Revising Engineering Models: Combining
Computational Discovery with Knowledge

Stephen D. Bay, Daniel G. Shapiro, and Pat Langley

Institute for the Study of Learning and Expertise
2164 Staunton Court, Palo Alto, CA 94306
sbayQapres.stanford.edu, dgs@stanford.edu, langleyQisle.org

Abstract. Developing mathematical models that represent physical de-
vices is a difficult and time consuming task. In this paper, we present a
hybrid approach to modeling that combines machine learning methods
with knowledge from a human domain expert. Specifically, we propose a
system for automatically revising an initial model provided by an expert
with an equation discovery program that is tightly constrained by do-
main knowledge. We apply our system to learning an improved model of
a battery on the International Space Station from telemetry data. Our
results suggest that this hybrid approach can reduce model development
time and improve model quality.

1 Introduction

Building accurate mathematical models of physical devices is an important en-
gineering task. For example, engineers at NASA have developed detailed models
that describe the electrical power system on the International Space Station
(ISS). The engineers use these models for many tasks, including mission plan-
ing, monitoring, and fault diagnosis [3, 4]. Because the components on the space
station are run close to operating limits, the models must be very accurate, as
there is little room for error.

However, accurately modeling a physical device is a difficult problem for sev-
eral reasons. First and foremost, device modeling is an inverse problem that
involves reasoning backward from observations on a device’s behavior to pos-
sible equations that may have generated the data. Second, our knowledge of
most devices is incomplete. For instance, engineers commonly assume constant
operating conditions for variables whose affect is not fully understood. Finally,
device modeling involves many practical difficulties. For example, data for model
development is often available only for a limited range of conditions and may
not cover the deployed situation. This is especially true for ISS components,
whose operating conditions cannot be easily duplicated. Additionally, testing a
component on a lab bench will not account for interactions with nearby devices
or changes as the device ages.

If the structure of the model (i.e. the forms of the equations) is known, but
not the specific values for parameters, many techniques can learn the missing
parameter values from data. However, a more likely situation is that the struc-
ture of the equations, and perhaps even the set of relevant variables, are not

completely known. This leaves the engineer with the difficult task of building an
appropriate model manually from domain principles and her intuitions.

Building models manually is an iterative and time consuming process whereby
an engineer may specify an initial model, tune its parameters, and then test it
against data. If the model’s performance is inadequate, the engineer will revise
the model and repeat the process until she is sure that it is accurate enough for
the intended task. This trial and error approach is cumbersome, especially with
many parameters or possible model structures.

An alternative is to rely on computational methods to automatically discover
a model. For example, equation discovery programs, such as Bacon [5] and La-
gramge [8], take data in the form of observations and attempt to find equations
that govern the relationship between independent and dependent variables. This
approach is appealing because it automates much of the modeling process. How-
ever, equation discovery methods can suffer from very large search spaces and
require strong constraints to limit the search space [8].

In this paper, we propose and formalize a hybrid modeling technique that
combines the engineer’s knowledge about a device with machine learning meth-
ods. In particular, we use engineering knowledge to constrain the search for
better models and we use computational discovery programs to manage search,
parameter fitting, and model scoring. We believe this approach has several ad-
vantages. From the engineer’s perspective, a hybrid approach would let them
focus on identifying possible refinements and explore a wider set than could be
done manually. From a computational perspective, domain knowledge massively
constrains the search space and makes equation discovery feasible.

We demonstrate this hybrid approach by revising battery models to better
explain real-world behavior. In the next section, we begin by describing a simple
battery model and showing how an engineer might revise it to explain complex
non-linear behavior. In Section 3, we present our method for combining equation
discovery and background knowledge. In Section 4, we evaluate our method on
revising the battery model and show that much of the non-linearity can be
recovered. In Section 5, we test our approach on improving battery models for
the International Space Station from telemetry data. We then discuss limitations
and related work, and conclude with a discussion of future research.

2 An Engineering Approach to Model Revision

Tterative refinement is a common engineering approach for modeling a device.
An engineer starts with an initial model that is not perfect, but that explains
much of the known behavior. Next, the engineer makes successive changes to the
model to improve its predictive power. In this section, we give an example of this
process from battery modeling. Although battery models have existed for many
years, they are complex electro-chemical devices that are not well understood.
Battery modeling is an active research area and new models are continually
being published.

Figure 2 shows a simple battery model drawn as an equivalent electric cir-
cuit. In the model, V., represents the battery voltage of an ideal cell. The term

R represents a resistor connected in series to the battery cell and models the
battery’s internal resistance to current flow when the circuit is completed. The
term R, is a resistor connected in parallel to the battery cell and represents
resistance to self-discharge. In this model, V,, R,, and R, are constants and
cannot be directly observed. The state of charge (soc) is a measure of the total
electric charge stored in the battery.

To complete the electric circuit, the battery must be connected to another de-
vice, which we will call a controller. For this paper, we assume that the controller
is an active device that regulates the charging and discharging of the battery.
It charges the battery at constant current and discharges at constant resistive
load. The battery interacts with the controller through ¢ and V;, which are the
current into (or out of) the battery and the voltage at the battery terminals,
respectively. The variables 4, V;, and soc are observable.!

Rs O
Vcb :
- Rp vt controller
soc
O

Fig.1. A battery model.

Although this component model appears simple, it maps onto a complex
set of equations that govern the input/output relationships of the battery. The
terminal voltage, V;, is determined by Equation 1 during charge and Equation 2
during discharge. The battery’s state of charge is modeled by Equation 3, which
is a differential equation that states the rate of change is equal to the current
flow minus loss through the resistor R,.

V;E_charge = Vep +14 X Rs (1)
Veb X Rioad
Vi ischarge — & . o 2
t-discharg Rs +Rload ()
dsoc . Vg
S g 3
i '~ R, ®)

This model can explain much of a battery’s behavior, but it is not adequate
for many applications. Chan and Sutanto [2] point out several deficiencies and
suggest modifications to improve its fidelity.? First, the model fails to explain

! State of charge may not be observable in some batteries. For our work modeling
components on the space station, the batteries are Nickel-Hydrogen pressure cells
and soc can be observed indirectly through the battery’s temperature and pressure.

2 In their paper, Chan and Sutanto examine five historical models and point out their
deficiencies before suggesting an improved version. The model in Figure 2 is not
identical to any of the five models but has many common elements with them.

changes such as the apparent series resistance, R, depending on whether the
battery is charging or discharging. They suggest an improvement where R, is
equivalent to a resistor R, during charge and a resistor R4 during discharge. Sec-
ond, the model ignores dependence of battery properties on the state of charge.
For example, real batteries become much more difficult to charge when they are
nearly full compared to when they are empty. This could be represented in the
model by making R, a monotonically increasing function of soc. In general, all
of the terms V3, Rp, R., and R4 will depend on battery properties and are not
constants.

Chan and Sutanto focused their paper by modeling a specific battery from a
given manufacturer. They made R., R4, and R, functions of V¢4, which in turn
depended on soc. Although there is some expectation about the general shape
of these functions, the exact forms were not known and they resorted to the
manufacturer’s test data to determine the functions empirically. Figure 2 shows
the functional forms, with the dependent variable on the y axis.

The curves in Figure 2 can be obtained by performing in-depth battery test-
ing, ideally for each specific physical device. However, some tests can be de-
structive and shorten the lifespan of the battery, such as those involving deep
discharge. Manufacturers often provide these curves for a typical battery, but
they are not specific to an individual physical device and may not cover the
relevant operating conditions or external effects. This provides a perfect oppor-
tunity for machine learning techniques to improve existing models by allowing
adaptation in response to observational data.

1

14

,,,,,,, - Rc
0.9r S — Rd ff

\ ---Rp 121
' d

0.81

o
3

101

o
o

Resistance %
o o o o
N w S [5)
Vcb
=)

o
[

o
0
i

o

o
o
o
=3
o
o
~
2
3

8.5 9 250

Fig. 2. Dependence of battery parameters on other variables. (a) Rc, R4, and Ry, versus
V. Resistance is scaled by the maximum observed value. (b) V¢, versus soc.

3 Combining Equation Discovery with Knowledge

Our goal is to help the engineer with the revision process and to support the types
of refinements described in the previous section. We envision a system where the
user can input information about her modeling problem, including data on the

specific device she is modeling, and the system would suggest several revisions
to the model that better explain the observed data.

The key insight of our work is that engineers will not suggest arbitrary
changes to a model. Although they may not know the exact changes needed,
they have a good idea of where their model is wrong because they know the
approximations and assumptions made in the model’s development. We feel this
knowledge can be leveraged by computational tools.

3.1 Problem Definition
We can state the problem of revising an engineering model as follows:

— Given: an initial set of equations that describe the system’s behavior;

— Given: data on the observable variables in the equations;

— Given: knowledge about the equations and how they might be modified;
— Find: an improved model that better explains the data.

Knowledge about the equations takes two forms in our current system. First,
the user can specify plausible values for parameters, such as a valid range or an
initial guess. For example, in the battery model in Figure 2 the user can state
that R, is between 0 and 10 ohms with an initial guess of 0.1. Second, the user
can specify that a term which is a parameter in the initial model may depend
functionally on other variables in the analysis. The user can also specify a set of
plausible independent variables and possible functional forms. For example, she
may believe that V,; is not a constant and is possibly a quadratic or sigmoidal
function of other variables such as soc or temperature.

Our problem definition is stated as a “single shot” process that is solved
once, but clearly refinement can be iterative. Often the errors from one stage of
revision will suggest new refinements that can further improve the model. This
leads to a set of relevant models, each progressively explaining more of the data.

3.2 Transformation into Equation Discovery

We transform our problem into an equation discovery task. We use Lagramge [8],
which is a program for equation discovery that can find both ordinary differential
equations and regular algebraic equations that describe the data. The system
uses a context-free grammar to define a space of possible equations that may
explain the observed data. Lagramge searches through the space of equations
defined by the grammar, evaluates each candidate model on the data, and returns
the best models according to a score function.

Our system takes the knowledge specified by the engineer and compiles a
highly constrained grammar to search for revisions of the initial model. The
knowledge is transformed according to three rules:

— the initial equation becomes the starting state of the grammar;

— variable dependencies are encoded as symbol expansions in the grammar;

— knowledge about the values of constant parameters are passed to Lagramge
to be used in parameter fitting.

For example, consider trying to revise the model of V;, the voltage at the battery
terminals. We first transform Equations 1 and 2 into an initial starting sentence,

Veb X Rioaa

W — 6(7»)(‘/01) 41X Rs) + 6(—l)m

where d(z) is an indicator function that is one when z is positive and zero
otherwise. Note that ¢ is defined as positive when current flow is into the battery,
and the above production covers both charge and discharge conditions. Next, if
we believe that V., may depend on the variables time, soc, and temperature,
with possible forms that are sigmoidal or linear (in one or two variables), we
obtain the following productions for the grammar:

Vep — consty + consta /(1 + e(X_CO”StS)”"St“) |
consty + consta X + consts X |
consty + consta X
X — temperature | soc | time

Finally, any information about the constants is passed through the grammar to
Lagramge, for instance,

Rypaq — const[0:10:2]
R, — const

The constant Rj,.q is given an allowable range from 0 to 10 with an initial guess
of 2, and R; is left unspecified.

To select the best revision produced with the grammar, we use Lagramge’s
minimum description length (MDL) score function, which evaluates a candidate
model by taking into consideration both the sum of squared error on the training
set and the model’s complexity, measured as the size of its parse tree.

4 Revising a Battery Model with Synthetic Data

To demonstrate the feasibility of our revision approach, we used synthetic data to
test our system’s ability to refine initial models. Synthetic data lets us compare
the discovered changes with the true structure.

We used Equations 1 to 3 in conjunction with the battery parameters in
Figure 2 to generate synthetic data by simulating it in Matlab with an ordinary
differential equation solver (ode113). We assumed that the controller cycles and
charges the battery at constant current followed by discharge at constant resistive
load (Rjoaq = 22). We examined two cases: (1) Charging occurs with current
i = 3A, which results in steady cycling of soc from about 98% to 73%; (2)
charging occurs with current i = 2A, which results in a gradual loss of soc from
92% to 30%. For each case, we generated data for 1000 time points (eight cycles).
We added an irrelevant variable, temperature, that varied sinusoidally with a
period matched to the charge-discharge cycles.

For the initial model, we used Equations 1 to 3 with all parameters considered
constants. We tried a simple scenario in which an engineer might believe that R,
and R, are well modeled as constants with respective ranges and initial values of
[0:100:1] and [0:200:100]. The engineer may also believe that V, is not a constant
and could depend on other variables such as temperature, soc, or time, with a
functional form that is a polynomial (up to third degree) or a sigmoid.

The above statements were automatically compiled into a grammar from a
file specification and then used as an input to Lagramge. During execution, the
program expands the grammar and examines 13 different revisions. The best
revision according to Lagramge’s MDL score involves expanding V., to be a
linear function of soc. Figure 4a shows the target signal, and Figure 4b and ¢
shows the reconstruction error for the initial and revised models. The results
indicate that the revised model was better able to reconstruct the signal.

Although the revised model reduced the error for case 1, the error was still
sizeable. We performed another refinement iteration in which we let Ry depend
the variables time, temperature, or soc with a polynomial form. We recompiled
the grammar file and reran Lagramge, which explored 240 possible revisions and
suggested expanding R, as a quadratic function of soc. Figure 4d shows the
reduced error of this new revision compared with the first refinement.

Equations 4 and 5 show the final results and the revisions have moved the
initial model closer to the curves in Figure 2. The linear expansion of V,, on soc
partially reconstructs the curve in Figure 2b, and the quadratic expansion of R,
attempts to model the sharp increase in R, with increases in soc.

Vi_charge = (5.84 + 0.00451s0c) + i x (0.145 — 0.00527soc + 4.90E-5s0c¢%) (4)

Vi_discharge = (5.41 + 0.00876s0c) x 2/(2 + 0.00495) (5)

Finally, we note that the parameters in the linear equations that represent V.
differ slightly in the case of charge and discharge. This is caused by a limitation
of Lagramge, which its authors are addressing.

5 Modeling Batteries on the Space Station

Our experiments with revising battery models on synthetic data showed that our
system can refine initial models to explain complex, non-linear behavior. In this
section, we apply our approach to battery models for the International Space
Station with real telemetry data to show that it can develop accurate models
and is robust to problems in data quality.

We modeled the batteries for a single power channel on the Space Station.
Within a power channel there are three battery units that each contain two sets
of 36 nickel-hydrogen cells. We treated the entire collection of 216 cells as a single
battery, and here we focus on modeling the battery’s terminal voltage, V;.

We have telemetry data for 24 hours with samples approximately every ten
seconds. Only a fraction of the cells are instrumented with sensors, so we aver-
aged readings from six cells to obtain the battery’s temperature and pressure.

6.7F — casel 0.3 T T T —
case 2 Initial
6.6F 0.25 — Revised 1
6.51 0.2
6.4r/ 1 0.15
6.3f 5 01
Sl i
62 S 005
6.1r
0
6
-0.05
5.9f
-0.1
5.8r
-0.15 t L L L
0 200 400 600 800 1000 0 200 400 600 800 1000
time time
(a) (b)

0.3 T T T
P 0.16 T T T
Initial Revised 1
— Revised J 014 — Revised 2

0.2

0.1

PN TN N 0.08

5 5
u i 0.06
>-0.1 s
0.04
-0.2 0.02
0
-0.3
-0.02
-0.4 -0.04 . 1 . .
200 400 600 800 1000 () 200 400 600 800 1000
time time
(c) (d)

Fig. 3. Original signal and reconstruction error for (a) target V;. (b) case 1 for the
initial model and first refinement, (c) case 2 for the initial model and first refinement,
and (d) case 1 for the first and second refinements.

We estimated the state of charge by the ratio of pressure to temperature. The
current and voltage were available for each group of 36 cells (six total) and we
summed and averaged them to get total current and terminal battery voltage.

The data are very poor quality and suffer from several problems. First, the
signals for the observed variables have many dropouts for long time periods and
this affects approximately 1/4 of all time points. Second, because of bandwidth
limitations, the signals are encoded at low resolution. For example, the sensors
can only report current flow to the nearest Ampere. Finally, the data show
evidence of non-Gaussian noise that manifests itself as large spikes in the signal.

We linearly interpolated the data to register time points at ten second inter-
vals and to impute missing values. Figure 5a shows the target variable V; after
this processing. We divided the data into a training set, of approximately three
quarters of the data (before the dashed line in Figure 5a), and a test set consist-
ing of the remaining data. We used Equations 1, 2, and 3 for our initial model.

As possible refinements, we let V. be a function of the variables temperature,
pressure, or soc with possible functional forms that are polynomial (up to third
degree), sigmoidal, or linear in two variables. We let Rs; depend on the same
variables with a polynomial form.

Lagramge explores 6859 revisions and takes approximately nine hours of
computation time on an 1.5 Ghz Pentium 4.3The top ranked revision, shown
in Equations 6 and 7, modifies the initial model by representing V; as a linear
function of soc. Figure 5b shows the prediction error on the test data, which is
much smaller than the error of the initial model.

Vi_charge = (36.2 4+ 76.2 x soc) — i x 0.214 (6)
Vidischarge = (20.3 + 36.2 X s0¢) x 5.77/(2.60 + 0.408) (7)

Table 1 shows summary statistics for the initial model and the top three revisions
returned by Lagramge. These results indicate that the revised models greatly
improved the test error compared with the initial model. The mean squared
error (MSE) for the revised models are approximately one third that of the initial
model. However, MSE is sensitive to outliers, so we also report mean absolute
error, which is more robust. On this measure the revised models all obtained an
average error of about one volt. This is surprisingly good, considering that the
individual sensors only resolve to one volt. Finally, the difference in predictive
performance between the revised models is not substantial. Because the second
and third models add extra complexity but do not significantly improve the
models, they are rated worse with Lagramge’s MDL score function.

Table 1. Error statistics on the training and test data: Lagramge’s MDL score, mean
squared error (MSE), and mean absolute error.

Training Test
MDL MSE MSE Mean Abs.

Initial Model

Veb, Re, and Ry are constants n.a. 12.3 20.5 2.75
Best Revised Models
1. Vp is a linear function of soc. 2.65 2.14 6.99 1.01

2. Vep and Ry are linear functions of soc. 2.67 2.12 6.95 1.00
3. Ve is a linear function of soc; Rgis 2.68 2.13 6.99 1.00
a linear function of temperature.

6 Limitations

We demonstrated with experiments that our system can successfully refine ini-
tial models to better explain data. However, our revision approach has four
important limitations that we discuss here.

3 The number of revisions is much greater than for the synthetic example in Section 4
because the number of sentences that can be produced by grammar can expand
exponentially with additional productions.

150 T T T T T T T T 15

Initial
1400 — Revised
101 1
1301
1201

5110

Vt Error

1001

90r

801

70
0

time x 10

(a) (b)
Fig. 4. Battery terminal voltage V; and prediction error. (a) Training and test data
for V;. (b) Error predicting V4.

First, our system focuses the search for better models by exploring revisions
that are near an initial model. This provides tremendous power if the true model
is close to the initial model. However, if the true model is structurally very dif-
ferent, then searching near the initial model will not find the necessary revisions.

Second, our system depends on an expert to suggest plausible functional
forms that may explain the values of dependent variables in the initial model.
Again, this provides tremendous power if the expert provides specific forms that
closely match behavior in the real physical device. However, our experiments
suggest that our system may be robust to mis-specification. On synthetic data,
it was still able to significantly improve the initial model even though none
of the functional forms exactly matched the relationships in Figure 2. On real
data, even though we have a limited knowledge of battery dynamics, the forms
we suggested were capable of greatly lowering the prediction error.

Third, the suggested revisions are conditional on the data seen and may not
generalize well to new operating conditions. For example, the models in Section 4
were revised on data that represented a battery whose state of charge varied from
98% to 30%. The revised model may not perform well outside this region, such
as at very low charge levels. This limitation is not unique to our system, but
applies to all induction algorithms.

Finally, Lagramge took over nine hours to revise the battery model for the
Space Station. This is clearly too slow to support iterative and interactive re-
finement with an engineer. We are examining methods to speed up Lagramge
with techniques such as error bounds to eliminate poor candidates quickly.

7 Related Work

Our approach builds on recent work by Todorovski and Dzeroski [9] who pro-
posed revising a mathematical model by providing Lagramge with a grammar

that encodes a specific set of changes. They let Lagramge refit the value of known
constants based on the data, and they supported replacing a polynomial in the
original equation with a polynomial of arbitrary degree (on the same variables).
In their application, a major goal was minimal change with the initial model, so
their implementation examines each revision separately and then considers only
a few combinations.

Our application of revising models of engineering devices, specifically the de-
vices on the space station, has driven our work in a slightly different direction.
We start with the assumption that the model is wrong, because of approxima-
tions and different operating conditions in orbit, and that the engineers can
(mostly) identify the parts of the model that need to be revised. Because of
these assumptions we allow many more changes to the model. Specifically, we
allow revisions involving a variety of functional forms, we allow these forms to
depend on different sets of variables, and we consider all changes at once to catch
interactions.

Other work in equation discovery has also incorporated domain knowledge,
but in different ways. Washio and Motoda [10] developed SDS, a program that
uses dimensional analysis to constrain the possible equations. Bradley, Easley,
and Stolle [1] developed PRET a program that automatically tries to find an
ordinary differential equation model of a physical system. PRET uses automated
reasoning about modeling techniques to select from a set of traditional system
identification methods.

Finally, we have focused on developing interpretable and transparent models
that can be examined by the engineer. An alternative approach is black box tech-
niques, such as neural networks (e.g., [6]), which model a device’s input/output
behavior without attempting to find a concise mathematical description. Neu-
ral networks are not always applicable because they are not transparent and
are difficult to verify. However, recently Saito et al. [7] have started to address
this drawback in the context of revision by examining methods that use neural
networks to learn interpretable structures.

8 Conclusions and Future Work

We presented an approach for combining machine learning methods with an
engineers’ knowledge to revise models of physical devices. The engineer specifies
an initial model and possible revisions to that model and we combine this with
an equation discovery program to manage the search process. Qur experiments
showed that this method can successfully revise models of physical devices from
noisy sensor data and substantially improve their accuracy.

Our work represents a first step toward a computer assisted environment for
revising models of physical devices. This approach is promising and may speed
model development by relieving the engineer of tedious computational tasks. We
also believe this approach may lead to better models by allowing exploration of
a wide set of refinements and adaptation to observed data.

There are many directions for future work and we highlight three areas: First,
we intend to apply our approach to improving models of other components on the

space station. Second, we intend to expand the types of qualitative knowledge
that an engineer can specify to constrain the search space. For example, in
addition to specifying a set of relevant variables, the engineer can also specify
the general effect of those variables. For instance, in our battery model R should
increase with soc as it becomes progressively more difficult to charge a battery
as it nears maximum capacity. We can eliminate models without this behavior.
Finally, we intend to explore how the engineer can interact with the search
process, possibly by specifying a search order or viewing intermediate results
and selecting particular paths to follow.

Acknowledgments

This work was supported by grant NCC 2-1220 from NASA Ames Research
Center. We thank Rick Alena and Daryl Fletcher for providing access to the
data, Ljupco Todorovski and Saso Dzeroski for their help with Lagramge, and
Javier Sanchez for assistance with simulation tools.

References

1. E. Bradley, M. Easley, and R. Stolle. Reasoning about nonlinear system identifi-
cation. Artificial Intelligence, 133:139-188, 2001.

2. H.L. Chan and D. Sutanto. A new battery model for use with battery energy
storage systems and electric vehicle power systems. In Proceedings of the IEEE
Power Engineering Society Winter Meeting Conference, 2000.

3. J. S. Hojnicki, R. D. Green, T. W. Kerslake, D. B. McKissock, and J. J. Trudell.
Space station freedom electrical performance model. In Proceedings of the 28th
Intersociety Energy Conversion Engineering Conference, 1993.

4. T. W. Kerslake, J. S. Hojnicki, R. D. Green, and J. C. Follo. System performance
predictions for space station freedom’s electrical power system. In Proceedings of
the 28th Intersociety Energy Conversion Engineering Conference, 1993.

5. P. Langley, H. Simon, G. Bradshaw, and J. M. Zytkow. Scientific Discovery:
Computational Ezplorations of the Creative Process. The MIT Press, 1987.

6. J. Peng, Y. Chen, and R. Eberhart. Battery pack state of charge estimator de-
sign using computational intelligence approaches. In Proceedings of the Fifteenth
Annual Battery Conference on Applications and Advances, 2000.

7. K. Saito, P. Langley, T. Grenager, C. Potter, A. Torregrosa, and S. A. Klooster.
Computational revision of quantitative scientific models. In Proceedings of the
Fourth International Conference on Discovery Science, pages 336-349, 2001.

8. L. Todorovski and S. Dzeroski. Declarative bias in equation discovery. In Pro-
ceedings of the Fourteenth International Conference on Machine Learning, pages
376-384, 1997.

9. L. Todorovski and S. Dzeroski. Theory revision in equation discovery. In Proceed-
ings of the Fourth International Conference on Discovery Science, 2001.

10. T. Washio and H. Motoda. Discovering admissible models of complex systems
based on scale-types and identity constraints. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence, pages 810-817, 1997.

