Hierarchical Skills and Cognitive Architectures

Pat Langley (langley@csli.stanford.edu)
Kirstin Cummings (kirstinc@ccrma.stanford.edu)
Daniel Shapiro (dgs@stanford.edu)
Computational Learning Laboratory, CSLI
Stanford University, Stanford, CA 94305

Abstract

In this paper, we examine approaches to representing
and utilizing hierarchical skills within the context of
a cognitive architecture. We review responses to this
issue by three established frameworks — ACT-R, Soar,
and PRODIGY — then present an alternative we have de-
veloped within ICARUS, another candidate architecture.
Unlike most earlier systems, ICARUS lets skills refer di-
rectly to their subskills and communicate within a single
recognize-act cycle. This assumption has implications
for the number of cycles required to complete complex
tasks. We illustrate our approach with the domain of
multi-column subtraction, then discuss related methods
and directions for future work in this area.

Introduction and Overview

Human skills are organized in a hierarchical fashion.
There seems to be general agreement with this claim,
as it is consistent not only with experimental findings
about the execution and acquisition of skills, but also
with introspection about our everyday behavior. Upon
request, most people can describe their complex skills
at successive levels of aggregation, whether these involve
how they drive to work each day, how they cook a meal,
or how they write a technical article.

What remains an open question is how we should
model such skill hierarchies in computational terms. Al-
ternative approaches to modeling cognition encode the
notion of hierarchy in distinct ways that have different
implications for performance and learning. The most
interesting positions are those which are embedded in
theories of the human cognitive architecture, such as
Soar (Laird et al., 1987), ACT-R (Anderson, 1993), and
EPIC (Kieras & Meyer, 1997). These frameworks make
strong commitments to both the mental representations
of knowledge and to the processes that operate on them.

In the pages that follow, we consider the challenge of
modeling hierarchical skills within a unified theory of
cognition. We begin with a brief review of three such ar-
chitectures and their responses to this issue, then turn to
IcARUS, an alternative framework that approaches hier-
archical skills from a different perspective. The key issue
involves whether one can traverse levels of a hierarchy
within a single cognitive cycle. Our illustrative example
comes from a familiar cognitive skill that has a hierar-
chical organization — multi-column subtraction — but we
also consider other models that incorporate multi-level
skills. We conclude by discussing related work and our
plans to extend the architecture’s capabilities.

Previous Research on Hierarchical Skills

A cognitive architecture (Newell, 1990) specifies the in-
frastructure for an intelligent system, indicating those
aspects of a cognitive agent that remain unchanged over
time and across different application domains. Many
proposals for the human cognitive architecture take the
form of a production system, which stores long-term
knowledge as a set of condition-action rules, encodes
short-term elements as declarative list structures, and
relies on a recognize-act cycle that matches against,
and executes rules that alter, the contents of short-term
memory. Soar, ACT-R, and EPIC are all examples of
the production-system paradigm, although other archi-
tectural frameworks are also possible.

Despite the general agreement that cognitive skills are
organized hierarchically, there exist different ways to im-
plement this basic idea. Within a production-system ar-
chitecture, the most natural scheme involves communi-
cation between skills and their subskills through the ad-
dition of elements to short-term memory. For instance,
ACT-R achieves this effect using production rules that
match against a generalized goal structure in their condi-
tion sides, such as the desire to prove that two triangles
are congruent, and, upon firing, create new subgoals,
such as the desire to prove that two lines have the same
length. This approach requires the explicit addition of
goal elements to short-term memory, since this is the
only mechanism through which other production rules
can be accessed.

Soar takes a somewhat different approach to encoding
hierarchical skills that relies on multiple problem spaces.
For instance, Jones and Laird (1997) report a detailed
model of flying an aircraft in combat training scenarios.
This system organizes its capabilities in a hierarchical
manner, with each node implemented as a Soar problem
space with associated states, operators, and goals. To
invoke a lower-level problem space, the system adds a
new element to short-term memory that refers to that
space, and it must take similar action in order to exit.
The details differ from those in ACT, but the passing of
messages through short-term memory is similar.

The PRODIGY architecture (Minton et al., 1989) pro-
duces cognitive behavior in yet another manner. The
system represents knowledge about actions as STRIPS-
like operators, and the central module utilizes means-
ends analysis to decompose problems into subproblems.
This gives PRODIGY the ability to generate hierarchical



structures dynamically for each problem it encounters,
and it can use control rules to select among candidate
operators, states, and goals that determine the decom-
positions. However, these hierarchical structures do not
remain in memory after a problem has been solved; in-
stead, the system stores its experience in generalized con-
trol rules that let it reconstruct them for new problems.
Again, this requires adding explicit elements to short-
term memory that serve as mediators.

Thus, despite their diversity, these three frameworks
share a basic assumption about how communication oc-
curs among skills and subskills. This tenet has implica-
tions for the cognitive behavior of systems cast within
them, including whether intermediate results are avail-
able, the time required to execute complex skills, and the
effects of learning on hierarchical structure. We will see
shortly that another response to this issue is possible.

Hierarchical Skills in [CARUS

Icarus (Choi et al., in press) is a cognitive architecture
that shares some central features with its predecessors.
For instance, it relies on symbolic list structures to en-
code information, and it makes a clear distinction be-
tween long-term and short-term memories, with the for-
mer storing generic knowledge and the latter containing
specific beliefs. Moreover, ICARUS assumes a recognize-
act cycle, which relies on matching patterns in long-term
memory against elements in the short-term store, to de-
termine behavior over time. The framework also comes
with a programming formalism for building knowledge-
based systems.

However, ICARUS has other characteristics that distin-
guish it from earlier frameworks in significant ways. One
such feature is its commitment to embodied cognition,
which requires that all symbols in ICARUS programs be
grounded in sensori-motor primitives.! A second key as-
sumption is that each long-term memory structure may
have not only a symbolic description but also an as-
sociated numeric function that computes its value as a
function of sensory attributes. A third novel feature is
that ICARUS contains distinct long-term memories for
skills, which store its knowledge about action, and for
concepts, which specify its knowledge about states and
relations. Yet another contribution lies in the strong cor-
respondence between long-term and short-term memory,
specifically that every element in the latter must be an
instance of some structure in the former.

A fifth important assumption, which is our focus here,
is that hierarchical structures play a central role in cog-
nition. Although production systems and related archi-
tectures allow hierarchies, many do not encourage them,
and we maintain that ICARUS supports them in a sense
that is stronger and more plausible psychologically than
do frameworks like ACT and Soar. To understand this
claim, we must first examine the architecture’s represen-
tation for skills and the relations among them.

!Some recent architectural variants, like ACT-R/PM and
EPIC-Soar, incorporate sensori-motor modules, but these
were grafted onto systems based on theories of human prob-
lem solving, whereas ICARUS included them from the outset.

IcARrus skills bear a strong resemblance to production
rules, but they have an even closer kinship to the oper-
ators in PRODIGY and STRIPS. Each skill has a name,
arguments, and some optional fields. These include:

e a :start field, which encodes the situation that must
hold to initiate the skill;

e a :requires field, which must be satisfied throughout
the skill’s execution across multiple cycles; and

e an :effects field, which specifies the desired situa-
tion the skill is intended to achieve.

For example, Table 1 shows a complete set of ICARUS
skills for the domain of multi-column subtraction, includ-
ing borrow, which has the objective of getting ?digitl
to be greater than ?digit2. This skill can start only if
?digit2 is greater than ?digitl and if a third element,
?digit3, is nonzero. Moreover, its execution requires that
?digit]1 be above ?7digit2, that ?digit3 be in the top row,
and that ?digit3 be left of ?digit1.

In addition, each IcARUS skill includes another field
that specifies how to decompose it into subskills or ac-
tions. This may be either:

e an :ordered field, which indicates the agent should
consider the components in a specific order;

e an :unordered field, which identifies a choice among
skill components; or

e an :actions field, in which a primitive skill specifies
one or more actions that are directly executable.

For example, borrow states that one should invoke decre-
ment on one digit and call add-ten on another, in that
order. These are both primitive skills that play the same
role as STRIPS operators in a traditional planning sys-
tem, with their :start fields serving as preconditions
and their :effects fields specifying the desired results
of execution.

The table also clarifies that ICARUS can specify mul-
tiple ways to decompose each skill in this manner, much
as a Prolog program can include more than one Horn
clause with the same head. Different decompositions of
a given skill must have the same name, number of ar-
guments, and effects. However, they can differ in their
start conditions, requirements, and subskills. The skill
borrow has two such expansions, one for borrowing from
nonzero elements and another for borrowing across zero,
which involves a recursive call to itself.

Each skill decomposition may also include a numeric
function that encodes the utility expected if it exe-
cutes this decomposition. This function is specified by a
:percepts field that matches against the values of ob-
jects’ attributes and a :value field that states an arith-
metic combination of these quantities. The expected
utility for a skill decomposition is a linear function of the
numeric descriptors matched by that skill. Such func-
tions are not required when the available skills specify
deterministic behavior, as do those in the table, but we
have used them in other domains and we mention them
here for completeness.

We should note that ICARUS also organizes its long-
term conceptual memory in a hierarchy, with higher-level
concepts being defined in terms of lower-level ones, which



Table 1: Icarus skills for multi-column subtraction.

(subtract ()
:percepts ((digit ?7digit))
:requires ((top-row ?7digit) (right-col 7digit))
:unordered ((process ?7digit))

(subtract ()
:requires ((processed 7digitl) (top-row 7digit2)
(left-of ?7digit2 ?7digitl))
:unordered ((process 7digit2))

(process (7digit)
:ordered ((borrow ?7digit)
(find-difference 7digit))
((processed 7digit)))

(borrow (7digitl)
:percepts ((digit ?digit2) (digit ?7digit3))
:start ((greater ?7digit2 ?7digitl)
(nonzero ?digit3))
:requires ((above 7digitl 7digit2)
(top-row ?7digit3)
(left-of ?digit3 ?digitl))
((decrement 7digit3)
(add-ten ?7digit1))
((greater ?digitl ?digit2)))

(borrow (7digitl)

:percepts ((digit ?digit2) (digit ?7digit3))

:start ((greater 7digit2 ?7digitl)

(zero 7digit3))

:requires ((above 7digitl 7digit2)

(top-row 7digit3)

(left-of ?7digit3 ?digitl))
((borrow 7digit3))
((greater 7digitl ?digit2)))

(decrement (?7digit)
:percepts ((digit 7digit val ?val))

:effects

:ordered

:effects

:ordered
:effects

:start ((nonzero 7digit))

:actions ((*cross-out 7digit)
(*decrement 7digit 7val))

:effects ((crossed-out 7digit)))

(add-ten (?digiti)
:percepts ((digit 7digitl val ?7vall)
(digit ?7digit2) (digit ?7digit3))

:start ((above ?7digitl 7digit2)
(top-row 7digit3)
(left-of 7digit3 7digitil)
(crossed-out ?7digit3))
:actions ((xadd-ten 7digitl ?vall))
reffects ((greater 7digitl 7digit2)))

(find-difference (7digitl)
:percepts ((digit 7digitl col 7col val ?vall)
(digit 7digit2 col ?7col val ?val2))

:start ((above 7digitl 7digit2)

(greater-or-equal 7digitl 7digit2))
:actions ((xadd-difference 7col ?vall ?val2))
:effects ((processed 7digitl)))

ultimately connect to perceptual elements. The literals
that appear in the :start, :requires, and :effects
fields must be defined concepts, thus linking the skill and
conceptual memories in an interleaved manner. The ar-
chitecture also incorporates three short-term memories.
These include a perceptual buffer, updated on each cycle,
that contains descriptions of perceived objects, a concep-
tual short-term memory that contains inferences derived
from the perceptual buffer, and an intention memory
that contains instances of skills the system intends to ex-

ecute. The elements in these memories are simple literals
but, because their predicates correspond to hierarchical
structures in long-term memory, they encode substantial
information about the agent’s beliefs and intentions.

Distinctive Aspects of ICARUS Hierarchies

From the preceding discussion, it should be clear that
IcARUS utilizes a more structured representation of
knowledge than traditional cognitive architectures, but
the implications of this structure depend directly on the
processes that operate over them. Together, they enable
cognitive processing that exhibits important differences
from that in older frameworks.

One such characteristic involves the ability of ICARUS’
skills to reference subskills by their names, rather than
through the indirect references used in Soar, ACT, and
ProDIGY. For example, the borrow skill in Table 1 calls
directly on decrement and add-ten. ICARUS’ approach
has some aspects of subroutine calls in procedural pro-
gramming languages but, when combined with multiple
expansions for each skill (such as two variants for bor-
row), effectively embeds these calls within an AND/OR
search. This makes our formalism a close relative of
logic programming languages like Prolog, which uses a
very similar syntax to support logical reasoning. But like
other cognitive architectures, ICARUS is concerned with
agents that exist over time, so it situates these compu-
tations within a recognize-act cycle.

As a result, ICARUS retains the overall flavor of a pro-
duction system but gains the ability to invoke subskills
directly, rather than through the creation of short-term
memory elements. This lets it execute complex skills in
a top-down manner without having to descend through
the hierarchy one step at a time. ICARUS can take advan-
tage of this hierarchical organization without requiring
the generation of explicit intermediate goal structures
that are needed by production systems.

Recall that ICARUS includes a short-term memory that
contains skill instances the agent considers worth execut-
ing. On each cycle, for each skill instance, the architec-
ture retrieves all decompositions of the general skill and
checks whether they are applicable. A skill is applica-
ble if, for its current variable bindings, its :effects field
does not match, the :requires field matches, and, if the
system has not yet started executing it, the :start field
matches the current situation. Moreover, at least one of
its subskills must also be applicable. Since this test is
recursive, a skill is only applicable if there exists at least
one acceptable path downward to executable actions.

For each such path, the architecture computes the ex-
pected value and selects the candidate with the highest
utility for execution. For a given path, it uses the value
function stored with each skill and the numeric values
matched in that skill’s :percepts field to calculate the
expected value at each level, summing the results along
the path to compute the overall score. For instance, for
the path ((subtract), (process digit11), (borrow digit11),
(decrement digit21)), the system would sum the ex-
pected value for all four levels to determine the utility
of decrementing. This means that the same action can



have different values on a given cycle depending on which
higher-level skill invokes it, providing a natural way for
the hierarchy to incorporate the effect of context.

The architecture treats a skill expansion differently
depending on whether its components appear in an
:unordered set or an :ordered list. If they are un-
ordered, the module considers each of the subskills and
selects the one that yields the highest scoring subpath.
If they are ordered, it instead treats the list as a reactive
program that considers each subskill in reverse order. If
the final subskill is applicable, then it expands further
only down paths that include that subskill. Otherwise,
it considers the penultimate skill, the one before that,
and so forth. The intuition is that the subskills are or-
dered because later ones are closer to the parent skill’s
objective, and thus should be preferred when applicable.

We should clarify that ICARUS’ consideration of alter-
native paths through its skill hierarchy does not involve
generative planning. On each cycle, the architecture
finds the best pathway through a set of flexible but con-
strained structures. The process is much closer to the ex-
ecution of a hierarchical task network (e.g., Myers, 1999)
than to the construction of a plan from primitive oper-
ators. Such computation can be done efficiently within
a single recognize-act cycle, at least for well-structured
skill hierarchies. One can craft ICARUS programs that
are expensive to evaluate, but the same holds for pro-
duction systems with complex conditions on their rules.

An Illustrative Example

We can best clarify ICARUS’ operation with an exam-
ple that uses the skills from Table 1 on the subtraction
problem 305 — 147. The system interacts with a simu-
lated environment that, on each cycle, deposits percep-
tual elements such as (digit digit1l col 1 row 1 val 5)
and (digit digit12 col 1 row 2 val 7) into the percep-
tual buffer. A conceptual recognition process draws in-
ferences from these elements, such as (greater digit12
digitl1) and (above digit1l digit12), which it adds to
conceptual short-term memory.

The model also begins with the single top-level in-
tention (subtract), which focuses cognitive behavior on
the skills in the table even if others are present in long-
term memory. On the first cycle, the system would
consider both expansions of subtract, selecting the first
one and binding 7digit to digitll, the object in the top
row and right column. This skill instance would in turn
invoke (process digit11), which would consider its sub-
skills find-difference and borrow. Only the latter skill has
its :start and :requires fields met, specifically by its
second expansion, which handles situations that require
borrowing from zero.

This skill instance, (borrow digitl1), then invokes
itself recursively, producing the call (borrow digit21),
where the argument denotes the digit 0 in the top row
and second column. Because the digit to its left is
nonzero, this instantiation can only utilize the first ex-
pansion of borrow, which in turn calls on (decrement
digit31) in its :ordered field, since its preconditions are
satisfied, but those for add-ten, which occurs later in

this ordering, are not. Because decrement is a primitive
skill, it becomes the terminal node for an acceptable path
through the skill hierarchy. Also, because this is the only
such path ICARUS finds, it executes the instantiated ac-
tions (*cross-out digit31) and (*decrement digit31 3).

These actions alters the environment and lead to an-
other execution cycle. This time ICARUS again finds a
single acceptable path that shares all but the last skill
instance with that from the first round. The difference
is that digit31 has been crossed out, making (decrement
digit31) inapplicable but enabling the skill instance (add-
ten digit21). Again this is the only acceptable path
through the hierarchy, so ICARUS executes the action
associated with this primitive skill, thus altering the sim-
ulated display so that digit21’s value is increased by ten.

On the third cycle, the architecture again finds only
one path, in this case ((subtract), (process digit11), (bor-
row digit11), (decrement digit21)), since the top number
in the second column is no longer zero and can be safely
decremented. This action enables execution of the path
((subtract), (process digit11), (borrow digit11), (add-ten
digit11)) on the fourth cycle, after which (on the fifth
cycle) the model selects the path ((subtract), (process
digit11), (find-difference digit11)), which writes the two
digits’ difference in the rightmost column.

This altered situation leads ICARUS to add the infer-
ence (processed digit11), which on the sixth cycle causes
it to select the second expansion of subtract; this in-
vokes the skill instance (process digit21) on the revised
top digit in the second row. Because this digit has al-
ready been incremented by ten, it is greater than the one
below it, so the skill instance (find-difference digit21) is
now applicable. Execution of this path produces an an-
swer in the second column, which leads on the next cycle
to processing of the third column and to an answer there
as well. No paths are satisfied on additional cycles, so the
system idles thereafter, waiting for new developments.

General Implications

The sample trace above does not illustrate all of ICARUS’
capabilities, since it ignores details about the conceptual
inference process and it does not utilize value functions.
However, it should make clear that ICARUS operates over
its skill hierarchy in a different manner than frameworks
like Soar and ACT-R. They can model behavior on com-
plex tasks in two distinct ways. Omne scheme assumes
hierarchical rules or problem spaces, which require addi-
tional cycles for stepping downward through each level of
the hierarchy. Another assumes that learning has pro-
duced compiled rules that eliminate the hierarchy and
thus the need for intermediate goal structures. Such
compilation methods have been used to explain both the
power law of learning and reduced access to subgoals
(e.g., Neves & Anderson, 1981).

However, it seems unlikely that the hierarchical struc-
ture of skills disappears entirely with practice, and
IcArus offers an account that avoids the above di-
chotomy. An architecture that traverses levels in a skill
hierarchy within a single recognize-act cycle also predicts
that intermediate structures will be inacessible, and the



power law follows from the construction of the hierarchy
itself, which we discuss later. This account also makes
different predictions than traditional schemes about the
number of cycles, and thus the time, required to accom-
plish tasks with hierarchical and recursive structures.

Again, we can use multi-column subtraction to illus-
trate this point. A standard production-system model
for this domain, like that described by Langley and Ohls-
son (1984), finds the difference between two numbers in
a column when the top one is larger but otherwise adds
a goal to process or borrow from the adjacent column.
Analysis reveals that such a model will take 5-b+2-n
cycles to complete a problem with b columns that require
borrowing and n columns that do not. In contrast, the
IcARUS model in Table 1 requires 3-b+2-n cycles on the
same problems. The two frameworks both indicate that
solution time will increase with the number of borrow
columns, but they predict quite different slopes.

Experiments with human subjects should reveal which
alternative offers a better explanation of skilled behavior
in this arena. We have not yet carried out such stud-
ies, but to test our framework’s generality, we have de-
veloped ICARUS models for behavior in other domains
that appear to have hierarchical organizations. One in-
volves the well-known Tower of Hanoi puzzle, which can
be solved using a hierarchical strategy. Our model for
behavior on this task includes three primitive skills for
lifting, lowering, and moving a disk sideways, along with
one high-level skill for moving a disk to a target peg that,
in two expansions, calls itself recursively. However, the
Tower of Hanoi is like subtraction in that the environ-
ment changes only when the agent takes some action.

To ensure that ICARUS can also support behavior in
more dynamic domains, we have developed two addi-
tional models. One involves hierarchical skills for bal-
ancing an upright pole by moving its lower end back
and forth. This system includes two high-level skills with
knowledge about the order in which the four primitive
skills should be invoked. As described elsewhere (Choi
et al., in press), we have also constructed a system that
drives a vehicle and delivers packages in a simulated in-
city environment. This model includes 46 skills that are
organized in a hierarchy five levels deep. The high-level
skills let the agent drive straight in lanes, get into right-
most lanes, slow for intersections, drive through inter-
sections, turn at intersections, and make U turns. These
terminate in actions for changing speed and altering the
wheel angle. Another 13 skills support the delivery of
packages to target addresses.

We have not attempted to compare the details of these
systems’ operations to human behaviors on the same
tasks. Nor have we attempted to show that ICARUS pro-
duces more robust behavior than programs cast in earlier
frameworks like Soar and ACT-R. Rather, our goal has
been to demonstrate the same broad functionality as we
observe in humans, including their apparent organization
of complex skills into hierarchies. We have also aimed to
show that ICARUS constitutes a viable point in the space
of cognitive architectures, which we believe has been too
thinly explored to date.

Related Efforts and Future Research

Although ICARUS incorporates a number of features that
distinguish it from typical cognitive architectures, some
related ideas have appeared elsewhere under different
guises. For instance, our framework has much in com-
mon with the ‘reactive planning’ movement, which often
utilizes hierarchical procedures that combine cognition,
perception, and action in physical domains.? Examples
include PRS (Georgeoff et al., 1985), teleoreactive pro-
grams (Nilsson, 1994), and the 3T robotic architecture
(Bonasso et al., 1997), and some case-based planners
(e.g., Hammond, 1993) embody similar notions.

However, within this paradigm, only Freed’s (1998)
APEX has been proposed as a candidate architecture for
human cognition. This framework shares ICARUS’ com-
mitment to hierarchical skills, but it has a more procedu-
ral flavor and it does not incorporate a separate concep-
tual memory or enforce a correspondence between long-
term and short-term structures. Another kindred spirit
is Albus and Meystel’s (2001) RCS architecture, which
organizes knowledge hierarchically and makes a clear dis-
tinction between logical structures and value judgments.
Icarus and RCS share many common features, but they
also retain many differences due to their origins in cog-
nitive modeling and control theory, respectively.

We should clarify that, as a cognitive architecture,
IcARUS still requires some development. The framework
lacks many processing assumptions that would make it
more plausible as a general theory of human behavior.
For instance, it lacks any limits on perceptual bandwidth
that require attention, which arises even on routine tasks
like subtraction. We intend to model such behavior by
introducing an action that focuses the agent’s attention
on an object and deposits its description in the percep-
tual buffer, with ICARUS being able to apply this action
to only one visible object per cycle. This should produce
longer subtraction runs that require additional steps for
attentional events, much as in Anderson, Matessa, and
Lebiere’s (1997) ACT-R model of visual attention.

We should also extend our models for subtraction
and other domains to handle lower levels of behavior
more faithfully. The skills in Table 1 terminate with ac-
tions for decrementing, adding ten, and finding a differ-
ence, but these can be further decomposed into subskills
for writing specific digits and even drawing individual
lines. Our claim to model embodied cognition would be
stronger if we extended the skill hierarchy downward in
this fashion. We should also extend the hierarchy up-
ward to model choices about which problem to tackle
when many are present on the page. Such an expanded
system would model subtraction behavior in a more com-
plete way than do most accounts.

However, a more important omission concerns the ori-
gin of ICARUS’ hierarchical skills. To handle this, we
hypothesize a mechanism that is related to chunking in
Soar and production composition in earlier versions of
ACT. Although humans prefer to use routine behav-
iors when possible, they can, within limits, combine

20ur model of subtraction skills also has similarities to
VanLehn’s (1990) hierarchical treatment of this domain.



knowledge elements when needed to solve novel prob-
lems. Means-ends analysis has been implicated in such
situations, so we plan to incorporate this method into
future versions of the architecture. The generalized re-
sults of means-ends problem solving would be cached
as a new skill. However, unlike chunking and composi-
tion, which produce flat rules that eliminate structure,
IcaRrUS would store a new hierarchical skill that refers
to the original ones as components. This method should
lead to the construction of skill hierarchies in a gradual,
bottom-up manner as an agent learns about a domain.

Concluding Remarks

In closing, we should review the main claims we have
made about hierarchical skills and their treatment within
various cognitive architectures. There seems to be gen-
eral agreement that skills are organized in some hierar-
chical fashion, but most existing models implement the
invocation of subskills through goal structures that are
deposited in short-term memory. In contrast, ICARUS
produces hierarchical behavior by letting skills commu-
nicate directly with their subskills, as in procedural lan-
guages and logic programming formalisms.

We illustrated this idea by presenting an ICARUS
model for multi-column subtraction and tracing its be-
havior on a specific problem. We saw that this system
takes the same basic steps as a production-system model,
but that steps involved in traversing the skill hierar-
chy occur within a single recognize-act cycle rather than
across successive cycles. This theoretical difference leads
to different predictions about the time required to exe-
cute complex skills. Future research should test these
predictions and extend ICARUS to incorporate mecha-
nisms for attention and construction of skill hierarchies.

Acknowledgements

This research was funded in part by Grant 11S-0335353
from the National Science Foundation, by Grant NCC
2-1220 from NASA Ames Research Center, and by Grant
HRO0011-04-1-0008 from Rome Labs. Discussions with
Stephanie Sage, David Nicholas, and Seth Rogers con-
tributed to many of the ideas presented in this paper.

References

Albus, J. S., & Meystel, A. M. (2001). Engineering of
mind: An introduction to the science of intelligent sys-
tems. New York: John Wiley.

Anderson, J. R. (1993). Rules of the mind. Hillsdale,
NJ: Lawrence Erlbaum.

Anderson, J. R. Matessa, M., & Lebiere, C. (1997).
ACT-R: A theory of higher level cognition and its ap-
plication to visual attention. Human-Computer Inter-
action, 12, 439-462.

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D.,
Miller, D., & Slack, M. (1997). Experiences with an
architecture for intelligent, reactive agents. Journal

of Experimental and Theoretical Artificial Intelligence,
9, 237-256.

Choi, D., Kaufman, M., Langley, P., Nejati, N., &
Shapiro, D. (in press). An architecture for persistent
reactive behavior. Proceedings of the Third Interna-

tional Joint Conference on Autonomous Agents and
Multi-Agent Systems. New York: ACM Press.

Freed, M. (1998). Managing multiple tasks in complex,
dynamic environments. Proceedings of the National
Conference on Artificial Intelligence (pp. 921-927).
Madison, WI: AAAT Press.

Georgeff, M., Lansky, A., & Bessiere, P. (1985). A pro-
cedural logic. Proceedings of the Ninth International
Joint Conference on Artificial Intelligence. Los Ange-
les: Morgan Kaufmann.

Hammond, K. (1993). Toward a theory of agency. In S.
Minton (Ed.) Machine learning methods for planning.
San Francisco: Morgan Kaufmann.

Jones, R. M., & Laird, J. E. (1997). Constraints on
the design of a high-level model of cognition. Proceed-
ings of the Nineteenth Annual Conference of the Cog-
nitive Science Society (pp. 358-363). Stanford, CA:
Lawrence Erlbaum.

Kieras, D., & Meyer, D. E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12, 391-438.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence. Artifi-
cial Intelligence, 33, 1-64.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka,
D., Etzioni, O., & Gil, Y. (1989). Explanation-based
learning: A problem solving perspective. Artificial
Intelligence, 40, 63-118.

Myers, K. L. (1999). CPEF: A continuous planning and
execution framework. AI Magazine, 20, 63-70.

Newell, A. (1990). Unified theories of cognition. Cam-
bridge, MA: Harvard University Press.

Nilsson, N. (1994). Teleoreactive programs for agent
control. Journal of Artificial Intelligence Research,
1, 139-158.

Neves, D. M., & Anderson, J. R. (1981). Knowledge
compilation: Mechanisms for the automatization of
cognitive skills. In J. R. Anderson (Ed.), Cognitive
skills and their acquisition. Hillsdale, NJ: Lawrence
Erlbaum.

Langley, P., & Ohlsson, S. (1984). Automated cognitive
modeling. Proceedings of the Fourth National Confer-
ence on Artificial Intelligence (pp. 193-197). Austin,
TX: Morgan Kaufmann.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using
background knowledge to speed reinforcement learn-
ing in physical agents. Proceedings of the Fifth In-
ternational Conference on Autonomous Agents (pp.
254-261). Montreal: ACM Press.

VanLehn, K. (1990). Mind bugs: The origins of proce-
dural misconceptions. Cambridge, MA: MIT Press.



