
Using Background Knowledge to Speed
Reinforcement Learning in Physical Agents

Daniel Shapiro
Department of Management
Science and Engineering

Stanford University
Stanford, CA  94305

dgs@stanford.edu

Pat Langley
Institute for the Study of
Learning  and Expertise

2164 Staunton Court
Palo Alto, CA 94306
langley@isle.org

Ross Shachter
Department of Management
Science and Engineering

Stanford University
Stanford, CA  94305

shachter@stanford.edu

ABSTRACT
This paper describes Icarus, an agent architecture that embeds a
hierarchical reinforcement learning algorithm within a
language for specifying agent behavior. An Icarus program
expresses an approximately correct theory about how to behave
with options at varying levels of detail, while the Icarus agent
determines the best options by learning from experience.  We
describe Icarus and its learning algorithm, then report on two
experiments in a vehicle control domain.  The first examines the
benefit of new distinctions about state, whereas the second
explores the impact of added plan structure.  We show that
background knowledge increases learning rate and asymptotic
performance, and decreases plan size by three orders of
magnitude, relative to the typical formulation of the learning
problem in our test domain.

Categories and Subject Descriptors
1.2.4 Knowledge representation formalisms and methods.
1.2.6  Learning. 

General Terms
Algorithms, performance, design, experimentation, languages.

Keywords
Adaptation and learning, agent architectures, action selection
and planning, hierarchical reinforcement learning.

1. INTRODUCTION
Artificial agents are technological artifacts that perform tasks
for people.   They sense their world and relate perceptions to
their tasks in order to identify, and then apply, an appropriate
response.  In general, we want to build agents that operate in
uncontrolled environments yet perform increasingly important
and complex functions outside of human supervision.  This
requires sophisticated representations for encoding domain
knowledge as well as a practical capacity to learn action
policies from experience. 

While current agent architectures supply methods of encoding
domain knowledge, current policy learning techniques have

no means to adequately exploit this information.  For example,
reinforcement learning has focused on the use of ‘flat’
situation-action maps that present all feasible options to the
agent in all known situations.  Recent work in hierarchical
reinforcement learning improves on this situation by learning
in the context of structured plans, but the emphasis is still on
algorithm development as opposed to practical agent design.

This paper provides a general method of merging policy
learning with behavior specification.  In particular, we
describe an agent architecture called Icarus that embeds an
algorithm for hierarchical reinforcement learning within a
programming language for composing agent-held action plans.
Icarus supports a novel development process in which the
programmer writes an approximately correct plan that includes
options at varying levels of detail, the agent isolates the best
options by learning from experience, and the user supplies an
appropriate reward function. Since the user can create many
distinct agents by defining different targets of optimization,
while the programmer encodes a single set of domain skills, we
say that Icarus supports "programming by reward".

Icarus has the potential to impact the fields of computational
learning and agent architectures because it combines ideas from
both areas.  In particular, the ability to learn should increase
agent autonomy, while the ability to incorporate domain
knowledge should increase the efficiency of learning.  We
report on two experiments in an automotive control domain
that compare our work to a standard reinforcement learning
design, and we show that background knowledge increases
learning rate and asymptotic performance while profoundly
decreasing plan size.

We introduce the Icarus language in Section 2 and its
embedded learning algorithm in Section 3.  After this, Section
4 motivates our experimental work and introduces our
automotive test domain, while Sections 5 and 6 discuss our
experiments to measure the impact of abstraction quality on
learning and plan structure on learning.  We review relevant
work in Section 7 and offer concluding remarks in Section 8.

2. THE ICARUS LANGUAGE
Icarus provides a language for specifying the behavior of
artificial agents that learn.  Its structure is dually motivated by
the desire to build practical agent applications and the desire
to supply a behavioral guarantee based on a convergent
learning algorithm.   In particular, the need to solve complex
problems argues for the use of powerful representations, while
the desire for convergent learning suggests a simpler format
that offers a clear mapping into the Markov decision process
(MDP) model.  MDPs provide a conceptual framework for
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developing algorithms, and mathematical properties useful for
convergence proofs.  We resolve this tension by casting Icarus
as a reactive computing language.

Reactive languages are tools for specifying highly contingent
agent behavior.  They supply a representation for expressing
plans, together with an interpreter for evaluating plans that
employs a repetitive sense-think-act loop.  This iterative
interpretation provides adaptive response; it lets an agent
retrieve a relevant action even if the world changes from one
cycle of the interpreter to the next. 

Reactive languages offer a spectrum of vocabularies for
expressing plans.  This includes combinational logic [1],
directed graphs [8], prioritized procedures [3], ordered
production rules [14], and goal structures with preconditions
[17].  Reactive languages also support different degrees of
adaptive response.   Some embed reaction in an overall schema
for sequential behavior, while extremely reactive languages
make no commitment to control flow (because their interpreters
let the world change from one state to any other recognized by
the plan in exactly one time step).  This format is very similar in
spirit to an MDP, since both employ an iterated situation-
response loop and both allow arbitrary transitions with no
memory of past state.

Icarus is an instance of an extremely reactive language.  It
shares the logical orientation of teleoreactive trees [14] and
universal plans [17], but adds vocabulary for expressing
hierarchical intent, as well as tools for problem decomposition
found in more general-purpose programming languages.  For
example, Icarus supports function call, parameter passing,
Prolog-like variable binding, pattern matching on facts,
conditional control flow, and recursion.

An Icarus plan contains up to three elements: an objective, a
set of requirements (or preconditions), and a set of alternate
means (or methods for achieving objectives), as illustrated in
Figure 1.  Each of these can be instantiated by further Icarus
plans, creating a logical hierarchy that terminates with calls to
primitive actions or sensors.  Icarus evaluates these fields in a
situation-dependent order, beginning with the objective field. 
If the objective is already true in the world, evaluation
succeeds and nothing further needs to be done.  If the objective
is false, the interpreter examines the requirements field to
determine if the preconditions for action have been met.  If the
objective is false and the requirements are true, evaluation
progresses to the means field, which contains alternate
methods (primitive actions or subplans) for accomplishing the
objective. The means field is the locus of all value-based choice
in Icarus, since the objectives and requirements contain no
options.  Icarus learns to select the action or subplan that
promises the largest expected reward.  Shapiro [20] provides a
more complete description of the Icarus language.

Table 1 illustrates the top-level elements of an Icarus plan for
freeway driving.  It contains an ordered set of objectives
implemented as further subplans.  Icarus repetitively processes
this plan, starting with its first statement every execution
cycle.  The interpreter employs a three-valued semantics, where
every statement in the language evaluates to one of True, False,
or an Action. ‘True’ means the statement was true in the world,
‘False’ means the plan did not apply, and an ‘Action’ return
identifies a piece of code for controlling actuators that
addresses the objectives of the plan.

The first clause in Table 1 defines a reaction to an impending
collision.  If this context applies, Icarus returns the emergency-

brake action for application in the world.   If emergency
braking is not required, evaluation proceeds to the second
clause, which specifies a plan for reacting to trouble ahead,
defined as a car travelling slower than the agent in the agent’s
own lane.  This subplan contains options, as shown in Table 2.
Here, the agent can move one lane to the left, move right, slow
down, or cruise at its current speed and lane, but the plan does
not include the option to speed up.   Icarus makes a selection
based on the long-term expected reward of each alternative.  

If there is no imminent collision or trouble in front, Icarus
examines the third clause of Table 1, which invokes a goal-
driven subplan for bringing the agent to its target speed.  This
subplan causes the agent to speed up if it is traveling too slow
or slow down if it is moving too fast, but it evaluates to ‘True’
if the agent is currently traveling at its target speed.  (Note that
the fields in an Icarus plan contain default values: False for the
:objective, True for :requires, and False for the :means field.)

If the first three clauses in Table 1 are True, Icarus examines the
fourth clause, a subplan for reacting to a faster car behind.   This
subplan (not shown) also contains options; it lets the agent
move over or simply ignore the vehicle behind and cruise.
Finally, if there is no cause to emergency brake, no trouble
ahead, the agent is at its target speed, and there is no trouble
behind, the fifth clause always returns an action.  This causes
the agent to cruise in its current lane at its current speed.

Since Icarus plans contain choice points, the interpreter needs
a method of selecting the right option to pursue.   In particular,
we would like to know the total benefit (as opposed to the
immediate return) for making a given choice on the current time
step, so that the agent can maximize its prospective future
reward.  Icarus provides this capability by associating a value
estimate with each Icarus plan.  This number represents the
expected future discounted reward stream for choosing a
primitive action or subplan on the current execution cycle and
following the policy (being learned) thereafter.  Icarus
computes this expected value using a linear function of current
observations.  For example, avoid-trouble-ahead (Table 2)
defines several parameters solely for the purpose of value
estimation; the data are not required to execute any of the
routines in its :means field.

The estimation architecture addresses an interesting tension in
information needs.   On one hand, the value of a plan clearly
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Figure 1.  The structure of an Icarus plan.

Table 1. The top level of an Icarus freeway-driving plan.

(drive ()
  :objective
   ((*not* (emergency-brake))
    (*not* (avoid-trouble-ahead))
    (get-to-target-speed)
    (*not* (avoid-trouble-behind))

      (cruise)))



depends upon its context; the future of ‘decelerate’ is very
different if the car in front is close or far.  On the other hand, the
cardinal rule of good programming is  "hide information".  We
should not force Icarus programmers to define subplans with a
suite of value-laden parameters that are irrelevant to performing
the task at hand.  Our solution is to inherit context-setting
parameters down the calling tree.  Thus, avoid-trouble-ahead
measures the distance to the car in front, and Icarus implicitly
passes that parameter to the decelerate action several levels
deeper in the calling tree.  The programmer writes Icarus code
in the usual fashion, without concern for this implicit data.

3. THE SHARSHA ALGORITHM
Icarus contains an algorithm for learning the best decision to
make at each choice point in the plan.  In general terms, this is
the problem of optimal control; we want choose actions that
maximize an objective function by influencing the trajectory of
a dynamic system.  In reinforcement learning, the actions are
constrained to come from a conditional plan, the system
evolves stochastically, and the objective is to maximize (or
improve) an expected reward stream, most often a future
discounted sum of in-period rewards. Reinforcement learning
typically treats the system dynamics as unknown.  Moreover,
‘model-free’ methods never even attempt to determine an
explicit probabilistic mapping between states.  Instead, they
learn a direct map from action to the expected reward stream.
This approach requires search over the space of possible
sequences of control actions.   Many reinforcement learning
algorithms can discover an optimal policy via a search of this
kind, given special problem structure. Kaelbling, Littman, and
Moore [9] provide an excellent survey of such techniques,
including both policy-space and value iteration methods.

SHARSHA is a reinforcement learning method mated to Icarus
plans.  It is a model-free, on-line technique that determines an
optimal control policy by exploring a single, infinitely long
trajectory of states and actions.  SHARSHA (for State
Hierarchy, Action, Reward, State Hierarchy, Action) adds a
sense of hierarchical intent to an earlier method called SARSA
(for State, Action, Reward, State, Action).

The well-known SARSA algorithm operates on state-action
pairs.  It learns an estimate for the value of taking a given
action in a given state by sampling its future trajectory.
SARSA repeats the following steps:

• Select and apply an action in the current state;

• Measure the in-period reward;

• Observe the subsequent state and commit to an action in
that state; and

• Update the estimate for the starting state-action pair,
using its current value, the current reward, and the
estimate associated with the destination pair.

In other words, SARSA bootstraps; it updates value estimates
with other estimates, grounding the process in a real reward
signal. Singh, Jaakola, Littman, and Szepesvari [21] have
recently shown that SARSA converges to the optimal policy
and the correct values for the future discounted reward stream.
The proof imposed common Markov assumptions, required an
exact (tabular) representation of the true reward function, and
allowed a range of action selection policies that guaranteed
sufficient exploration of apparently sub-optimal choices.

SHARSHA adapts SARSA to plans with a hierarchical model
of intent. In particular, it operates on stacks of state-action
pairs, where each pair corresponds to an Icarus function
(encoding a plan to pursue a course of action in a given
situation), as depicted in Figure 2.  For example, at time 1 an
Icarus agent might accelerate to reach its target speed in order
to drive, while at time 2 it might brake in order to avoid
trouble as part of the same driving skill. SHARSHA employs
the SARSA inner loop with slight modifications: where
SARSA observes the current state, SHARSHA observes the
calling hierarchy, and where SARSA updates the current state,
SHARSHA updates the estimates for each function in the
calling stack.  The second difference is that SHARSHA’s
update operator inputs the current estimate, the reward signal,
and the estimate associated with the primitive action on the
next execution cycle.  In principle, this primitive carries the
best estimate because it is based on the most informed picture
of world state built while descending the tree. 

We have proven SHARSHA’s convergence properties
elsewhere [19].  Our implementation adds practical features
that go beyond the proof, such as eligibility lists to speed
learning and linear value approximation functions to increase
the method’s generality in place of tabular forms.  This version
of SHARSHA learns the coefficients of these linear mappings
from delayed reward.

4. THE FREEWAY DRIVING DOMAIN
While an Icarus agent will learn an optimal policy given
appropriate assumptions about the domain, we need empirical
studies to establish the system’s behavior in practice.  In
particular, Icarus supplies a novel capacity to incorporate
domain knowledge into learning, and we would like to know
its effect relative to a standard reinforcement learning design
(like SARSA).

We used a freeway driving domain to conduct empirical tests. 
This environment consists of a simulator (written in C)
together with an agent program (written in Icarus) that pilots

Figure 2.  A comparison of Sarsa and Sharsha.
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Drive
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Table 2.   An Icarus plan with alternate subplans.

(avoid-trouble-ahead ()
 :requires
  ((bind ?c {car-ahead-center })

    {> {velocity } {velocity ?c }}
    (bind ?tti  {time-to-impact })
    (bind ?rd  {distance-ahead })
    (bind ?rt {- {target-speed } {velocity }})
    (bind ?art {abs ?rt }))
  :means
   ((safe-cruise ?tti ?rd ?art)
    (safe-slow-down ?tti ?rd ?rt)
    (move-left ?art)
    (move-right ?art)))

R(t)



one of several hundred simulated cars.  The cars live on an
endless loop freeway that contains three lanes, but no
entrances or exits.   The traffic density is light.  Each car has a
target velocity drawn from a normal distribution with µ = 60
and σ = 8 mph.   With the exception of the one "smart" car that is
capable of learning, every vehicle in the simulation determines
its maneuvers by one of two fixed situation-action maps.  All of
them will change lanes to maintain their target speed, but
roughly half will also move over to let a faster car pass.

 The Icarus program controlling the smart car can sense its own
target speed (fixed at 62 mph), the presence and relative
velocity of six surrounding cars (ahead left, behind left, ahead
right, behind right, ahead center and behind center), the
distance to the car ahead center and behind center, and whether
it is possible to change lanes to the left or right without
colliding with another vehicle.  There are six primitive actions:
speed up by two mph, slow down by two, cruise at the current
speed, change lane to the left, change lane to the right, and
emergency brake.  The last action instantaneously slows the
car to two mph below the speed of any car in front, or to zero
mph, whichever is greater. 

We used the same reward function for all experiments in this
paper.  It is a piecewise linear function that mediates between
the desires to maintain safety and target speed: 

R(t) =  min(0, 10 TimeToImpactAhead – 1000)
         + min(0, 10 TimeToImpactBehind – 1000)          (1)
         + 10 |TargetSpeed – Velocity|

The freeway driving domain has several motivating features.
First, it is familiar, which means that we can bring our
intuitions to bear in generating and evaluating results.  The
task is also complex enough to support multiple control
strategies.  This makes it interesting from the perspective of
computational learning.  Next, we express personality in our
driving, and this research develops a method of evolving such
stylized controllers.  Freeway driving is also a physical
domain of the kind addressed by the Icarus architecture, and its
complexity is appropriate for a research study.  Finally, driving
is relevant to people’s lives (perhaps too relevant for some).

5. EFFECTS OF STATE ABSTRACTION
Our first experiment focused on the use of hierarchical reactive
skills to specify action on the basis of partial state information.
This capability is absent or unrecognized in most
reinforcement learning designs, which treat a full diagnosis of
world state as an implicitly available input. Our intuition
(following good decision-theoretic principle) is that an
increased appreciation of state will produce higher quality

decisions. However, more distinctions imply a larger state
space, making the optimal policy harder to find.  This suggests
a tension between learning rate and eventual performance.

We examined this topic by controlling the number of questions
the agent can ask about its environment before it acts.  To do
so, we defined an Icarus plan that determines if the agent is
above or below its own target speed and if the surrounding six
cars are present or absent. After each observation, the plan
offers the agent the option to slow down, speed up, cruise, or
change lane to the left or right  (if those actions are feasible).
We define cognitive resource, w, as the probability of asking
the next question vs. acting on the basis of the partial
information at hand.   Thus, if w = 1, the agent asks all available
questions before acting, but if w = 0, it acts on no information
at all.  (While we could have compared plans of different
depths, viewing w as a probability provides a better model of
the tendency to think vs. act.)

Given this background, we can restate our intuition as a formal
hypothesis: as the agent’s cognitive resource grows, its
asymptotic performance will increase but its learning rate will
fall.  That is, new distinctions about state will improve
eventual performance, but raise the number of trials needed to
reach that level.

We plot the average reward obtained by an Icarus agent in the
freeway domain in Figure 3a, given the above plan, and low,
medium, or high cognitive resource levels.   Each curve
represents the average of ten trials of 32,000 iterations apiece,
smoothed within a moving window of 200 iterations. (Note
that this is a log plot.)  Since each run explores a very different
scenario, the result is still quite noisy, so for clarity we plot
the convex hull. 

The relative shape of these curves has clear significance.  As
expected, the learning rate decreases with increasing cognitive
resource and the asymptotic performance grows.   This effect is
also visible in the less processed data of Figure 3b, which
shows the first 10,000 elements of the data in Figure 3a
without the convex hull operation. This pattern repeats when
we run the same experiment for a much larger plan that lets the
agent ask up to 14 questions about the presence or absence of
adjacent cars, as well as their relative distance and velocity.
We conclude that the hypothesized effect is robust.

Given that agent performance clearly depends upon the
quantity of its distinctions about world state, it also makes
sense to examine the impact of distinction quality.  Our
intuition is that high-quality distinctions should improve
performance faster than lower quality ones, meaning that there
is an interaction between plan quality and cognitive resource.

Figure 3.  Learning rate as a function of cognitive resource, w, as shown in a log plot of the convex hull of
average reward (a), and by the first 10,000 elements of average reward alone (b).
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In order to examine this question, we constructed two Icarus
agents, one aligned and the other misaligned relative to the
performance metric in equation (1).  These agents possess the
same distinctions but they ask questions about the world in
the exact opposite order, as shown in Figure 4.  The ‘aligned’
agent determines if it is above (or below) its own target speed,
and then tests for the presence or absence of the surrounding
six cars in the order shown.  After each question, it can choose
to slow down, speed up, change lanes left or right, or cruise, as
before.  The ‘unaligned’ agent has the same options, but it asks
about cars in adjacent lanes, then in its own lane, and finally
about its velocity relative to its own target speed.  Since the
reward function concerns in-lane parameters, the unaligned
agent should operate at a severe disadvantage.

Given this context, we predicted that asymptotic performance
would increase more rapidly with cognitive resource for the
aligned agent than for the unaligned one. We tested this
hypothesis by training the aligned and unaligned agents at
various cognitive resource levels and measuring average
reward.  Figure 5a gives the results of this interaction
experiment.  Once again, cognitive resource (denoted by w) is
the probability of asking the next question, so 1−w is the
probability of acting on current information alone.  Each data
point reports the asymptotic performance of an agent operating
with resource w, measured as the average reward for the final
150,000 iterations of a 250,000-iteration learning run. 

The data show that new information about state clearly
increases asymptotic performance.  Both agents learn policies
that increase reward more or less monotonically with
increasing cognitive resource. In addition, the agent with the
most useful distinctions about state learns to perform at least as
well as the agent with bad abstractions for any fixed resource
level.  Figure 5 shows the improvement rate: the aligned agent
extracts most of its value by asking a relatively small number of
questions, while the unaligned agent performs poorly until it
accesses the end of its list.  The curious graph shapes occur
because the agents are almost equivalent at the two extremes of
cognitive resource.  At w = 0.3, both agents act with their eyes
largely closed, while at w = 1, both ask all available questions.

This effect is repeatable for very large plans, as shown in Figure
5b.  Here, we plot the same interaction curve but let the aligned
and unaligned agents measure the presence or absence of cars
in all six positions, their relative velocity, and relative
distance (if the car is in the agent’s own lane). This generates a
very large plan with ~40,000 state-action pairs, as opposed to
1,200 for the plan that produced Figure 5a.   Once again,
performance increases monotonically with cognitive resource.

In summary, our experiments on the effects of state abstraction
show that agent performance improves with increasing
knowledge about state, while learning rates simultaneously
decrease.  However, there is an interaction between cognitive
resource and abstraction quality: performance increases faster
with limited amounts of cognitive resource if the agent
possesses well-tailored distinctions.

6. EFFECTS OF PLAN STRUCTURE
Our second empirical investigation examines Icarus’ ability to
exploit domain knowledge by encoding it into the structure of
a plan.  In particular, the language lets a programmer compose
an approximate plan that focuses learning by restricting the
agent’s options and ordering its concerns.  An agent of this
kind should learn faster than a typical reinforcement learning
system, which lacks access to such constraints.  At the same
time, reliance on background knowledge can be a two-edged
sword because it eliminates feasible options.  A misleading
approximate plan should degrade performance.

In order to measure the impact of plan structure on learning, we
compared the behavior of a knowledgeable agent that pursues a
hand-coded, structured plan for driving against an
unconstrained agent that employs a ‘flat’ plan.  (We have
implemented both as Icarus programs.)

The flat plan corresponds to the normal reinforcement learning
approach in that it presents the agent with every feasible
option in every possible situation.  It determines the presence
or absence of the cars in the adjacent lanes.  If any are present, it
determines their velocity relative to the agent (faster/slower)
and if the car is in the agent’s lane, it determines the relative
distance (near/far).  After gathering all these data, the agent
chooses among five actions in each of the resulting world
states: accelerate by two, decelerate by two, cruise, change lane
left, or change lane right.  We prefaced the plan with an
emergency-braking check, and we eliminated any infeasible
action that would produce a collision before it was applied.

Figure 5.  The interaction between cognitive resource and abstraction quality, as shown by average reward for
aligned and unaligned agents in  (a) a plan with 1200 state-action pairs, and (b) a plan with 40,000 pairs.
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In contrast, the structured plan embeds domain knowledge into
a hand-coded Icarus skill by hierarchically decomposing the
knowledgeable agent’s concerns and restricting its options.
The top-level routine (Table 1) contains five reactive contexts,
and the agent considers them in order on every execution cycle.
This plan instructs the agent to worry about the need to slam
on the brakes, followed by the need to react to trouble in front
(a slower moving car in the agent’s own lane), reaching its
own target speed, and then dealing with trouble behind.  If
none of these situations apply, the agent cruises at its current
speed in its current lane. 

This Icarus skill lacks top-level options.  However, the
subplan for dealing with trouble in front (Table 2) contains
alternatives (as does the plan for trouble behind): the agent can
move left, move right, cruise, or slow down, but it cannot
accelerate.  Icarus learns a policy over these restricted options.
Note that the combination of hierarchy and subplan order
increases the scope of the agent’s reactions.  Thus, the
responses within avoid-trouble-ahead hold across many world
states, whether or not the agent is at its target speed and/or
there is trouble behind.

Given this background, we hypothesized that the structured
plan would produce a higher learning rate than the flat plan
because the added domain knowledge reduces the search space.
However, the knowledgeable agent should obtain the same or
a lower level of asymptotic performance because its plan
eliminates some options.

Figure 6a compares the behaviors of the structured plan and the
flat design. We used the same reward function to measure
performance (equation 1), and the same learning algorithm,
sensor tests, and underlying actions.  We collected ten runs of
32,000 iterations for each agent, and randomized the starting
conditions by resetting the agent’s velocity to a random
number between zero and its desired target speed (62 mph)
between each run.  We calculated a smoothed average of the
received reward and plot the convex hull, as before.  Note that
we use a 200-iteration window to smooth the data from the flat
plan, but a 50-iteration window for the structured plan.  This
asymmetry preserves the leading edge of the knowledgeable
agent’s learning curve, which is exceptionally fast.

The results are somewhat surprising.  As expected, the
knowledgeable agent learns faster than the unconstrained
agent, but by approximately two orders of magnitude.  This
improvement flows from the use of domain knowledge in two
ways.  First, the knowledgeable agent learns over a restricted
set of options whenever it experiences a choice (e.g., in
responding to a slower car in front).  Second, the added
background knowledge can remove all choice, for example, by

forcing the agent towards its target speed in the absence of
obstacles.  The data reflects both effects, and both capture the
intended benefit of incorporating domain knowledge. 

The other surprise in Figure 6a is that the knowledgeable
agent appears to perform better than the unconstrained agent
even after 32,000 iterations of learning.  This asymptotic
performance result disconfirms our hypothesis and our
intuition, since the agent with the superset of options should
do at least as well as the agent with a restricted set. This effect
is also visible in Figure 6b, which shows the first 10,000
elements of the data in Figure 6a, with a uniform 200-iteration
smoothing window and without the convex hull operation.
Once again, the structured plan shows dominant performance.

In order to check this result, we extended the duration of the
experiment from 32,000 to 250,000 iterations. As it was only
practical to train one instance of each agent type for that length
of time, we computed two data points representing the
asymptote of learning as the average over the last 150,000
iterations of each 250,000 iteration learning run.  We show
these points in Figure 6b.  The result supports our previous
conclusion: the knowledgeable agent learns faster and
performs better than the unconstrained agent even after
250,000 iterations of learning. Moreover, because the
structured plan asks fewer questions and provides fewer
actions, we note that it involves less work per iteration than
the standard, flat design.

This leverage is largely due to reduced plan size.  When we
counted the number of state-action pairs in each design
(somewhat after we generated the learning curves), we
discovered a three order of magnitude difference.  While the
standard (flat) statement of the reinforcement learning problem
for vehicle control has over 20,000 primitive alternatives, the
hand-coded, structured plan contains exactly 24 state-action
pairs.  Since our learning algorithm (and reinforcement learning
in general) searches the space of possible action sequences, it
is not surprising that the unconstrained agent failed to identify
the better policy in any reasonable period of time.

In summary, the ability to encode domain knowledge
simultaneously improves learning rate, increases performance,
and decreases plan size.  The fact that we obtain a two order of
magnitude increase in learning rate and a three order of
magnitude decrease in plan size suggests that our method can
qualitatively expand the scope of complex learning
applications. This power comes from Icarus’ ability to encode
domain knowledge into the statement of learning problems,
and from embedding a reinforcement learning algorithm into a
general-purpose hierarchical language for agent design.
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Figure 6.  The impact of domain knowledge in learning, as shown (a) in a log plot of the convex hull of average
reward, and (b) by the first 10,000 elements of average reward alone, with asymptotes at 250,000 iterations.
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7. RELATED WORK
Research on agent architectures often has an interdisciplinary
feel, and our work on Icarus is no exception, as it draws on
ideas from three distinct literatures: reactive languages,
reinforcement learning, and agent design.  We discuss related
work from each of these perspectives in turn.

Every agent architecture provides a method of specifying
behavior, and many offer special-purpose languages for the
task.  We characterize this design space by the degree of
reactivity the languages are intended to support and by their
emphasis on practical application.  Icarus contributes to the
most reactive and most application-oriented end of this
spectrum.  It is extremely reactive, like universal plans [17],
teleoreactive trees [14], and subsumption architectures [3],
since all four systems return a relevant action even if the world
shifts to any other recognized state between execution cycles.
Yet, Icarus adds an element of expressivity to these designs. It
offers a logical and symbolic vocabulary to subsumption, and
we have shown [18] that it adds hierarchically defined actions
to universal plans, explicit goals and preconditions to
teleoreactive trees, and a novel construct to both systems: in
Icarus, the objective of one plan can be to engage in another.

If we look at reactive languages through the lens of
application, Icarus emerges as one of the few approaches that
emphasize the practicalities of composing software. PRS [8]
shares this emphasis and provides a larger array of primitives,
while RAPS [7] inherits all of Lisp.  However, Icarus is the
only extremely reactive design with such features.   For
comparison, universal plans natively interpret modal logic
formulae, teleoreactive trees employ an ordered list of
production rules, and subsumption architectures present a
format similar to a wiring diagram.  Finally, Icarus offers a
value-based learning mechanism that is absent in other reactive
languages. This lets Icarus learn to select the best options,
while other methods rely on predetermined (or random) choice.

Work in hierarchical reinforcement learning shares our interest
in learning within the context of a structured plan.  For
example, Dayan and Hinton [4] impose a hierarchy of learning
modules, while Kaelbling [10] structures the solution by
forcing the learned policy to pass through an ordered sequence
of goals.  Sutton, Precup, and Singh [22] define macro-actions
that fix behavior over a region of the state space and learn an
optimal policy that switches among these options.  Parr and
Russell [15] define a hierarchy of non-deterministic finite-state
machines and employ learning to extract an optimal
deterministic controller.  Dietterich [6] notes that these
methods require a full description of system state, and shows
that his MAXQ algorithm [5] will converge under appropriate
state abstractions.  MAXQ itself represents learning problems
as an unordered tree of subtasks with a simultaneous value
decomposition.  Icarus adds a general mechanism for
incorporating domain knowledge to these designs in the form
of a reactive programming language.  In addition, it bases
convergent learning on a reactive execution model [19] while
other convergent algorithms lace together temporally extended
actions that resemble subroutines.  This distinction is quite
important in physical application domains, where
uncontrollable events readily interrupt agent intentions.

Several other efforts have shown that domain knowledge
improves performance relative to flat Q-learning. If we take a
rough estimate from their published charts, Dietterich, Parr,
and Sutton all show that learning rate improves by a factor of

one to ten, while unconstrained Q-learning eventually obtains
superior performance.  Dietterich [5] notes an exception where
MaxQ outperforms Q-learning at the end of the feasible training
period.  These results are similar to our own, and support our
claim that added domain knowledge speeds learning.

Taken together, Icarus and SHARSHA offer a general-purpose
architecture for constructing agents that learn. Another such
architecture, Soar [11][13], has been used extensively to build
deliberative problem solving agents, although it has also been
applied to reactive execution systems.  Soar provides a layered
production-rule architecture and a means of creating subgoals
to resolve impasses, as in the case where multiple operators
simultaneously apply.  Learning typically focuses on the
desire to speed up future problem solving in response to
success or failure.  Soar makes it quite convenient to express
the results of learning as new control rules that determine
which operators to select or states to expand.   In contrast,
Icarus focuses on learning in the physical world, and it learns
the value of existing options instead of new plan structure. 
The specific mechanism inputs a numeric vs. a qualitative
signal and generates a numeric vs. a symbolic result.  Thus, the
two systems employ complementary approaches.  We hope to
use ideas from Soar to address structure learning in Icarus.

Prodigy [23] is an architecture for integrating planning and
learning.   Like Soar, it has been applied to execution systems,
but the main emphasis has been on problem solving.  An early
version of Prodigy [12] applied explanation-based learning to
develop new rules that govern which states to expand or
operators to select.  More recent work adds learning methods
with mutually interpretable knowledge structures, such as
analogical reasoning and learning by experimentation.  These
methods support the goals of improving planner efficiency,
improving plan quality, and developing domain knowledge for
use in planning, and they operate by learning structure.  In
contrast, Icarus learns the value of existing options, which
makes its relation to Prodigy similar to its relation with Soar.

ACT-R [2] is an agent architecture dedicated to the
proposition that cognitive skills are realized by production
rules.  As a result, much of the work focuses on duplicating
trace data from human experiments.  ACT-R offers production
rules with an explicit concept of goals, a separate declarative
memory for facts, and a method of efficiently finding high-
quality productions relevant to the goal and situation at hand.
Icarus shares many of these elements.  Like Soar and Prodigy,
ACT-R uses learning to acquire new skills (here, via reasoning
by analogy), and Icarus can benefit from that technology. 
Icarus also shares ACT-R’s ability to determine the long-term
value of employing specific actions, although the systems use
the concept of value in different ways.  In particular, ACT-R is
descriptive, while Icarus follows a normative design.   Thus,
we adopt a decision-theoretic framework with a maximizing
model of choice, while ACT-R employs a satisficing method.

8. CONCLUDING REMARKS
Icarus contributes to the state of the art in agent design and
several component technologies. The language for expressing
agent behavior extends highly reactive designs, adding
methods for encoding hierarchical intent to universal plans
and teleoreactive trees, and encapsulating reactive processing
in a programming tool.   In addition, SHARSHA contributes to
research in hierarchical reinforcement learning.  It supports
convergent policy learning within hierarchical reactive plans,



while other convergent methods rely on more constrained
representations and a non-interruptible execution model. 

More broadly, the combination of Icarus and SHARSHA offers
a general method of incorporating domain knowledge in
reinforcement learning.  It lets programmers encode an
approximate model of behavior, and relies on the agent to find
the best options by learning from experience. Empirical
evidence shows that this technique increases learning rate and
performance, while reducing plan size, relative to the standard
expression of such problems.  The improvements are substantial
and suggest that our approach offers a qualitative increase in
the scope and efficacy of learning applications.

Our future work will explore several novel aspects of the Icarus
architecture.   We are currently investigating the model of
programming by reward by using Icarus to evolve agent
personalities in response to a user-supplied reward function.
This work raises the interesting conjecture that behavioral
differences can result from distinct preference structures acting
on the same set of skills.  Next, we plan to test our claim that
Icarus renders complex learning problems feasible by applying
the system in complex domains that involve multiple,
dissimilar skills.  We also hope to demonstrate an analytic
property of the architecture [20] that guarantees certain Icarus
agents will maximize human utility as a consequence of
learning to maximize their own reward.
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