no classifier recommends an action. This con-
fidence value is then used to present the selected recommen-
dations on different stocks in a ranked list.

The system builds classifiers from training examples ex-
tracted from traces of the user’s interactions. Briefly, the
user can either accept or reject each recommendation. An
acceptance indicates that the recommendation was correct
and is thus a positive example of the corresponding classifier.
Similarly, a rejection produces a negative example. The sys-
tem also uses positive examples for one classifier as negative
examples for others. Although there exist many well-known
supervised induction algorithms, we opted to devise a new,
more efficient algorithm that exploits the fixed structure of
the user model, as Table 1 summarizes.

Recall that each decision rule (classifier) consists of a set
of constraints, each of which corresponds to a particular nu-
meric attribute. Every constraint specifies a threshold on
the attribute value, above (below) which the constraint is
satisfied. The goal of the learning algorithm is thus to find
a set of thresholds that will result in recommendations con-
sistent with the user’s actions. If we order the examples ac-
cording to increasing attribute values, we can evaluate can-
didate thresholds for a > constraint based on how well they
predict positive examples above the threshold and negative
examples below it, and similarly for < constraints. Also,
since the constraints form a conjunctive set of conditions,

Table 1: Learning algorithm for the Stock Tracker

Learn(examples)
For each classifier in {buy,buy warning,sell,sell warning}:
LearnOne(classifier, examples, classifier’s constraints)

LearnOne(classifier, examples, constraints)

e Sort examples in increasing order according to the at-
tribute value of the next constraint in constraints.

e Identify threshold candidates for splitting the examples
into positive and negative regions.

e Set constraint threshold of classifier to the best split
among candidates based on Evaluate(ezamples, split).

e LearnOne(classifier, Subset(ezamples, split), remain-
ing constraints).

thresholds for remaining constraints need only be consid-
ered for examples in the region that satisfies the constraint.
We tried a variety of methods for evaluating candidate
splits, including information gain and various metrics based
on precision and recall, which are often used to evaluate in-
formation retrieval systems. We found the F measure [14],
a weighted combination of precision and recall, to provide
the best behavior. Precision indicates the probability that a
positive instance labeled as positive by the classifier is truly
positive, whereas recall gives the probability of correctly
identifying all positive instances. In our case, precision is
the number of positive examples in the correct partition di-
vided by the number of instances in that partition, while
recall is the number of positive instances in the correct par-
tition divided by the number of positives in both partitions.
A primary motivation for the development of an efficient
algorithm is that learning is conducted online; that is, af-
ter every interaction with the user that yields positive or
negative examples, the user modeler updates the user pro-
file. This lets the Stock Tracker adapt quickly to individual
traders. To give the system a reasonable starting point, we
employ a default model, corresponding to the profile of an
average user, that it induces from a default training set that
represents feedback from such a user. By attaching a weight
to these default cases, we can vary the degree to which the
system relies on them during its model construction.

4. EXPERIMENTAL EVALUATION

Our goal in developing the Stock Tracker was to help users
identify more quickly stocks to buy or sell based on their
individual interests. By adapting its model of the user’s
trading preferences based on interaction traces, the system
tailors its recommendations. As the Stock Tracker gains
experience with a user, it should become better at recom-
mending actions that he will accept. Here, we describe the
results of experiments conducted with human and synthetic
subjects that we designed to test this primary hypothesis.

4.1 An Experiment with Human Subjects

The basic question we want to answer is whether the Stock
Tracker can adapt its recommendations to different users.
We can evaluate the system’s performance by measuring
its success in recommending trading actions about various
stocks that users find acceptable. Specifically, for each indi-
vidual, we can measure the percentage of times he accepts

the system’s recommendations, with higher percentages cor-
responding to better performance. We can also measure the
time taken to complete transactions. If the Stock Tracker
makes good recommendations and ranks them highly, the
user should execute his transactions rapidly. Thus, we ex-
pected the acceptance rate for a given user would gradually
increase while the time per transaction would decrease.

To test this hypothesis, we conducted an experiment with
twelve human users who had various levels of stock trading
expertise. The subjects attended a brief orientation session
to learn how to use the system, and we asked them to com-
plete one practice session to familiarize themselves with its
operation. The study simulated daily trading based on 2001
S&P data, with each subject interacting with the system for
at least 50 transactions or suggestions, but having the op-
tion to finish the experiment over multiple sessions. Each
user began the study with $20,000 in his portfolio, roughly
half of which was already invested in selected stocks. As the
subject interacted with the Stock Tracker, we measured the
time taken to complete each transaction and the acceptance
rate, that is, the number of user actions matching the rec-
ommendations divided by the total number of such actions.

Figure 3 shows the acceptance rate as a function of the
number of user actions (i.e., training cases). At first glance,
the results are somewhat surprising, in that they show an
initial decrease in acceptance rate followed by an increase.
They are also somewhat disappointing, with the final ac-
ceptance rate not going much higher than the initial level.
However, analysis of user traces and interviews with subjects
suggested that the initial acceptance rate was artificially in-
flated because new users tended to focus on expanding their
portfolio, basically ignoring the initial one provided. They
did this mainly by selecting from the Stock Tracker’s buy
recommendations, which produced the high initial accep-
tance rate. However, as users began to monitor these stocks,
they also started making transactions that differed from the
system’s recommendations, decreasing the acceptance rate.
But as the Stock Tracker gained experience with the user’s
preferences, it began making recommendations they found
acceptable, increasing the score again.

Figure 4 also shows the average amount of time spent on
each transaction as a function of the number of user actions,
which decreases early on but then levels out. We suspect
that this trend is due partly to users becoming more effec-
tive at interacting with the Stock Tracker as they gained
experience with it, despite their practice before we began
collecting trace data. However, the reduction in transac-
tion time is also consistent with the view that the system’s
adaptation to users improved its ability to rank acceptable
recommendations more highly, thus reducing users’ effort at
finding stocks to buy or sell.

4.2 An Experiment with Synthetic Subjects

The experimental results just described are somewhat am-
biguous, and interviews of subjects revealed they often had
trouble understanding how to proceed during their early in-
teractions with the Stock Tracker. Thus, it seems likely that
the effects of the system’s adaptation to inexperienced users
were confounded with those subjects learning simultane-
ously about the investment process themselves. In contrast,
we designed the Stock Tracker for knowledgeable traders
who have clear preferences about the stocks in which they
prefer to invest.

B | -» * oy
E o5 ﬂ % + ¥
(=]
g »
. *
x

oz 4

o T T T T

o 10 pran | q 0 =0

Mumber of uzer actions

Figure 3: Performance of Stock Tracker with human
subjects in terms of acceptance rate.

One response would be to repeat our experiment with a
more experienced population of users, but we had no ready
access to such a subject pool. Moreover, as both Drum-
mond et al. [6] and Gervasio et al. [7] have argued, synthetic
subjects offer advantages over human users in that they let
one eliminate improvement due to learning by subjects and
they generally make it easier to run carefully controlled and
repeatable experiments. Thus, we decided to construct a
set of such synthetic users to serve as subjects in a second
experimental study.

As before, we wanted to determine whether the Stock
Tracker can tailor its recommendations to individual users.
Recall that the system constructs user models of a fixed
form based on the MACD technical analysis. By varying the
threshold parameters in the model, we can effectively create
users with different investment styles. We can interpret the
actions that a given model predicts as the actions made by
the corresponding synthetic user. As in the previous experi-
ment, we utilized acceptance rate as the dependent variable
to measure success, and we predicted that this performance
measure would increase as the Stock Tracker gained expe-
rience with each subject. However, our synthetic users did
not attempt to mimic latency in making a selection, so we
did not measure transaction time in this study.

To test our hypothesis about acceptance rate, our exper-
iment included 200 synthetic investors sampled from a uni-
form distribution that ranged from very conservative to very
aggressive. We repeated the previous experimental setup by
testing each user in a simulated online fashion on 2001 S&P
data. We started each user at a randomly chosen date from
the first 50 days of the year and with the same initial port-
folio. We initialized each user model with a default training
set, as described earlier. For each day, the Stock Tracker
used the current model for a given user to generate a list of
recommended transactions, ordered by their associated con-
fidence value. We filtered the list to exclude any sell or sell
warning recommendations for stocks the user did not own.
To simulate regular user behavior, we then randomly picked
for evaluation five of the top ten recommendations plus one

Time (n seconds)

o 10 o 1) 0 =0

Mumber of user actions

Figure 4: Performance of Stock Tracker with human
subjects in terms of time spent on each transaction.

other from the rest of the list. We then compared the rec-
ommendations of the current model on these stocks to the
user’s actions (as predicted by the synthetic user model).
As before, we measured the system’s acceptance rate as the
number of matches divided by the total number of actions.
Finally, the Stock Tracker updated its model based on the
user’s actions in preparation for the next day. For each
user, we also ran a control condition where no adaptation
occurred, in that user interaction did not modify the model.

Figure 5 shows the Stock Tracker’s acceptance rate as a
function of the number of user actions, averaged over the 200
users. The graph shows that the adaptive version achieves
an acceptance rate of about 98% after fewer than 30 user
actions (i.e., training examples). In contrast, without learn-
ing, the acceptance rate was only about 88%.! These re-
sults with synthetic subjects support our hypothesis that
the Stock tracker can successfully adapt to experienced in-
vestors with different trading preferences.

4.3 An Experiment with Default Models

As we have explained, the Stock Tracker initializes user mod-
els with a default training set. This is primarily to provide
reasonable recommendations even for a new user. However,
this reliance on a default model can also affect the Stock
Tracker’s ability to adapt to users. A crucial issue with
adaptive interfaces, particularly ones that learn online, is
rapid adaptation from few interactions. Thus, it is impor-
tant that a default model provide good initial advice without
sacrificing the ability to learn individual preferences quickly.

Three questions arise with respect to default models for
stock tracking. The first concerns the trading strategy that
it should embody. Preliminary studies suggested that a
moderate model (i.e., neither too conservative nor too ag-
gressive) offered the best tradeoff between recommendations

The slight upward trend for the nonadaptive condition sug-
gests that the actions for the stock trading situations later
in the year were easier to predict for the default model. This
could be because the latter part of the year was more similar
to the 2000 S&P data on which we based this model.

100

A AR

95 4 ¥

' ;lu

Y |l | w o
X 1w " \..nt lIu:‘

E":I_l'l" l' ': W o

1

g3

Acceptance rat

g0

75 4 Leaming ==*=-=" Mo leaming

7o T T T T T
] 20 40 &0 g0 100

Mumberof user actions

Figure 5: Acceptance rate for Stock Tracker recom-
mendations with and without learning.

the user would accept and those he would reject, thus giving
useful feedback for updating the model. The second issue
involves the size of the training set used to construct the de-
fault model. We settled on 200 training cases after prelimi-
nary experiments showed that this number offers reasonable
initial advice for different types of users.

A third question, which we set out to answer more for-
mally, concerns the appropriate weight placed on the default
training set. Smaller weights give more importance to the
data generated by user interaction; for example, a default
weight of 0.1 means that it takes ten default examples to
have the same effect as one example based on a user action.
For different weight settings, we care about the initial accep-
tance rate, the asymptotic acceptance rate, and the speed
of convergence. We predicted that an intermediate weight
on the default model would give the best tradeoff between
initial acceptance rate and rapid adaptation.

To test this hypothesis, we created a default training set
using 200 randomly chosen instances from the 2000 S&P
data, which we labeled with the predictions of a moder-
ate synthetic user. We then ran an experiment with 200
synthetic users, in a simulated online fashion on 2001 S&P
data, as in the previous study. We examined three different
weights for the default model — 1.0, 0.1, and 0.01 — which
produced the results in Figure 6. As expected, the interme-
diate weight (0.1) gave a better balance between initial and
asymptotic behavior than did the high weight (1.0). How-
ever, the low weight (0.01) produced a very similar learning
curve to the intermediate condition, which we did not antici-
pate, suggesting the Stock Tracker’s behavior is less sensitive
to this parameter than predicted.?

5. RELATED AND FUTURE WORK

Much of the research on adaptive information filtering has
focused on document retrieval or text categorization, espe-
cially for applications related to the Internet such as Web
browsing [2,15], e-mail processing [18], and news reading
[4,11]. Unlike the problems that have been tackled by these

2Because it produced reasonable behavior, we relied on the
intermediate setting in the experiment on synthetic and hu-
man users reported earlier in the section.

100

951 + .4 *\"L. n.,
o, ";f‘“ 'ﬁ-h‘”) ‘:K\ ih I
o] [t S)
\i.l" "J‘II‘;T?

83 1

Acceptance rate

50 4

75 4 0.01 O smimmamd

?EI T T T T T
0 20 40 G0 30 100

Mumber of user actions

Figure 6: Acceptance rate for Stock Tracker recom-
mendations with different default model weights.

approaches, stock tracking is a temporally sensitive task that
requires the continuous monitoring of numeric variables to
detect trends or changes over time. This requires identifying
features that capture these trends and employing techniques
to gather such information for the user. Perhaps the clos-
est work in text filtering comes from Languillon [13], who
studies the problem of changing content, but his task still
involves filtering static documents, rather than items like
stocks that are themselves changing over time.

Machine learning approaches to personalized recommen-
dation are often divided into two broad classes. Collabo-
rative approaches [11,19] make recommendations based on
user similarity as evidenced by their item ratings, whereas
content-based approaches [12] make recommendations based
on item similarity as evidenced by their content descriptions.
Collaborative methods perform well when there is substan-
tial overlap between the users and the items they have rated,
but fare less well for users with idiosyncratic behavior and
on items for which few ratings exist. Content-based ap-
proaches like the Stock Tracker do not suffer from these
limitations, as they learn individual preferences over item
attributes. However, they require content descriptions for
items and thus are better suited to domains where such in-
formation is available. Research on combining collaborative
and content-based techniques [2,3] attempts to address the
limitations of each and could prove useful in our domain.

Early systems for personalized recommendation often im-
posed a significant burden on users to provide explicit feed-
back on system advice. More recent work has proposed so-
lutions ranging from asking the user to rate the most in-
formative items [16], using synthetic users to augment the
user pool [17], and using implicit feedback to approximate
explicit ratings [5,9]. Rather than use low-level events such
as mouse and keyboard tracking to indicate interest or ap-
proval, the Stock Tracker relies on the implicit feedback
[4,7,12] that comes naturally in the course of the user in-
teracting with the system—accepting recommendations to
buy or sell stocks, or executing alternative actions.

The experimental results presented in the previous section
provide evidence that the Stock Tracker’s can adapt rapidly
to users with different investment styles. However, there re-
main additional issues to investigate. We should replicate

the study on experienced synthetic users with human sub-
jects, ensuring that users have a reasonable knowledge of
trading. Additional studies with human subjects should ex-
amine whether user models based on the MACD framework
are sufficient to capture preferences across a wide range of
users. We can easily replace the profiles utilized in the Stock
Tracker’s modeling component with any one of the many
technical analysis methods available [1]. We can also design
synthetic users for alternative model types and evaluate the
Stock Tracker’s ability to adapt to them.

An additional open question concerns how to encode and
acquire more complex models. One approach would impose
a hierarchy over the available stocks, such as that defined in
the Global Industry Classification Standard [8]. We could
extend the Stock Tracker to adapt to users’ preferences for
each node in the hierarchy. This approach would capture
user preferences for different types of stocks, such as those
for software companies vs. automobile companies, but prob-
ably at the expense of a slower learning rate than for a sim-
pler user model.

In summary, the Adaptive Stock Tracker is an informa-
tion filtering system that rapidly tailors its trading recom-
mendations to users with different investment styles. The
advisor does this by acquiring a model of user preferences
automatically from traces of user interactions, utilizing an
efficient algorithm that exploits the fixed structure of the
user model. The Stock Tracker does not require users to
fill in lengthy questionnaires about their preferences or to
provide detailed feedback about its recommendations. In-
stead, it collects traces in an unobtrusive manner and ex-
tracts training instances from its natural interaction with
the user. Experimental results with both human and syn-
thetic subjects provide support for this approach, suggesting
that the Stock Tracker learns to make increasingly accept-
able recommendations as it interacts with individual users.

ACKNOWLEDGEMENTS

The research reported in this paper was supported in part
by Grant NCC 2-1220 from NASA Ames Research Center.
We thank Stephanie Sage and Daniel Shapiro for their con-
tributions to the formulation of the problem.

REFERENCES

[1] S.B. Achelis. Technical Analysis From A To Z. Probus
Publishing, Chicago, 1995.

[2] M. Balabanovic and Y. Shoham. Fab: Content-based
collaborative recommendation. Communications of the
ACM, 40(3): 88-89, 1997.

[3] C. Basu, H. Hirsh, and W. Cohen. Recommendation as
classification: Using social and content-based informa-
tion in recommendation. Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages
714-720, 1998.

[4] D. Billsus and M. Pazzani. A personal news agent that
talks, learns and explains. Proceedings of the Fifth In-
ternational Conference on Autonomous Agents, pages
268-275, 2001.

[5] M. Claypool, P. Le, M. Wased, and D. Brown. Im-
plicit interest indicators. Proceedings of the Interna-
tional Conference on Intelligent User Interfaces, pages
33-40, 2001.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

C. Drummond, R. Holte, and D. Ionescu. Accelerat-
ing browsing by automatically inferring a user’s search
goal. Proceedings of the Eighth Knowledge-Based Soft-
ware Engineering Conference, pages 160-167, 1993.
M. T. Gervasio, W. Iba, and P. Langley. Learning user
evaluation functions for adaptive scheduling assistance.
Proceedings of the Sizteenth International Conference
on Machine Learning, pages 152-161, 1999.

Global Industry Classification Standard. Available at
http://www.spglobal.com/GICSIndexDocument.PDF.
J. Goecks and J. Shavlik. Learning users’ interests by
unobtrusively observing their normal behavior. Pro-
ceedings of the Fourth International Conference on Au-
tonomous Agents, pages 129-132, 2000.

J. Karat. Evolving the scope of user-centered design.
Communications of the ACM, 40(7): 33-38, 1997.

J. Konstan, B. Miller, D. Maltz., J. Herlocker, L. Gor-
don, and J. Riedl. GroupLens: Applying collaborative
filtering to usenet news. Communications of the ACM,
40(3): 77-87, 1997.

P. Langley. User modeling in adaptive interfaces. Pro-
ceedings of the Seventh International Conference on
User Modeling, pages 357-370, 1999.

C. Lanquillon. Information filtering in changing do-
mains. Proceedings of the Workshop on Machine Learn-
ing for Information Filtering, pages 41-48, 1999.

D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka.
Training algorithms for linear text classifiers. Proceed-
ings of the Nineteenth International Conference on Re-
search and Development in Information Retrieval ,pages
298-306, 1996.

H. Lieberman. Letizia: An agent that assists Web
browsing. Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence pages 924—
929, 1995.

A. M. Rashid, I. Albert, D. Cosley, S. Lam, S. M. Mc-
Nee, J. A. Konstan, and J. Riedl. Getting to know
you: Learning new user preferences in recommender
systems. Proceedings of the International Conference
on Intelligent User Interfaces, pages 127134, 2002.
B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker,
B. Miller, and J. Riedl. Using filtering agents to im-
prove prediction quality in the GroupLens research col-
laborative filtering system. Proceedings of the ACM
Conference on Computer Supported Cooperative Work,
pages 345-354, 1998.

R. Segal and J. Kephart. MailCat: An intelligent assis-
tant for organizing e-mail. Proceedings of the Third In-
ternational Conference on Autonomous Agents, pages
276282, 1999.

U. Shardanand and P. Maes. Social information fil-
tering: Algorithms for automating ‘word of mouth’.
Proceedings of Conference on Human Factors in Com-
puting Systems, pages 210-217, 1995.

B. Shneiderman. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction, Third
edition. Addison-Wesley, Reading, MA, 1998.

