Designing Embedded Agents to Optimize
End-User Objectives

Marcel Schoppers* and Daniel Shapirof

* Robotics Research Harvesting
PO Box 2111, Redwood City, CA 94063
marcels@netcom.com

 Dept of Engineering Economic Systems
Stanford University, Palo Alto, CA 94304
dgs@leland.stanford.edu

Abstract. We formulate the design of discrete-state stochastic control
systems as optimizing a performance objective specified in user-oriented
terms, i.e. terms that need not be perceivable by the controller or agent
being designed. This addresses a user acceptance issue: while agent de-
signs (control algorithms) are limited to distinctions about state sup-
ported by artificial perception systems, end users want to evaluate per-
formance using terms such as safety, opportunity, and throughput.! We
elucidate a feedback from evaluation to agent design via a sensitivity
analysis, obtaining the gradient of a time-averaging objective function
w.r.t. state transitions influenced by the agent. This gradient leads to a
methodology for iteratively improving a system’s performance, as per-
ceived by others.

1 Motivation

Although the users of artificial agents have a tremendous need to place guaran-
tees on agent behavior, the topic of validation methodology is relatively under-
explored. The empirical standard is to expose the final artifact to a large body
of test cases, iteratively eliminating bugs and refining agent behavior while time
and money last. The underlying performance criteria are often informal, con-
tributing to a debatable guarantee. Verification approaches such as automated
plan synthesis depend crucially on formal domain models (which are known to
be inaccurate) and the availability of complete specifications (goal sets) that
define desired behavior. The net result is that we are far more able to prove
numerical properties of our algorithms than to validate the discrete behavior of
our artifacts.

We submit that the difficulty of such validation problems stems from the need
to compare reference frames: agents, designers, and users model the world in very
different terms and apply qualitatively different criteria to measure success. For
example, the agent (as an automaton) can only characterize the world within
the limitations of its perception system, e.g. as a set of moving shapes, activated

! This work was supported in part by NASA contract 9-19040.

contact sensors and the like, with consequent restrictions on its decisions and
behavior. The agent’s engineers evaluate that behavior in terms of their own
vastly superior perceptions and background knowledge, and care about such
things as mechanical wear, throughput, and possible failure modes. As much as
the engineers’ concerns differ from anything the agent can compute, they also
diverge from the interests of end users (think of bad VCR interfaces, and of
pretty, but inconvenient kitchens). Users are typically motivated by questions of
domain performance, convenience, and safety.

This paper introduces a design and validation methodology which explicitly
addresses the need to compare reference frames. We consider a robot with a
limited perceptual base that operates via a reactive loop, and an end-user whose
success criteria are based on a qualitatively distinct perception of salient state.
Our methodology solves the following problems:

#1 What is the mapping from robot-perceived states to human-perceived states?

#2 What is the expected utility of the robot process, expressed in end-user
terms?

#3 What change to the robot’s actions will best improve the end-user’s received
utility?

We define the mapping from robot- to human-perceived states as a probabilistic
relation given a set of simultaneous observations, and ask the end-user to assign
a constant utility to each user-perceived state. Next, we assume (and can com-
pute) a predictive model of robot-perceived state, such as a Markov model. This
allows us to average the end-user utility over possible futures and over time. We
then derive the gradient of the expected end-user utility with respect to tunable
elements of the agent’s behavior. This yields a mathematical framework for eval-
uating and incrementally improving, the design of an artifact per human-held
criteria. We submit that this expression of the validation problem is more formal
than exhaustive testing and more natural than existing verification procedures.

This paper develops the necessary mathematics, and includes a walk-through
of the proposed methodology in the context of a simplified NASA problem,
namely the creation of a robot for space rescue. We conclude with a discussion
of open issues, relevant work, and future directions.

2 Mathematics

2.1 Formalization

Our approach considers a control system, e.g. that of a robot. The robot’s per-
ceptions, including the states of its sensors and effectors and its own internal
data, must be mapped into a set of mutually exclusive states S, (mnemonic for
“states perceivable by robot controller”). The number of states must be finite.
For simplicity we assume that, despite the uncertainty inherent in any real
sensor suite, the agent declares itself to be in one particular state at any time.
This might be the state deemed most likely in a probability distribution, or the

process might indeed be fully observable. This single-state assumption is often
made in discrete-state agents, which can’t respond to 70% chance of rain by
bringing 70% of an umbrella — the agent must act as if it’s going to rain, or not.
While such a single-state assumption is not necessary either for our approach or
for our mathematics, it makes for a more intuitive exposition and removes an
ambiguity.

Similarly for a human evaluator, observing the robot and its environment,
there will be another set of states. These must be a mutually exclusive set S,
(mnemonic for “states perceivable by the evaluator”). For each state the evalua-
tor must assess a single, constant, desirability value, and this value must depend
only on the state, not on whatever comes before or after it. Clearly, the defini-
tions of the evaluator’s states will be driven by the evaluator’s wish to assess
different values at different times. The evaluator may however declare her belief
to be any probability distribution over Se, in which case the assessed value must
be the corresponding expectation over the state’s values.

Se and S, may be very large sets, but this does not impact the feasibility of
our approach, which is intended for off-line, design-time use. (Even for |S,| = 10°
states our approach is well computable.) Further, since the evaluator need not
guess at the robot’s inner workings, S, may be a much smaller set than S,..

2.2 The Observer-Robot Relation

Toward our goal of improving robot performance as evaluated by a human ob-
server, we need to express performance as a function of the evaluator’s states,
which are themselves a function of robot behavior. This means we need to derive
a probability distribution over S, for each robot state r; € S,.

Let p(e;|r;) denote the probability that the evaluator perceives state e; given
that the controller perceives state r;. Also let p;(r;) be the probability that the
controller perceives state r; at time ¢. Then by Bayes’ Rule, 3. p(ei|r;)p:(r;) is
the probability that the evaluator perceives state e; at time ¢.

This calculation can be written in matrix notation as follows. With |S| de-
noting the cardinality of set S, we define a matrix P of size |Se| x|S,| whose
entries are P;; = p(e;|r;). Also let r; denote the vector [p¢(r1),pe(r2) . .. pe(rn)],
which is a probability distribution over the controller-perceivable states. Then
we obtain e; = P r; as the probability distribution, corresponding to r;, over the
evaluator-perceivable states. Because P predicts the state the evaluator will per-
ceive as a function of the state the controller perceives, we call P the evaluator
prediction matriz.

It remains only to find the actual contents of P. From a simulation instru-
mented with some extra code, and at given instants of time ¢, we can simultane-
ously collect the state estimate vectors computed by the controller (r;) and by
the evaluator (e;). These may identify single states, or give probability distribu-
tions over the respective state sets. Finally we compute P as the solution to the
explicit minimization problem:

. _ 9 —
rrgn?”et Pry|* s.t. ;Pwk 1 (1)

where the column sum constraint guarantees P transforms all of the probability
mass in a given robot state into some evaluator state. We obtain the following
solution (after some algebra):

+
P = Z etrtT] lz I'tr{rt["| (2)
t t

The first bracketed term of this equation is an e x r matrix, while the second
is 7 xr, making P exr, as desired. (We use the pseudo-inverse (denoted by
+) in place of the true inverse since the second term is clearly singular.) This
solution guarantees that P is unique and that its columns have the structure of
probability vectors via the following argument: since e, r} and r, r} are products
of probability vectors, both >, e, r] and >, r,r{ are non-negative matrices.
% r] is also symmetric, with non-negative eigenvalues. The inverse (or pseudo
inverse) of a such a matrix has non-negative eigenvalues and thus non-negative
elements as well. P is therefore non-negative because it is the product of two
non-negative matrices. Since the pseudo-inverse operator is unique, P is unique,
non-negative, and its columns sum to 1 by virtue of the minimization constraint.
Thus, P’s columns are (conditional) probability vectors, as desired.

Note that P always exists, but may be more or less informative. P is an
identity matrix when robot and observer states are perfectly correlated, but it
has constant rows when a change in belief about robot state has no impact on the
estimate of evaluator state. This situation might apply if the robot and observer
are on different planets.

2.3 Behavior Model Construction

To compute the expected system performance as seen by the evaluator, we
use the evaluator prediction matrix P to map controller-perceived states into
evaluator-perceived states, and calculate the system’s expected behavior as per-
ceived by the controller. For this first implementation of our methodology, we
are temporarily assuming that the robot process is Markovian (possibly with
hidden states). The mathematics of Markov processes is well understood, and
there is a burgeoning literature on estimating the structure of Markov processes
from observations, see the references in [3]. As it is trivial to make an agent’s
control software report the agent’s perceptions of internal and external state,
and thus to estimate the process’s transition matrix, this paper limits discus-
sion of the agent’s behavior model to showing that the standard mathematics is
indeed piecewise differentiable. See e.g. [5] for an introduction to Markov chain
analysis. Here we need only the following paragraph of standard theory:

A “closed communicating class” (CCC) is a set of states that collectively
function as a trap: once the process has entered a CCC it can never get out.
For each CCC; the transition matrix R has a left eigenvector with eigenvalue
1, i.e. ;R = x;. Rewriting the eigen-equation as 0 = x;(I — R) we see that
the eigenvectors span the null space of (I — R), and hence can all be efficiently
identified with one Singular Value Decomposition. Every state having a nonzero
entry in any eigenvector having A =1 is a member state of some (one) CCC.

Knowing which states are in CCCs, we can re-number the states so that those
occurring in CCCs come first, thus yielding a transition matrix in canonical
form:]

,_[co
R_[AA

where C covers transitions within CCCs, A covers transitions between transient
states, and A covers transitions from transient states into CCCs. We can now
compute the “fundamental matrix” F = "> A™ = (I — A)~!, wherein Fj; is
the expected number of times the Markov process will occupy transient state j
when started in transient state ¢; and thence the matrix T = F A wherein T}; is
the probability of entering a CCC at state j when started in transient state .

To automatically extract the transition matrix R from simulation traces, we
assume that the controller can be instrumented with code that outputs the cur-
rent controller-perceived state, as described previously. With the states identified
and the possible transitions being explicit in the simulation trace, the only re-
maining problem is to calculate, for each state, the probabilities of transitioning
to its successor states. This is a trivial calculation but for the possibility of non-
stochastic behavior, e.g. a state that always transitions to itself exactly 5 times,
then transitions to somewhere else. Non-stochastic behavior indicates the exis-
tence of a “hidden variable” such as a counter. An accurate Markov model must
incorporate the hidden variable by modelling the repeating state as a sequence
of distinct model states. We plan to use the “instance-based state identification”
algorithm reported in [6], which uses state sequence observations (in addition to
probability information) to automatically identify hidden variables.

2.4 The Performance Objective

We now order the human observer’s subjective utilities as a vector u, and hence
predict the observer’s instantaneous evaluation (at time n) as a function of the
robot’s initial state (distribution) r: u P(RT)"r for n > 0.

We choose an objective function that averages the (human-perceived) utility
of the robot’s behavior over possible futures and over time:

-\ TP 1 al RTn
f(i)=u an::o()" r

where N is a number of state transitions, possibly infinite. We choose this func-
tion for three reasons. First, we are especially interested in the design and val-
idation of autonomous agents which act to maximize the value of an un-ending
future. While goal-directed planners may tolerate arbitrarily bad outcomes that
precede a goal, and ignore arbitrarily bad outcomes that follow it, an agent
pursuing a time-averaged criterion behaves better in both cases. Second, time-
averaged evaluation is quite general. It can be reduced to goal-directed behavior,
and to shortest-path behavior, by giving all states equal utility except for one
(goal) state of higher utility. Third, the above objective can be evaluated both
for finite and infinite life-times, as we show next.

Rewriting the objective function f(7) in terms of the canonical form R’ of
the transition matrix (see the previous subsection), and permuting the columns
of P to match the new state numbering, we find, using (R'T)" = (R™)7:

N T
> Cn 0
1 n=0
f i) = uTPI - I‘I7
() N N—-1 N
> (A™AC™) Y A"
m+n=0 n=0
A 077
—ulP’ r, N — oc. (3)
FAA LF

The submatrixes have straightforward interpretations. The i** row of the upper
submatrix [A 0] gives steady-state occupancy frequencies when the process is
started in state r; in a CCC. Similarly, since F A = T, the it row of the lower
submatrix [FAA %F] gives expected steady-state occupancy frequencies when
the process is started at transient state r;.

To evaluate a non-terminating process we focus on the steady-state behavior,
namely the behavior inside CCCs as given by the left-hand submatrixes of Equa-
tion 3, since in the limit of infinite time, the time-averaged occupancy frequency
of transient states (the right-hand submatrixes) is 0. To evaluate a terminat-
ing process we simply reverse the foregoing bias by focusing on the right-hand
submatrixes of Equation 3, with A =0. (Note that “goal” states must precede
termination to be included in the evaluation).

If we wish f(i") to give some weight to both steady-state and transient behav-
ior, we can evaluate f(i') exactly as written for some finite choice of N. With
more efficiency but less confidence, we can also evaluate the steady-state and
transient behaviors separately as described above, and return a weighted sum.

2.5 Gradient: Vf

To show that our objective function is not only evaluable but also useful to guide
agent design, we must provide an effective method for making agents optimize
the objectives. To this end we show that it is possible to compute Vf, the gradient
vector of f with respect to the agent’s internal state transition probablhtles
We obtain the elements 8f (’) by constructing a perturbation matrix R whose

entries are zero but for Rkl = €. We write ¢f(¢) for the perturbed evaluation
(using R + R in place of R). Thus we obtain:

. N n-—1
Z{Q(:,) (NZ Z R (R (mH1)))) (4)

n=1m=0

(R™); is the probability that the process will be in state k, and be affected
by the perturbation, at time m. (R”_("“H))l* gives occupancy probabilities for
states after I (down-stream from the perturbation) at time n. >, = thus computes

the expected effect of the perturbation on all trajectories of length n, and)
averages the evaluation to time N.

Eq 4, with its high powers of potentially large (but sparse) matrixes, is not
recommended for computation. We isolate the gradient of the transient behavior
by putting R into canonical form R’, extracting the transient submatrix A,
computing F = > A™ = (I-A) !, and thus simplifying Eq 4 to get

of(i)
ORy

where P’ is P with its columns permuted to match the new state numbering.
Since t scales all the gradient elements it is arbitrary. This simplification can be
computed with one Singular Value Decomposition, one matrix inversion, and a
few vector products. Because I—A is very sparse, this computation can be made
very fast: nearly linear in the number of states. The gradient for terminating
processes of 100 states can be computed in 0.007 sec; for 10® states it takes 28
sec to 50 mins (on an old Sparc 2), depending on process structure.
The gradient for steady-state performance is work-in-progress.

= u'P'(F.) Fu/ t (5)

2.6 Total Derivatives

The gradient gives crucial information for optimizing the design of the controller,
specifically by focusing attention on the transition probabilities the end-user
would most want changed. However, we are not free to change them arbitrarily.
Our use of a Markov model imposes the constraints

Zmkazl, and Z ngg =0. (6)

To satisfy these constraints the iterative improvement process must be concerned
with the total derivatives

Z dem. X
de[6ka del

Other constraints arise from the physms of the underlying sensors and effec-
tors, and from the economics of changing the agent design: not all conceivable
improvements are feasible. Hence the revealed optimization problem is to max-
imize f subject to reality constraints. As usual, the optimal agent design will
occur either at a boundary point of the physics constraints, or at a bliss point
where the total derivatives are zero.

3 A Worked Example

The following example comes from a domain of considerable interest to NASA:
a robot whose task is to rescue an astronaut adrift in space. A simplified version
of the robot might be cognizant of four states: #1 astronaut has been sighted far
away, #2 robot is standing-off the astronaut, #3 astronaut has been attached,
and #4 astronaut has been released into the Shuttle. The actions performed
in these states are: #1 navigating to an arm’s length from the astronaut, #2

matching the astronaut’s motion and then grappling him, #3 navigating back to
the Shuttle and releasing the astronaut, and #4 deactivating the robot. Along
the way, things can go wrong, like bumping the astronaut before matching his
motion, or “dropping” him on the way back. A possible state diagram is shown
in Fig la, with transition probabilities on the arcs. Since we choose to regard
this “process” as terminating at a goal state, we cast it as the transient part
of a Markov chain, and plan to use Eq 5. To be included in the evaluation, the
goal state must be transient, so we have it transition into a new terminal state,
shown shaded. The resulting transition matrix R appears in Fig 1b. A is the
upper-left 4x4 part of R, and F = (I—A)~! appears in Fig lc.

0901 0 0 0
030205 0 O 27 4 5 1
01 0.1 0.6 0.2 O 17 4 5 1
0O 0 0O 0 1.0 11 2 51
0O 0 0O 0 1.0 0001
(b) R (c) F
09 0.8 06 0 —54 —4.05 —-2.7 2.0
01 0204 O -0.8 —-0.60 —0.4 0.3
0O 0 0 0.5 -1.0 -0.75 —-0.5 04
0O 0 0 0.5 —-0.2 —-0.15 -0.1 0.1
(d) P (e) Vf

Fig. 1. Astronaut rescue, robot & evaluation models.

The observer cares about (S) has the astronaut been returned to the Shuttle,
and (H) is he harmed, yielding 4 observer states. This categorization emphasizes
that the end-user is unconcerned with details of the retrieval, but does consider
harm, which the robot cannot measure. The observer says that a return is worth
+10, harm is worth —5, thus giving us an explicit value function, and assigning
the following values:

-S&—-H 0, =S&H -5, S&—H 10, S&H 5,
and these constitute the u (utility) vector in Eq 5.

Simultaneous sampling of robot and observer states, followed by application
of Eq 2, yields the observer P matrix of Fig 1d, whose columns map the robot
states of Fig la into probability distributions over the observer states just listed
(in the given order). The observer appears to believe that each stage of the rescue
increases the probability of harm. This might be explained by elapsed time, or

by the robot itself doing harm on contact, but explanations are not essential.
Multiplying out u” P yields the expected utility of robot states to the end-user:
-0.5, —1.0, —2.0, 7.5.

Finally, assuming the robot starts in state #1 and taking ¢ = 100, Eq 5 yields the
gradient elements. Fig le shows them arranged as a matrix with Vf; = %fT(il).

Before we can identify the most helpful changes we must recall that these
are only partial derivatives where we want the total derivatives given by Eq 7.
In other words, when considering which robot transition to make more likely
we must also ask, at the expense of which other transition in the same row?
The total derivative is the difference of those gradient elements. Thus it turns
out that the largest net benefit accrues at Vfis — Vfi1 = 7.4 utils/step, going
directly from being outbound to having returned, without any potential delays
and harms. Impossible! The best realistic change is at Vf3s —Vf3; = 1.4, in-
creasing the probability of the return transition by reducing the probability that
the astronaut will have to be chased down again. This might be achieved by
simply increasing the strength of the robot’s grasp. The next best change is
at Vfia—Vfi1 = 1.35, spending less time in the approach state. (Notice that
Vfi2 < 0, but a larger Ry2 can still yield better performance.) All other changes
are much less significant.

How much can R34 — R31 and Rjs — Rji1 be changed, and at what cost?
Whether and how to proceed are project management decisions. Nevertheless,
our approach has identified what is most worth improving.

4 Summary and Discussion

While most of this paper has developed mathematical foundations, its purpose
has been to articulate a novel design and validation methodology for discrete-
state embedded agents. We constructed an objective function over ongoing robot
behavior by means of user-held criteria, and then derived the gradient Vf with
respect to perturbations of state transition probabilities deep within the agent
model. Availability of Vf led to the following design and validation methodology:

1. Derive the observer state prediction matrix P as described above, and obtain
u, the vector of the observer’s subjective utilities for the evaluator/user-
defined states.

2. Use Vf to identify the most influential state transition probabilities in the
Markov model of agent behavior, as well as whether to increase/decrease
them.

3. Change the indicated state transition probabilities by redesigning the agent.
(P need not be re-computed as long as design optimization changes only the
state transition probabilities.)

4. Repeat from step 2 until...

Since the physical and financial constraints on the system’s design may not
be represented mathematically at design time, final validation will require an
explicit decision that each of the remaining opportunities to improve total system

performance is not worth the cost. The cost may be monetary, or may result from
a performance tradeoff.

Reliance on the gradient of the objective function has several implications.
Obviously, the numerator (the objective function) must be at least piecewise
differentiable w.r.t. something the robot can influence. This requirement comes
to apply to each of
(a) the expectation of robot state occurrence probabilities/counts,

(b) the mapping from robot- to user-perceived states,
(¢) the mapping from user states to values, and
(d) the manner of reducing all possible futures down to a single number.

(b) and (c) will usually be linear and trivially differentiable. We adopted a
Markov model of robot state for (a), and evaluated a time-averaged utility for (d),
thus achieving differentiability. The important point here is that those choices
are not essential to our approach: any other choices that satisfy the differentia-
bility requirement would do.

The gradient’s other implication is from its denominator: only continuous
parameters of the robot’s behavior can be candidates for improvement. We can-
not evaluate the net benefit/loss that might accrue from choosing an entirely
different reaction to a given state, or from enlarging the set of robot states,
e.g. by allowing the robot to perceive a new distinction. We can however evalu-
ate whether or not existing states should ever be entered.

Our only assumptions about the human observer are that we can sample
his/her state simultaneously with that of the robot, and of course that the ob-
server can define a set of mutually exclusive states with associated (constant)
values. In short, there is no requirement on the human observer’s state sequence
(e.g. that it be Markovian) nor is there any restriction on the nature of the
observer’s utility function. Moreover, the human observer is allowed to be ar-
bitrarily uncertain, and may declare that s/he is experiencing any probability
distribution over observer-defined states (provided of course that the value as-
sessed for such uncertainty is a probabilistic weighting over the values of the
base states).

While we have calculated Vf w.r.t. state transition probabilities inside the
robot, closing the design loop requires us to know how those transition prob-
abilities depend on concrete parameters in the robot’s perception and action
subsystems. Such parameters might include thresholds on subjective belief, such
that certain conditions are accepted as true iff the threshold is exceeded; or mo-
tion parameters that make actions more or less likely to succeed. To compute Vf
w.r.t. such a parameter x requires the derivatives % which are of course appli-
cation dependent and hence beyond our reach. Given such derivatives, however,
the corresponding augmentation of Equation 4 is trivial:

df(i) df(i) dRy
dx dRy dx

5 Related Work

Our work is intended as a contribution to the methodology of agent design. While
methodological questions have received little formal attention as a domain of
inquiry, every agent architecture makes some (possibly implicit) commitment to
design strategy. Just in this volume, for example, [1] represents agent components
via C++ class hierarchies and advocates an object oriented design approach;
[8] highlights agent commitments and implicitly advocates a methodology for
constructing agent societies based on the orderly exploration of contract nets.
The work by [7] on agents with provable epistemic properties is perhaps closest
to ours in feel; it suggests that end-users identify crucial domain contraints
(e.g., that vases remain on tables), and derives a satisficing agent (cast as a
reactive controller) via a proof process. This work shares our interest in relating
agent-held distinctions to user-held observations of the world, but it lacks a
representation of expected utility and therefore any explicit guidance for an
iterative improvement process.

Reinforcement learning methods [3] suggest an alternate methodology for
optimizing agents w.r.t user-held success metrics: reward the agent for good
behavior and let a credit assignment algorithm adjust the agent’s internal struc-
ture. This approach addresses the iterative refinement problem, but uses search
over possible attributions (through time) in place of the tighter focus provided
by our explicit gradient calculation.

Decision theoretic planning algorithms [2] [4] seek to define utility maximiz-
ing agents as an a priori proof problem. This work addresses the core issue of
design optimality, but is currently limited to problems of restricted size. These
efforts also lack attention to the issue that utility is naturally defined in user-
held terms (the algorithms currently require utility to be expressed in agent-
recognized states), and once again employ search (over goals and actions) in
place of the more focused attention supplied by a gradient calculation. Finally,
decision theoretic planning systems (as paper exercises) lack a reality check on
the plans they produce. In contrast, our methodology employs end-user obser-
vations to construct a state correspondence mapping; this feedback ensures that
the end-user optimizes real world performance, versus the predicted performance
of an agent model.

References

1. J. Bryson. Agent architecture as object oriented design. In this volume.

2. D. Draper, S. Hanks & D. Weld. Probabilistic planning with information gathering
and contingent execution. Proc Int’l Conf on AI Planning Systems 1994, 31-36.

3. L. Kaelbling, M. Littman & A. Moore. Reinforcement learning: a survey. JAIR 4,
1996, 237-285.

4. N. Kushmeric, S. Hanks & D. Weld. An algorithm for probabilistic planning. Al
Journal 76:1, 1995, 239-286.

5. D. Luenberger. Introduction to Dynamic Systems — Theory, Models and Applica-
tions, chapter 7. Wiley & Sons, New York, 1979.

6. R.A. McCallum. Hidden state and reinforcement learning with instance-based
state identification. IEEE Trans SMC (B) 26:3, 1996, 464-473.

7. S. Rosenschein & L. Kaelbling. The synthesis of digital machines with provable
epistemic properties. Theoretical Aspects of Reasoning Conf 1986, 83-98.

8. E. Verharen, F. Dignum & S. Bos. Implementation of a cooperative agent archi-
tecture based on the language-action perspective. In this volume.

This article was processed using the IXTEX macro package with LLNCS style

